# A CLASS OF HOMOMORPHISMS OF PRE-HJELMSLEV GROUPS 

FRIEDER KNÜPPEL
Introduction. E. Salow [8] introduced the concept of pre-Hjelmslev groups, a generalization of F. Bachmann's Hjelmslev groups [1] which leads to a more natural theory of homomorphisms and permits a simpler construction of algebraic models. Basically, both types of groups are the groups of motions of a metric plane, the so-called group plane. In such a plane there is a unique perpendicular through any point to any line and the product of three collinear points (three copunctal lines) is a point (a line). Our first section contains the precise definitions and some basic facts.

The homomorphic image of a pre-Hjelmslev group can be more complicated than the pre-image. For instance, there may always be a unique line through two distinct points of the pre-image but not of the image. We study regular homomorphisms of pre-Hjelmslev groups, i.e., homomorphisms with the following property: If two lines intersect at exactly one point, their images will also have precisely one point in common.

Let $Q$ denote a proper subset of the point set of a pre-Hjelmslev group satisfying an enrichment axiom called (W). We call $Q$ complete if the following holds: Suppose two lines have a unique intersection $C$ and both of them are incident with points of $Q$. Then $C \in Q$. Our main result is the following:

Theorem. There is a regular homomorphism of the pre-Hjelmslev group such that $Q$ consists of the pre-image points of a point if and only if $Q$ is complete.

The special cases that $Q$ consists of the fixed points of a rotation or that $Q$ is the set of the neighbors of some point have been dealt with in [9] and [4].

In a forthcoming paper we study pre-Hjelmslev groups over commutative rings and establish a one-to-one correspondence between the non-trivial ideals of the ring and the kernels of regular homomorphisms of the pre-Hjelmslev group.

[^0]
## 1. Pre-Hjelmslev groups.

The basic assumption. The triplet ( $G, S, P$ ) consists of a group $G=\{\alpha$, $\beta, \ldots\}$ and two sets $S=\{a, b, \ldots\}$ and $P=\{A, B, \ldots\}$ of involutions in $G$ such that (i) $S$ and $P$ are invariant under inner automorphisms of $G$ and $S \cap P=\emptyset$, (ii) $S$ generates $G$, and (iii) $\emptyset \neq P \subseteq S^{2}=\{a b\}$.

We assign to such a triplet a geometric structure, the group plane. Its points (lines) are the elements of $P$ (of $S$ ). The point $A$ and the line $b$ are incident, $A \mid b$ or $b \mid A$, if $A b$ is an involution. The lines $a$ and $b$ are orthogonal if $a b \in P$; notation: $a \mid b$.

Every $\alpha \in G$ induces a motion, i.e., an automorphism of the group plane, given by $X \mapsto X^{\alpha}, x \mapsto x^{\alpha}$ for $X \in P$ and $x \in S$. If $\alpha \in P \cup S$, this motion is a reflection in $\alpha$. We do not always distinguish between the element $\alpha$ and the motion induced by $\alpha$. Thus the set

$$
\mathrm{F}(\alpha):=\left\{X \in P: X^{\alpha}=X\right\}
$$

of "the fixed points of $\alpha$ " is that of those of the induced motion.
A pre-Hjelmslev group is a triplet $(G, S, P)$ satisfying the basic assumption and the following axioms:
(A1) Given $A, b$, there is a $c$ such that $A, b \mid c$.
(A2) $A, b \mid c, d$ implies $c=d$.
(A3) $A, B, C \mid d$ implies $A B C \in P$.
(A4) $a, b, c \mid d$ implies $a b c \in S$.
By (A1) and (A2), there is a unique perpendicular $(A, b)$ through any point $A$ to any line $b$. (A3) and (A4) are the "Three-reflections axioms".
We shall frequently use the following enrichment axiom:
(W) There are lines $a, b, c, d$ with $a \mid b$ and $c \mid d$ such that any two of them intersect in exactly one point.

We next collect some elementary results on pre-Hjelmslev groups. If no reference is given, the proof in [2] for Hjelmslev groups remains valid for ( $G, S, P$ ).
1.1. (i) $A \mid b$ if and only if $A^{b}=A$.
(ii) If $A \mid b, c$ and $b \mid c$ then $A=b c$. If $A \mid b$ then $A b \in S$ and $A b=$ $(A, b)$.
(iii) If $A, B, C \mid d$ then $A B C \in P$ and $A B C \mid d$.
(iv) If $a, b, c \mid D$ then $a b c \in S$ and $a b c \mid D$.
(v) If $a, b, c \mid d$ then $a b c \in S$ and $a b c \mid d$.

$$
\text { 1.2. Let } A a=B b=c C \text {. Then }(A, a)=(B, b)=(C, c) \text {. }
$$

Occasionally we need the following consequence of 1.2.
1.2'. AbC $\in S$ if and only if $(A, b) \mid C$.

Namely, the assumption $c:=A b C \in S$ implies $A b=c C$, hence

$$
(A, b)=(C, c) \mid C
$$

Conversely, let $(A, b) \mid C$. Then

$$
B:=b(A, b) \in P \quad \text { and } \quad A, B, C \mid(A, b)
$$

1.1 (iii) implies $D:=A B C \in P$ and $D \mid(A, b)$. Therefore by 1.1 (ii) $D(A, b)=d$, where $d:=(D,(A, b))$. Hence $A b C=d \in S$.

An element $\alpha=A a$ is a glide reflection with the axis $[\alpha]:=(A, a)$. If $\alpha$ $\notin S$, then $\mathrm{F}(\alpha)=\emptyset$.
1.3. The group $G$ is the disjoint union of the subgroup $S^{\text {even }}:=S^{2} \cup S^{4}$ $\ldots$ and its coset $S^{\text {odd }}:=S \cup S^{3} \ldots$ Let $\alpha \in S^{\text {even }}$ and $\mathrm{F}(\alpha) \neq \emptyset$. Then $\alpha$ is a rotation. If $A \in \mathrm{~F}(\alpha)$ and $u \mid A$ then $\alpha=u v$ for some $v$ with $v \mid A$.

Representation Theorem. Let $A \in P$. Every $\alpha \in S^{\text {even }}$ has a unique decomposition $\alpha=\beta C$ where $\beta$ is a rotation with $A \in \mathrm{~F}(\beta)$ and $C \in P$. Every $\alpha \in S^{\text {odd }}$ has a unique decomposition $\alpha=b C$ where $b \mid A$ and $C \in$ $P$.
1.4. The point $C$ is a mid-point of $A$ and $B$ if $A^{C}=B$. Two points have not more than one mid-point. Let $\alpha \in G$. By 1.3, $A$ and $A^{\alpha}$ have a mid-point.
1.5. For any group $H$, let $\mathrm{Z}(H)$ denote its center. Then

$$
\mathrm{Z}\left(S^{\mathrm{even}}\right)=\left\{\alpha \in S^{\mathrm{even}}: \mathrm{F}(\alpha)=P\right\}
$$

1.6. For every $a$ define $\mathrm{P}_{a}=\{A: A \mid a\}$.

Let $a, b \mid c$. Let $A \mid a, g$ and $B \mid b, g$. Then the mapping $C \mapsto C A B$ is a bijection of $\mathrm{P}_{a} \cap \mathrm{P}_{g}$ onto $\mathrm{P}_{b} \cap \mathrm{P}_{g}$. In particular, $\mathrm{P}_{a} \cap \mathrm{P}_{g}=\{A\}$ if and only if $\mathrm{P}_{b} \cap$ $\mathrm{P}_{g}=\{B\}$.


Figure 1
1.6'. Corollary. Let $a, b \mid c$. Let $b \mid d$. Then $a$ and $d$ have at most one point in common.
1.7. ( [8], Lemma 1). Let $a, b|c ; A| a, g$ and $B \mid b, g$. Then $\mathrm{F}(a g)=\{A\}$ if and only if $F(b g)=\{B\}$.

Applying 1.7 three times, we obtain
1.7'. Corollary. Let $A|a, b ; B| c, d ; a \mid c$ and $b \mid d$. Then $\mathrm{F}(a b)=\{A\}$ if and only if $\mathrm{F}(c d)=\{B\}$.


Figure 2
1.8. Let $\alpha$ be a rotation; $g \in S$. Then $\alpha g \in S$ if and only if

$$
\mathrm{F}(\alpha) \cap \mathrm{P}_{g} \neq \emptyset .
$$

In particular, let $\mathrm{F}(\alpha)=\{A\}$. Then $\alpha g \in S$ if and only if $A \mid g$.
1.9. Suppose ( $G, S, P$ ) satisfies (W). (i) Let a|b. Then there are lines $c, d$ such that $a b=c d \mid a, b, c, d$ and not two of these lines intersect elsewhere. (ii) The lines $a$ and $b$ have a unique intersection if and only if $|\mathrm{F}(a b)|=1$. In particular, let $a b=c d$. If $a, b$ have a unique intersection then so will $c, d$.
1.10. The pre-Hjelmslev group $(H, T, Q)$ is a pre-Hjelmslev subgroup of the pre-Hjelmslev group $(G, S, P)$ if $H$ is a subgroup of $G, T \subseteq S, Q \subseteq P$. We then write $(H, T, Q) \leqq(G, S, P)$.

Let $(H, T, Q) \leqq(G, S, P)$. Then $T=S \cap H$ and $Q=P \cap H$. Let $a, b$ $\in T, C \in Q$. Then a|b(Then $a \mid C)$ in $(H, T, Q)$ if and only if $a \mid b(a \mid C)$ in $(G$, $S, P)$.

Proof. Since $T^{\text {even }} \subseteq S^{\text {even }}$ and $T^{\text {odd }} \subseteq S^{\text {odd }}$, we have

$$
S \cap H \subseteq T^{\text {odd }} \quad \text { and } \quad P \cap H \subseteq T^{\text {even }}
$$

Let $a \in S \cap H$. Choose $A \in Q$. Then by 1.3, $a=b C$ for some $b \in T, C$ $\in Q$ such that $b A$ is an involution. Thus $a \in T$ by 1.1 (ii). Next, let $B \in$ $P \cap H$. By 1.3 there are $g, h \in T$ and $C \in Q$ such that $g A$ and $h A$ are involutions and $B=g h C$. Here $g h$ and $C$ are uniquely determined. As $B$ $=1 \cdot B$, this yields $B=C \in Q$. The remaining assertions are obvious.
1.11. For any set $Q \subseteq P$ let $\mathrm{S}(Q)$ consist of those lines in $S$ which meet points of $Q$.

Let $(H, T, Q) \leqq(G, S, P)$. Thus $T \subseteq \mathrm{~S}(Q)$. Suppose (i) If $B \in P$ and $A$, $A^{B} \in Q$, then $B \in Q$, (ii) $\mathrm{S}(Q) \subseteq T$ (thus $\left.\mathrm{S}(Q)=T\right)$. Then $(H, T, Q)$ is called a spot of $(G, S, P)$. In this case,

$$
H=\mathrm{N}_{G}(Q):=\left\{\alpha \in G: \alpha^{-1} Q \alpha \subseteq Q\right\}
$$

Proof. As $(H, T, Q)$ satisfies the basic assumption, we have $H \subseteq \mathrm{~N}_{G}(Q)$. Conversely, let $\alpha \in \mathrm{N}_{G}(Q)$. Choose $A \in Q$. By 1.3 there are $\beta \in G$ and $C \in P$ such that $\alpha=\beta C$. Here $\beta$ is a product of lines through $A$. Hence $\beta \in H$, by (ii). As $\alpha \in \mathrm{N}_{G}(Q)$, we have

$$
A^{\alpha}=A^{\beta C}=A^{C} \in Q .
$$

Thus $C \in Q \subseteq H$, by (i), and $\alpha=\beta C \in H$.
The final propositions of this section aim at Hjelmslev groups (without a "pre"). They will not be used in the sequel.

The pre-Hjelmslev group $(G, S, P)$ is a Hjelmslev group if

$$
P=\{a b: a, b \in S \text { and } a b \text { is an involution }\} .
$$

1.12. (cf. [9], 2.8). Let $(G, S, P)$ be a pre-Hjelmslev group; $a b=b a ; A \mid a$. Then $(A, b) b \mid a$. In particular, any two commuting lines in a pre-Hjelmslev group have a point in common.

$$
\text { Proof. Let }(A, b)=c \text {. Thus }
$$

$$
A \mid c, c^{a} \quad \text { and } \quad b c, b \cdot c^{a}=(b c)^{a} \in P
$$

Thus $c=c^{a}$, by (A2), and hence $b c \mid a, b$.
1.13. Let $A \in P$. Then the pre-Hjelmslev group $(G, S, P)$ is a Hjelmslev group if and only if $\mathrm{D}(A):=\{b c: b, c \mid A\}$ contains only one involution.

Proof. By (1.1) (ii), $A$ is the only involution in $\mathrm{D}(A)$ if $(G, S, P)$ is a Hjelmslev group. Conversely, suppose $A$ is the only involution in $\mathrm{D}(A)$. We first show that this remains true if $A$ is replaced by any point $B$. We may assume that $A, B \mid g$ for some $g$. Let $\beta \in \mathrm{D}(B), \beta^{2}=1$. By 1.1 (iv), $\beta g$ is a line $c$ through $B$. Since $\beta^{2}=c^{2}=1, c$ and $g$ commute. By $1.12, C:=$ $(A, c) c \mid g$. Hence $(A, c)=C c$ and $g$ commute. Thus, by our assumption, either $(A, c)=g$ or $(A, c)=A g$. Hence (A2) yields that either $C c=g$ and $\beta=C=B$, or $g=c$ and $\beta=1$.

Next, let $a, b \in S$ and $a b=b a \neq 1$. By 1.12, there is a point $C \mid a, b$. As $\mathrm{D}(C)$ contains only one involution, viz. $C$, we obtain $a b=C \in P$.

We mention without a proof
1.14. (cf. [9], Lemma 2). Suppose the pre-Hjelmslev group (G, S, P) satisfies $\mathrm{Z}\left(S^{\text {even }}\right)=1$ and has the following property:
(Z) If $a \mid b$ and $a b \mid c$ then $c$ has $a$ unique intersection with $a$ or $b$.

Then $(G, S, P)$ is a Hielmslev group.

## 2. Complete point sets.

2.1. Let $\Pi=(\mathscr{P}, \mathscr{L}, I)$ denote any incidence structure. The set $Q \subseteq \mathscr{P}$ is complete (in $\Pi$ ) if it satisfies the following condition: If two lines both meet $Q$ and have a unique intersection, then that point belongs to $Q$. A substructure of $\Pi$ is called complete (in $\Pi$ ) if its point set is complete in $\Pi$. The sets $\mathscr{P}$ and $\emptyset$ are complete; the intersection of complete sets is complete.

Examples. (a) Suppose through any two distinct points of $\Pi$ there is always a unique line. If there are three non-collinear points, the complete sets in $\Pi$ are $\mathscr{P}, \emptyset$, and the one-point sets.
(b) Suppose the homomorphism $\varphi$ maps $\Pi$ into an incidence structure $\Pi^{\prime}=\left(\mathscr{P}^{\prime}, \mathscr{L}^{\prime}, I\right)$, and any pair of lines intersecting uniquely in $\Pi$ is mapped by $\varphi$ onto a pair of lines intersecting uniquely in $\Pi^{\prime}$. Then $C \varphi^{-1}$ is complete in $\Pi^{\prime}$ for every $C \in \mathscr{P}^{\prime}$.

In the remainder of this section, $(G, S, P)$ denotes a pre-Hjelmslev group satisfying (W).
2.2. Let $\alpha \in S^{2} ; Q:=\mathrm{F}(\alpha) \neq \emptyset$. Hence $\alpha$ is a rotation. It is well known that $Q$ is complete and that $\left(\mathrm{N}_{G}(Q), S(Q), Q\right)$ is a spot; cf. [2, page 111 Section 9.4, Folgerung 7, and page 78, 6.3]. We wish to prove the following:

Theorem. Let $Q \subseteq P$ be complete in $(G, S, P)$. Then $\left(\mathrm{N}_{G}(Q), S(Q), Q\right)$ is a spot of $(G, S, P)$.

Proof. The set $Q$ being complete, we have

$$
Q=\{a b: a, b \in \mathrm{~S}(Q) \text { and } a b \in P\}
$$

We wish to show
(A3*) If $B, C, D \in Q ; A, B, C, D \mid g$ and $A B=C D$ then $A \in Q$.
At first we prove ( $\mathrm{A} 3^{*}$ ) under the additional assumption
$(+)|\mathrm{F}(g h)|=|\mathrm{F}(g h D)|=1 \quad$ for some $h \mid C$.
Let $d=D g$. Thus $|\mathrm{F}(d h)|=1$, say $\mathrm{F}(d h)=\{E\}$. By $1.8, d=(d h) h \in$ $S$ implies $E \mid h$. Thus $E \mid d, h$. By $(+),|\mathrm{F}(g h)|=1$ and $g, h \mid C$. Hence by 1.9 (ii), the intersections of $h$ with $d$ and $g$ are unique. $Q$ being complete, this yields, in particular, $E \in Q$. Let $b:=B g$ and $m:=(E, b)$. As $B, E \in Q$ and $b \mid m$, the completeness of $Q$ also implies $b m \in Q$. Finally, let $k=m d h$ and $j=C h$. Then

$$
A=B D C=b d C=b d h j=b m k j .
$$



Figure 3
Hence, by $1.2,(A, j)=(b m, k)$. The lines $h$ and $(A, j)$ have the common perpendicular $j$. Also $h$ and $g$ have a unique intersection. By 1.6, the intersection $A$ of $g$ and $(A, j)$ is also unique. Since $Q$ is complete, this yields $A \in Q$.


Figure 4
Now we prove (A3*) without assuming additional assumptions. Let $B$, $C, D \in Q ; A, B, C, D \mid g$ and $A B=C D$. By 1.9, (i) and (ii), there is a line $g^{\prime}$ through $C$ such that

$$
\mathrm{F}\left(g g^{\prime}\right)=\mathrm{F}\left(C g g^{\prime}\right)=\{C\}
$$

Let $b=\left(B, g^{\prime}\right), d=\left(D, g^{\prime}\right), B^{\prime}=b g^{\prime}, D^{\prime}=d g^{\prime}$. Thus $C g^{\prime}, b, d\left|g^{\prime} ; B\right| b, g$; $D \mid d, g$. As $\mathrm{F}\left(C g^{\prime} g\right)=\{C\}, 1.7$ implies $\mathrm{F}(b g)=\{B\}$ and $\mathrm{F}(d g)=\{D\}$. The completeness of $Q$ yields $B^{\prime}, C, D^{\prime} \in Q$. Let $A^{\prime}=C D^{\prime} B^{\prime}$. Thus $A^{\prime} \mid g^{\prime}$; cf. 1.1 (iv). The special case of (A3*), which has already been proved, now yields $A^{\prime} \in Q$. We have

$$
A(B b)=C D b=C D d \cdot d b=C D d C \cdot C D^{\prime} B^{\prime}=(D d)^{C} A^{\prime} .
$$

Therefore by $1.2,(A, B b) \mid A^{\prime}$. Applying 1.7 once more, we obtain

$$
\mathrm{F}((A, B b) g)=\{A\}
$$

As $Q$ is complete, $(A, B b) \mid A^{\prime}$ and $A^{\prime}, B \in Q$ finally yield $A \in Q$.
Let $A \in Q$ and $g \in \mathrm{~S}(Q)$. Then $B:=(A, g) g \in Q$ and, by (A3*),

$$
A^{g}=B A B \in Q .
$$

Hence $Q$ is invariant under inner automorphisms of the group $\langle\mathrm{S}(Q)\rangle$. The same will apply to $\mathrm{S}(Q)$. Thus $\mathscr{H}=(\langle\mathrm{S}(Q)\rangle, \mathrm{S}(Q), Q)$ satisfies the basic assumption; cf. Section 1. Obviously, the axioms (A1), (A2) and (A4) are satisfied, while (A3) follows from (A3*). Hence $\mathscr{H}$ is a pre-Hjelmslev subgroup of $(G, S, P)$.

Obviously, $\mathscr{H}$ satisfies the second assumption of 1.11 . We verify the first one:
(*) If $B \in P$ and $A, A^{B} \in Q$, then $B \in Q$.
For the present, let us assume $g \mid A, B$ for some line $g$. By 1.9 (i), there are lines $h, j$ through $B$ such that $B=h j$ and that no two of the lines $g, h, j$ intersect elsewhere. By 1.9 (ii),

$$
\mathrm{F}(g h)=\mathrm{F}(g j)=\{B\}
$$

Let $C=A^{B}$. Then

$$
A^{h}=A^{B j}=C^{j} \mid(A, h),(C, j)
$$

Hence by 1.7, $\mathrm{F}((A, h)(C, h))=\left\{A^{h}\right\}$. As $A, C \in Q$ and $Q$ is complete, this yields $A^{h} \in Q$. Thus $g, g^{h} \in S(Q)$. By 1.7,

$$
\mathrm{F}(g h B)=\{B\}=\mathrm{F}(g h) .
$$



Figure 5
Therefore,

$$
\mathrm{F}\left(g \cdot g^{h}\right)=\mathrm{F}\left((g h)^{2}\right)=\{B\} ;
$$

cf. [2], Section 9, Lemma 1. Thus $g$ and $g^{h}$ intersect only at $B$. As $Q$ is complete, we obtain $B \in Q$.

Now we are ready to prove (*). Let $B \in P$ and $A, A^{B} \in Q$.


Figure 6
Choose $h, j$ such that $B=h j$. Let $C=A^{B}$. As before, we obtain

$$
\mathrm{F}((A, h)(C, j))=\left\{A^{h}\right\}=\left\{C^{j}\right\}
$$

and thus $A^{h} \in Q$. As $A^{h}=A^{(A, h) h}=C^{(C, j) j}$, we can apply the special case of (*) which is proved above, and derive $(A, h) h,(C, j) j \in Q$. Thus $B \in Q$, by the completeness of $Q$.

Finally by $1.11, \mathrm{~S}(Q)=\mathrm{N}_{G}(Q)$.
2.3. Let $Q$ and $R$ be complete sets in $(G, S, P)$. Suppose $\emptyset \neq \mathrm{P}_{g} \cap Q \subseteq R$ for some $g$. Then $Q \subseteq R$.

Proof. Let $A \in \mathrm{P}_{g} \cap Q$. By 1.9 (i), there is a line $h \neq g$ through $A$ such that $\mathrm{F}(g h)=\mathrm{F}(A g h)=\{A\}$. Let $X \in P_{h}$. The sets $Q$ and $R$ being complete, we have

$$
X \in Q \Leftrightarrow(X, g) g \in Q \quad \text { and } \quad X \in R \Leftrightarrow(X, g) g \in R .
$$

Hence $\mathrm{P}_{h} \cap Q \subseteq R$.
Next, let $Y \in Q$. Then

$$
(Y, g) g \in \mathrm{P}_{g} \cap Q \subseteq R \quad \text { and } \quad(Y, h) h \in \mathrm{P}_{h} \cap Q \subseteq R .
$$

By 1.7, $Y$ is the unique intersection of $(Y, g)$ and $(Y, h)$. As $R$ is complete, this yields $Y \in R$.
2.3'. Corollary. Let $Q$ and $R$ denote complete sets in ( $G, S, P$ ). Suppose $\emptyset \neq \mathrm{P}_{g} \cap Q=\mathrm{P}_{g} \cap R$ for some $g$. Then $Q=R$.
3. Homomorphisms and coverings. Most of the results of this Section, collected for the readers' convenience, are known; cf. [2; 4; 5; 9].

In this Section, ( $G, S, P$ ) denotes an arbitrary pre-Hjelmslev group.
3.1. Let $\boldsymbol{\varphi}$ be a homomorphism of $G$ such that $1 \notin S_{\varphi} \cup P_{\varphi}$. Thus $\left(G_{\varphi}, S_{\varphi}\right.$, $\left.P_{\varphi}\right)$ is well defined. Assume, in addition, that there is not more than one orthogonal line in $(G \varphi, S \varphi, P \varphi)$ through any point to any line. Then $\varphi$ is a homomorphism of $(G, S, P)$, i.e., $\left(G \varphi, S_{\varphi}, P_{\varphi}\right)$ is a pre-Hjelmslev group.

Proof. Obviously, ( $G_{\varphi}, S_{\varphi}, P_{\varphi}$ ) satisfies (A1) and (A2). We first verify
(*) Let $A \in P, b \in S$ and $A \boldsymbol{\varphi} \mid b \varphi$. Then

$$
A \varphi=((A, b) b) \varphi \quad \text { and } \quad b \varphi=(A(A, b)) \varphi
$$

Let $g=(A, b)$. Then
$A \boldsymbol{\varphi}, g_{\boldsymbol{\varphi}} \mid(A g) \boldsymbol{\varphi}, b_{\boldsymbol{\varphi}}$.
The normal of $g$ through $A$ being unique, we obtain $(A g) \varphi=b \varphi$ and (*). Choosing $a=A g$ and $B=b g$, we obtain from (*) that $a|A ; B| b ; A \varphi=B \varphi$; $a_{\varphi}=b_{\varphi}$. Thus the properties (A3) and (A4) of ( $G \boldsymbol{\varphi}, S_{\boldsymbol{\varphi}}, P_{\varphi}$ ) follow from the corresponding ones of $(G, S, P)$.

We write $N \triangleleft G$ if $N$ is a normal subgroup of $G$.

```
3.2. Let N\triangleleftG satisfy
(N0*) N\capS = \emptyset, and
(N1*) If B,C|g and BC}B\inN\mathrm{ , then BC }\inN\mathrm{ .
Then N}\subseteq\mp@subsup{S}{}{\mathrm{ even}}\mathrm{ .
```

Proof. Suppose $\alpha \in N \cap S^{\text {odd }}$. By 1.3, $\alpha=c B$ where $c \in S$ and $B \in P$. Let $g:=(B, c)$. Then $B^{c g} B=\alpha^{g} \alpha \in N$. Hence by ( $\left.\mathrm{N} 1^{*}\right), B c g \in N$ and therefore $g=\alpha \cdot B c g \in N$, contradicting ( $\mathrm{N} 0^{*}$ ).
3.3. Let $N \triangleleft G$ and let $\varphi: G \rightarrow G / N$ denote the canonical homomorphism. Then $\varphi$ is a homomorphism of $(G, S, P)$ if and only if
(N0) $N \cap S=\emptyset=N \cap P$, and
(N1) If $B, C \mid g$ and $A^{B C} A \in N$, then $B C \in N$.
(Note that (N0) and (N1) are stronger than ( $\mathrm{N} 0^{*}$ ) and ( $\mathrm{N} 1^{*}$ ).)
Proof. Obviously, (N0) is satisfied if $\left(G_{\varphi}, S_{\varphi}, P_{\varphi}\right)$ is a pre-Hjelmslev group. Then also (N1) is true, because $A^{B C} A \in N$ implies $A \varphi^{B \varphi}=A \varphi^{C \varphi}$, hence $B \varphi=C \varphi$ by 1.4. Conversely, assume (N0) and (N1). Let $A \boldsymbol{\varphi}, g_{\varphi} \mid b \varphi$. On account of 3.1 it is sufficient to prove that $b_{\varphi}=(A, g) \varphi$. As $A_{\varphi} \mid b_{\varphi}, N$ contains

$$
(b A)^{2}=A^{A(A, b) b} \cdot A
$$

Hence by (N1),

$$
A \cdot(A, b) \cdot b \in N
$$

This proves $3.1(*)$. As $g_{\boldsymbol{\varphi}} \mid b \boldsymbol{\varphi}$, there is a point $B \in P$ such that

$$
g_{\varphi} \cdot b_{\boldsymbol{\gamma}}=B_{\varphi}
$$

On account of $3.1(*)$, we may assume $B \mid g$. Since

$$
A^{(A, g) g B} \varphi=A^{g B} \varphi=A_{\varphi}^{h}=A \boldsymbol{\varphi}
$$

(N1) yields ( $A, g$ ) $g B \in N$ Thus

$$
(A, g) \varphi=B \varphi g \varphi=b \varphi
$$

3.4. A set $\mathscr{F}$ of spots of $(G, S, P)$ (cf. 1.11) is a covering of $(G, S, P)$ if every point of $P$ belongs to exactly one of the spots in $\mathscr{F}$. Such a covering $\mathscr{F}$ induces an equivalence relation $\sim$ in $P$. The group of $\mathscr{F}$ is equal to

$$
\mathscr{N}(\mathscr{F}):=\left\{\alpha \in S^{\text {even }}: A^{\alpha} \sim A \text { for every } A \in P\right\} .
$$

A homogeneous covering $\mathscr{F}$ satisfies
(h) Let $A \sim B$. Suppose $a \mid A, g$ and $b \mid B$, $g$. Then $a b \in \mathscr{N}(\mathscr{F})$.

Let $\mathscr{F}$ denote a homogeneous covering of $(G, S, P)$. Then $A B \in \mathscr{N}(\mathscr{F})$ if and only if $A \sim B$.

Proof. Let $A B \in \mathscr{N}(\mathscr{F})$. Then $A \sim A^{A B}=A^{B}$. Thus the spot containing $A$ also contains $B$; cf. 1.11. Conversely, let $A \sim B$. Choose $a \mid A$ and $b \mid B, a$. $A, B$ and $a b$ are points belonging to the same spot. Hence $A a \cdot b, a \cdot b B \in$ $\mathscr{N}(\mathscr{F})$, by (h). Thus

$$
A B=A(a b) \cdot(a b) B \in \mathscr{N}(\mathscr{F})
$$

3.5. The covering $\mathscr{F}$ is homogeneous if and only if it satisfies
(hl) Suppose $A, B, C, D \mid g ; A B=C D ; A \sim B$. Then $C \sim D$; and
(h2) Let $a \mid A, g$ and $b \mid B$, $g$. Then

$$
A \sim B \Rightarrow a g \sim b g \Rightarrow A \sim(A, b) b
$$

Proof. Let $\mathscr{F}$ be homogeneous. Then (h1) follows immediately from 3.4. Next assume $a \mid A, g$ and $b \mid B, g$. We apply (h). If $A \sim B$, then

$$
a g \cdot b g=a b \in \mathscr{N}(\mathscr{F}) \quad \text { and } \quad a g \sim b g .
$$

If $a g \sim b g$, then $a b \in \mathscr{N}(\mathscr{F})$; hence

$$
A \sim A^{a b}=A^{b}=A^{(A, b) b}
$$

and therefore $A \sim(A, b) b$; cf. 1.11.
Conversely, assume (h1) and (h2). Let $A \sim B ; a|A, g ; b| B, g$. We have to show that $a b \in \mathcal{N}(\mathscr{F})$, i.e., $X^{a b} \sim X$ for every $X \in P$. By 1.1 (v),

$$
c:=(X, g) a b \in S \quad \text { and } \quad c \mid g .
$$

Furthermore

$$
(X, g) g \cdot c g=a g \cdot b g
$$

As $a g \sim b g$ by (h2), (h1) implies $(X, g) g \sim c g$. By (h2), $X \sim(X, c) c$. We have

$$
X^{a b}=X^{(X, g) a b}=X^{c}=X^{(X, c) c} ;
$$

hence

$$
(X, c) c \cdot X^{a b}=X \cdot(X, c) c
$$

Also

$$
(X, c) c, X, X^{a b} \mid(X, c)
$$

Thus (h1) yields $X^{a b} \sim X$.
3.6. Let $\varphi$ be a homomorphism of $(G, S, P)$. For any $A \in P$ let

$$
Q_{A}:=\{B \in P: B \boldsymbol{\varphi}=A \boldsymbol{\varphi}\} .
$$

Then

$$
\mathscr{F}_{\varphi}:=\left\{\left(\mathrm{N}_{G}\left(Q_{A}\right), \mathrm{S}\left(Q_{A}\right), Q_{A}\right): A \in P\right\}
$$

is a homogeneous covering of $(G, S, P)$ such that
kernel $_{\varphi} \subseteq \mathscr{N}\left(\mathscr{F}_{\varphi}\right)$.
Equality holds if and only if $\mathrm{Z}\left(S_{\varphi}{ }^{\text {even }}\right)=1$.
Proof. Obviously, $\mathscr{F}_{\varphi}$ is a covering of ( $G, S, P$ ); cf. 1.11. (h1) is satisfied because $\varphi$ is a homomorphism. (h2) follows from the uniqueness of perpendiculars in ( $G \varphi, S_{\boldsymbol{\varphi}}, P_{\varphi}$ ) and because orthogonal lines have a unique intersection. Thus $\mathscr{F}_{\varphi}$ is homogeneous. Finally

$$
\begin{aligned}
\mathscr{N}\left(\mathscr{F}_{\varphi}\right) & =\left\{\alpha \in S^{\text {even }}: A^{\alpha} \varphi=A \varphi \text { for all } A \in P\right\} \\
& =\left\{\alpha \in G: \alpha \varphi \in \mathrm{Z}\left(S_{\varphi}^{\text {even }}\right)\right\}
\end{aligned}
$$

cf. 1.5 .
3.7. Let $\mathscr{F}$ be a homogeneous covering of $(G, S, P) ;|\mathscr{F}| \neq 1$. Then $\mathscr{N}(\mathscr{F})$ $\triangleleft G$ and $\varphi: G \rightarrow G / \mathcal{N}(\mathscr{F})$ induces a homomorphism of $(G, S, P)$ such that $\mathscr{F}$ $=\mathscr{F}_{\boldsymbol{\varphi}} ; c f$. 3.6. Moreover, $\mathrm{Z}\left(S_{\boldsymbol{\varphi}}{ }^{\text {even }}\right)=1$.
Proof. Let $\sim$ denote the equivalence relation in $P$ induced by $\mathscr{F}$. We first show
(*) Let $A \sim B$. Then $A^{c} \sim B^{c}$ for every $c$.
Define $a:=(A, c), b:=(B, c), C:=(B, a) a$. By 1.11, $A \sim B \sim C$.


Figure 7
Since $A C=C^{c} A^{c}$, (h1) therefore yields $A^{c} \sim C^{c}$. Applying (h2) twice, we deduce from $B \sim C$ first $b c \sim a c$ and then $B^{c} \sim\left(B^{c}, a\right) a=C^{c}$. This yields (*).

Let $\alpha \in N:=\mathcal{N}(\mathscr{F})$. Let $c \in S ; \beta:=\alpha^{c} ; X \in P$. Then by the definition of $N, X^{c \alpha} \sim X^{c}$ and by (*),

$$
X^{\beta}=\left(X^{c \alpha}\right)^{c} \sim\left(X^{c}\right)^{c}=X .
$$

Thus $N \triangleleft G$.
Suppose $A \in N \cap P$. Then $X^{A} \sim X$ and thus $A \sim X$ for all $X \in P$; thus $|\mathscr{F}|=1$. As $N \subseteq S^{\text {even }}$, this yields the condition (N0) of 3.3.

Next, let $B, C \mid g$ and $A^{B C} A \in N$. Put $b:=(A, g), c:=b B C$, and $D:=$ $(A, c) c$. Then

$$
A^{B C} A=A^{b c} A=A^{c} A=A^{D} A \in N .
$$

This implies by 3.4 and 1.11 (i) that $A \sim A^{D} \sim D$. As $b \mid A, g$ and $c \mid D, g$, the homogeneity of $\mathscr{F}$ yields $B C=b c \in N$. Thus $N$ also satisfies (N1), and $\varphi$ is a homomorphism of $(G, S, P)$; cf. 3.3.

By 3.4, $A \sim B$ if and only if $A B \in N$, i.e., $(A B)_{\varphi}=1$ or $A \varphi=B \varphi$. By 3.6, this is equivalent to $A$ and $B$ belonging to the same spot of $\mathscr{F}_{\varphi}$. Thus $\mathscr{F}$ $=\mathscr{F}_{\boldsymbol{\varphi}}$. The last statement now follows immediately from 3.6.
3.8. The sections 3.6, 3.7 and 3.4 yield the following result:

The mapping

$$
\overline{\mathcal{F}} \mapsto \mathscr{N}(\mathscr{F})
$$

is a bijection of the set of the homogeneous coverings $\mathscr{F}$ of $(G, S, P)$ with $|\mathscr{F}|$ $\neq 1$ onto the set of the kernels of those homomorphisms $\varphi$ of $(G, S, P)$ which satisfy $\mathrm{Z}\left(S_{\varphi}{ }^{\text {even }}\right)=1$. If $\mathscr{F}$ is such a covering, then $A B \in \mathscr{N}(\mathscr{F})$ if and only if $A$ and $B$ belong to the same spot of $\mathscr{F}$.
3.9. A homomorphism of $(G, S, P)$ is regular if the images of lines with unique intersections also have unique intersections.

A covering is complete if each of its spots is complete.
The homomorphism $\varphi$ of $(G, S, P)$ is regular if and only if the induced covering $\mathscr{F}_{\varphi}$ is complete; cf. 3.6.

Proof. Suppose $\varphi$ is regular. Let $A$ and $B$ belong to the same spot of $\mathscr{F}_{\varphi}$. Let $a|A ; b| B$ and suppose $C$ is the unique intersection of $a, b$. Then

$$
A_{\boldsymbol{\varphi}}=B \boldsymbol{\varphi} \quad \text { and } \quad C \boldsymbol{\varphi} \mid a_{\boldsymbol{\varphi}}, b_{\boldsymbol{\varphi}} .
$$

Hence, $\varphi$ being regular, $C \varphi=A \varphi=B \varphi$.
Conversely, let $\mathscr{F}_{\varphi}$ be complete. Let $a, b \mid C$. Suppose $a_{\varphi}$ and $b \varphi$ have more than one point in common, say $a_{\varphi}, b_{\varphi} \mid C_{\varphi}, D_{\varphi}$ where $C_{\varphi} \neq D_{\varphi}$. The points $A:=(D, a) a$ and $B:=(D, b) b$ satisfy $A \varphi=D \varphi=B \varphi$. Thus $A, D$, $B$ belong to the same spot $F$ of $\mathscr{F}_{\boldsymbol{r}}$ while $C$ does not belong to $F$. Since $F$ is complete. the intersection of $a$ and $b$ is not unique.
3.10. The mapping $\mathscr{F} \mapsto \mathscr{N}(\mathscr{F})$ is a bijection of the set of the complete homogeneous coverings $\mathscr{F}$ of $(G, S, P)$ with $|\mathscr{F}| \neq 1$ onto that of the kernels of the regular homomorphisms $\varphi$ of $(G, S, P)$ which satisfy $Z\left(S \varphi^{\text {even }}\right)=1$.

The proof follows immediately from 3.8 and 3.9.
3.11. If $\mathscr{F}$ is a homogeneous covering of $(G, S, P)$ and $A, B \in P$, the following statements are equivalent:
(i) $A \sim B$;
(ii) $A B \sim \mathscr{N}(\mathscr{F})$;
(iii) $C \sim C^{A B}$ for some point $C$.

On account of 3.4, it is sufficient to deduce (i) from (iii). We may assume $|\mathscr{F}| \neq 1$. By 3.7, $\mathcal{N}(\mathscr{F})$ is the kernel of a homomorphism $\varphi$ of ( $G, S$, $P$ ) such that $\mathscr{F}=\mathscr{F}_{\boldsymbol{\varphi}}$. Hence (iii) and 3.4 imply

$$
(C \varphi)^{A \varphi}=(C \varphi)^{B \varphi}
$$

Applying 1.4 to $\left(G \varphi, S_{\varphi}, P_{\varphi}\right)$, we obtain $A \varphi=B \varphi$, i.e., (i).
3.12. Let $|P| \neq 1$. The normal subgroups $N$ of $G$ with $N \subseteq \mathrm{Z}\left(S^{\mathrm{even}}\right)$ are precisely the kernels $N$ of the homomorphisms of ( $G, S, P$ ) which satisfy $N \cap P^{2}=1$.

Proof. If $N \subseteq \mathrm{Z}\left(S^{\text {even }}\right)$, then $A B \in N$ implies

$$
A^{A}=A=A^{A B}=A^{B} .
$$

Hence $A B=1$, by 1.4. Obviously, $N$ satisfies the conditions (N0) and (N1) of 3.3. Conversely, suppose $N$ is the kernel of a homomorphism of ( $G$, $S, P)$ and satisfies $N \cap P^{2}=1$. Let $\alpha \in N$. Then

$$
A^{\alpha} A=\alpha^{-1} \alpha^{A} \in N \cap P^{2}=1 \quad \text { for any } A \in P
$$

Thus $\mathrm{F}(\alpha)=P$ and, by $1.5, \alpha \in \mathrm{Z}\left(S^{\text {even }}\right)$.
4. Semi-translations and transports. Let $(G, S, P)$ again denote any pre-Hjelmslev group.
4.1. In [9, Section 7] E. Salow introduced semi-translations $\Gamma_{A B}$ though only for pairs $A, B$ joined by lines. Through our Lemma 4.2 we will be able to drop this restriction and give a definition of $\Gamma_{A, B}$ similar to that of semi-rotations in [6]. This will enable us to generalize Salow's beautiful results; cf. 4.3.
Let $\omega \in P^{2}$. The semi-translation $\Gamma_{\omega}$ is a pair of mappings of $P$ and $S$ into themselves: If $X \in P$ and $y \in S$, let $X \Gamma_{\omega}$ be the mid-point of $X$ and $X^{\omega}$ and let $y \Gamma_{\omega}=[y \omega]$; cf. 1.4 and 1.2.

Note that $X^{\left(X \Gamma_{\omega}\right)}=X^{\omega}$ and $A \Gamma_{A B}=B$.
If $A, B \mid g$ for some $g$, the point $X \Gamma_{A B}$ can readily be constructed: Let $c$ : $=(X, g)$. By 1.1 (iii), $c A B=g(g c \cdot A B)$ is the line through the point $g c$. $A B$ on $g$ perpendicular to $g$. Let $d=(X, c A B)$. Then

$$
X^{A B}=\left(X^{d c}\right)^{A B}=X^{d c A B} .
$$

Thus $X \Gamma_{A B}=d \cdot c A B$ is the intersection of $d$ with $c A B$.


Figure 8
We require the following lemma.

### 4.2. Let $\alpha \in P^{3}$. Then $|\mathrm{F}(\alpha)| \leqq 1$.

Proof. Let $\alpha=A B C$ and $E \in \mathrm{~F}(\alpha)$. Let $a \mid A$. Put $b:=(B, a), e:=$ $(E, a)$. Thus

$$
A^{\prime}:=b A e=b a \cdot A \cdot a e \mid a .
$$

Finally, let $b^{\prime}:=B b, a^{\prime}:=\left(A^{\prime}, b^{\prime}\right)$ and $e^{\prime}:=\left(E, a^{\prime}\right)$. Thus

$$
C^{\prime}:=b^{\prime} A^{\prime} e^{\prime} \mid a^{\prime} \quad \text { and } \quad \alpha C=A B=A b b^{\prime}=e A^{\prime} b^{\prime}=e e^{\prime} C^{\prime} .
$$

Applying 1.3 to $\alpha C$, we obtain $\alpha=e e^{\prime}$. By 1.7,

$$
1=\left|\mathrm{F}\left(a^{\prime} b^{\prime}\right)\right|=\left|\mathrm{F}\left(a a^{\prime}\right)\right|
$$

Hence by $1.7^{\prime},\left|\mathrm{F}\left(e e^{\prime}\right)\right|=1$.


Figure 9
4.3. Theorem. Let $\Gamma:=\Gamma_{A B}$. Then
(i) $\Gamma$ is injective both on $P$ and on $S$.
(ii) $C|g \Leftrightarrow C \Gamma| g \Gamma$, for all $C$ and $g$.
(iii) If $\mathrm{F}(g h)=\{C\}$, then $\mathrm{F}(g \Gamma \cdot h \Gamma)=\{C \Gamma\}$.

Proof. To (i). $\Gamma: P \rightarrow P$ is injective: Let $E=C \Gamma=D \Gamma$. Then $C^{E}=C^{A B}$ and $D^{E}=D^{A B}$. Thus $C, D \in \mathrm{~F}(A B E)$ and hence $C=D$, by 4.2.

The injectivity of $\Gamma$ on $S$ will be dealt with later. Before proving (ii) we show
(*) For any $C$ let $\gamma=A B \cdot C \Gamma$. Then $\mathrm{F}(\gamma)=\{C\}$.
On account of 4.2 we need only show that $C \in \mathrm{~F}(\gamma)$. By 1.3 , there are $\delta$ $\in S^{2}$ and $D \in P$ such that $A B=\delta D$ and $C \in \mathrm{~F}(\delta)$. As $C^{C \Gamma}=C^{A B}=$ $C^{\delta D}$, this implies $D=C \Gamma$ and thus $\delta=\gamma$.

To (ii). Let $D=C \Gamma$. As $\gamma=A B D,(*)$ and 1.8 yield

$$
C \mid g \Leftrightarrow \gamma g \in S \Leftrightarrow D g A B=(\gamma g)^{A B} \in S
$$

By 1.3, there are $e \mid D$ and $E$ such that $g A B=e E$. Thus

$$
g \Gamma=[e E]=(E, e)
$$

and the assertion (ii) is equivalent to:

$$
D e E \in S \Leftrightarrow(E, e) \mid D .
$$

But this follows readily from $1.2^{\prime}$.
To (iii). Let $D:=C \Gamma ; \gamma:=A B D$. Thus by $(*), \mathrm{F}(\gamma)=\{C\}$. As $\mathrm{F}(g h)=$ $\{C\}, 1.8$ implies $C \mid g, h$. Hence, again by 1.8,

$$
g^{\prime}:=g \gamma \in S \quad \text { and } \quad h^{\prime}:=h \gamma \in S
$$

Thus

$$
\gamma=g g^{\prime}=h h^{\prime} \quad \text { and } \quad g^{\prime} h^{\prime}=g^{\prime} g \cdot g h \cdot h h^{\prime}=(g h)^{\gamma} .
$$

This yields

$$
\mathrm{F}\left(g^{\prime} h^{\prime}\right)=\mathrm{F}(g h)^{\gamma}=\left\{C^{\gamma}\right\}=\{C\} \quad \text { and } \quad C \mid g^{\prime}, h^{\prime}
$$

As $g \Gamma=[g A B]=\left[g^{\prime} D\right]=\left(D, g^{\prime}\right)$ and $h \Gamma=\left(D, h^{\prime}\right)$, 1.7' now yields (iii).

Finally, $\Gamma: S \rightarrow S$ is injective: Let $g \Gamma=h \Gamma$, i.e.,

$$
[g A B]=[h A B]=[B A h]
$$

The product of two glide reflections with the same axis being the product of two points, we obtain

$$
g h=g A B \cdot B A h=X Y
$$

or $X g=Y h$ for some $X, Y$; and, by 1.2 , there is a line $j \mid g, h$. Let $C:=g j$ and $D:=h j$. Then by (iii),

$$
\{C \Gamma\}=\mathrm{F}(g \Gamma \cdot j \Gamma)=\mathrm{F}(h \Gamma \cdot j \Gamma)=\{D \Gamma\}
$$

As $\Gamma$ is injective on $P$, this implies $C=D$ and thus $g=h$.
4.4. Given $\omega \in P^{2}$, define the transport $\tau_{\omega}$ through

$$
Q \tau_{\omega}=\left\{C: C \Gamma_{\omega^{-1}} \in Q\right\} \quad \text { for every } Q \subseteq P
$$

As $\Gamma_{\omega}$ ' need not be surjective, $Q \tau_{\omega}$ can be void for some $\omega, Q$. If $A \in Q$, then $B \in Q \tau_{A B}$ because $B \Gamma_{B A}=A$.

Let $\mathscr{F}$ denote a homogeneous covering of $(G, S, P)$. Then $Q_{A} \tau_{A B}=Q_{B}$ for any two points $A, B$; here $Q_{X}=\{Y \in P: Y \sim X\}$; cf. 3.4.

Proof. By our definition,

$$
Q_{A} \tau_{A B}=\left\{C: C \Gamma_{B A} \sim A\right\}=\left\{C: C^{M}=C^{B A} \text { for some } M \sim A\right\}
$$

Let $C \in Q_{A} \tau_{A B}$. By 3.4, $M A \in \mathscr{N}(\mathscr{F})$. Thus $C \sim C^{M A}=C^{B} \sim B$; cf. 1.11. In particular, $C \in Q_{B}$. Conversely, let $C \sim B$. Then by $3.4, C B \in$ $\mathscr{N}(\mathscr{F})$ and thus $C^{B}=C^{C B} \sim C$. If $M$ denotes the mid-point of $C$ and $C^{B A}$, then $C^{M A}=C^{B} \sim C$. Hence $M \sim A$ by 3.11.
4.5. Let $\tau_{A B}$ be a transport in a pre-Hjelmslev group which satisfies (W). If the set $Q$ is complete, so is $Q \tau_{A B}$.

Proof. Let $C, D \in Q \tau_{A B} ; c|C ; d| D$; suppose $c$ and $d$ have the unique intersection $E$. We have to show $E \in Q \tau_{A B}$. Write $\Gamma=\Gamma_{B A}$. By 1.9 (ii), $\mathrm{F}(c d)=\{E\}$. Hence by 4.3 (iii),

$$
\mathrm{F}(c \Gamma \cdot d \Gamma)=\{E \Gamma\}
$$

Thus $c \Gamma$ and $d \Gamma$ intersect precisely at $E \Gamma$. As $C \Gamma, D \Gamma \in Q$, and $C \Gamma \mid c \Gamma$ and $D \Gamma \mid d \Gamma$ by 4.3 (ii), and since $Q$ is complete, this yields $E \Gamma \in Q$ and thus $E$ $\in Q \tau_{A B}$.
4.5'. Theorem. Let $\mathscr{F}$ be a homogeneous covering of a pre-Hjelmslev group satisfying (W). If one spot of $\mathscr{F}$ is complete, then $\mathscr{F}$ is complete; cf. 3.9.

The proof follows immediately from 4.4 and 4.5.
4.6. Let $Q$ be a complete point set in a pre-Hjelmslev group satisfying (W). If $\alpha \in Q^{3}$, then $\mathrm{F}(\alpha) \subseteq Q$.

Proof. Let $\alpha=A B C$ where $A, B, C \in Q$. Let $E \in \mathrm{~F}(\alpha)$. We repeat the construction in the proof of 4.2. As $\alpha=e e^{\prime}$ and $\alpha C=e e^{\prime} C^{\prime}$, we obtain $C$ $=C^{\prime}$. Since $A, B, C^{\prime}$ lie in the complete set $Q$, the points $a b, a^{\prime} b^{\prime}$ and $A^{\prime}$ belong to $Q$. By 2.2, $Q$ is the point set of a pre-Hjelmslev subgroup. As ae $=A \cdot a b \cdot A^{\prime}$ and $a^{\prime} e^{\prime}=A^{\prime} \cdot a^{\prime} b^{\prime} \cdot C^{\prime}$, these products of three points on $a$ and $a^{\prime}$, respectively, must also belong to $Q$. Since $\left|\mathrm{F}\left(e e^{\prime}\right)\right|=|\mathrm{F}(\alpha)|=1$, this yields $E \in Q$.
4.7. Let $Q$ be a complete point set in a pre-Hjelmslev group satisfying (W); $A, B \in Q$. Then $Q \tau_{A B}=Q$.

Proof. Let $C^{B A}=C^{D}$; i.e., $D=C \Gamma_{B A}$. Suppose $C \in Q \tau_{A B}$; thus $D \in Q$ and $B A D \in Q^{3}$. Hence by $4.6, C=C^{B A D} \in Q$. Conversely let $C \in Q$. As $A, B, C \in Q$ and $Q$ is the point set of a spot, we obtain $C^{D}=C^{B A} \in Q$ and thus $D \in Q$; c.f. 2.2 and 1.11 (i).
5. Embedding a complete point set into a homogeneous covering. In this section, ( $G, S, P$ ) denotes a pre-Hjelmslev group satisfying (W).
5.1. Let $h|A, B ; D| A h ; g=D A h ; E=(B, g) g$. Let $D^{\prime}, E^{\prime} \mid g ; D^{\prime} E^{\prime}=D E$; $v \mid B, E^{\prime}$. Then there is a line $u$ through $A$ and $D^{\prime}$. If $v$ and $g$ have a unique intersection, so will $u$ and $g$.


Figure 10
Proof. The elements $m:=E^{\prime} v$ and $E g v h$ are lines since $E^{\prime} \mid v$ and $E g, v$, $h \mid B$. Thus

$$
\begin{aligned}
D^{\prime} m A & =D E v A=D g \cdot E g \cdot v A=A h \cdot E g v h \cdot A h \\
& =(E g v h)^{A h} \in S .
\end{aligned}
$$

Hence by $1.2^{\prime}$,

$$
u:=\left(D^{\prime}, m\right)=\left(A, D^{\prime} m A\right) \mid A, D^{\prime} .
$$

If $v$ and $g$ have a unique intersection, 1.6 yields on account of $u, v \mid m$ that the intersection of $u$ with $g$ is unique too.
5.2. Suppose $g$ and $h$ have a common perpendicular a. For any $C$ let $B=$ $(C, h) h$ and $E^{\prime}=(C, g) g$. Then there is a line $v$ through $B$ and $E^{\prime}$ such that

$$
|\mathrm{F}(v g)|=|\mathrm{F}(v h)|=1 .
$$

Proof. Let $c=(C, a)$. Then

$$
d:=g c h \in S \quad \text { and } \quad E^{\prime} d B=(C, g) c(C, h) \in S
$$

since (C.g). c. (C. h) !C. Thus by 1.2'.
$v:=\left(E^{\prime}, d\right)=\left(B, E^{\prime} d b\right) \mid E^{\prime}, B, d$.
As $|\mathrm{F}(d v)|=1, a \mid d, g, h$ implies that

$$
|\mathrm{F}(g v)|=|\mathrm{F}(h v)|=1 ;
$$

cf. 1.7.


Figure 11
5.3. Let $A=a h, D=a g, B=(C, h) h, E^{\prime}=(C, g) g ; E \mid(C, h), g ; D^{\prime} E^{\prime}$ $=D E$. Let $Q$ be complete; $A \in Q$. Then $D^{\prime} \in Q \Leftrightarrow D \in Q$.


Figure 12
Proof. The intersection of $a$ and $g$ being unique, $A, D^{\prime} \in Q$ implies $D \in$ $Q$. Conversely, let $A, D \in Q$. By 5.2 , there is a line $v \mid B, E^{\prime}$ such that $\mathrm{F}(v g)$ $=\left\{E^{\prime}\right\}$. Let $E^{\prime \prime}:=(B, g) g$ and $D^{\prime \prime}:=D E^{\prime \prime} E^{\prime}$. By 5.1 , there is a line $v^{\prime} \mid A, D^{\prime \prime}$ such that $\mathrm{F}\left(v^{\prime} g\right)=\left\{D^{\prime \prime}\right\}$. Finally, let $D^{*}:=D E^{\prime \prime} E$.


Figure 13
Apply 5.1, replacing $E$ by $E^{\prime \prime}$ and $E^{\prime}$ by $E$. This yields a line $v^{*} \mid A, D^{*}$ such that $\mathrm{F}\left(v^{*} g\right)=\left\{D^{*}\right\}$. As $Q$ is complete, we obtain $D^{\prime \prime}, D^{*} \in Q$. Hence by 2.2,

$$
D^{\prime}=D E E^{\prime}=D \cdot E E^{\prime \prime} D \cdot D E^{\prime \prime} E^{\prime}=D D^{*} D^{\prime \prime} \in Q
$$

5.4. Let $B=h u ; A \mid h$ and $U \mid u$. If the complete set $Q$ contains $A$, then

$$
Q \tau_{A B} \tau_{B U}=Q \tau_{A U} .
$$

Proof. By 4.5, $Q \tau_{A B} \tau_{B U}$ and $Q \tau_{A U}$ are complete. As they contain $U$, it is therefore sufficient to prove

$$
\mathrm{P}_{u} \cap Q \tau_{A B} \tau_{B U}=\mathrm{P}_{u} \cap Q \tau_{A U}
$$

cf. $2.3^{\prime}$.


Figure 14
Let $C \in \mathrm{P}_{u}, E:=B U C, a:=A h, g:=(E, a), v:=(C, g), E^{\prime}:=g v, D:=$ $a g, D^{\prime}:=E^{\prime} E D$. Then

$$
\begin{aligned}
U A & =U h a=U B u a=C E u a=C u E a=C u E g D=C u g E D \\
& =C u v E^{\prime} E D=C u v D^{\prime} .
\end{aligned}
$$

Thus

$$
C^{U A}=C^{C u v D^{\prime}}=C^{D^{\prime}}
$$

Hence $C \Gamma_{U A}=D^{\prime}$ and:

$$
C \in Q \tau_{A U} \Leftrightarrow D^{\prime} \in Q .
$$

As $C^{U B}=C^{C E}=C^{E}$ and $E^{B A}=E^{u h h a}=E^{a}=E^{g a}=E^{D}$ we have

$$
C \Gamma_{U B}=E \text { and } E \Gamma_{B A}=D
$$

Therefore:

$$
C \in Q \tau_{A B} \tau_{B U} \Leftrightarrow E \in Q \tau_{A B} \Leftrightarrow D \in Q .
$$

By 5.3, the last relation is also equivalent to $D^{\prime} \in Q$, i.e., to $C \in Q \tau_{A U}$.
5.5. Let $U, V \mid j$. If the complete set $Q$ contains $A$, then

$$
Q \tau_{A U} \tau_{U V}=Q \tau_{A V}
$$

Proof. Let $B:=(A, j) j$. By 4.5, $Q^{*}:=Q \tau_{A B}$ is a complete set containing $B$. Let $C$ be any point of the line $j$. Then $V, B, C \mid j$ implies $C V B \in \mathrm{P}_{j}$ and $C^{C V B}=C^{V B}$, hence $C \Gamma_{V B}=C V B$. The following statements are therefore equivalent:

$$
\begin{aligned}
& C \in Q^{*} \tau_{B V} \\
& C \Gamma_{V B}=C V B \in Q^{*} \\
& (C V U) \Gamma_{B U}=C V U \cdot U B \in Q^{*} ; \\
& C \Gamma_{V U}=C V U \in Q^{*} \tau_{B U} ; \\
& C \in Q^{*} \tau_{B U} \tau_{U V} .
\end{aligned}
$$

Thus by $2.3^{\prime}$,

$$
Q^{*} \tau_{B V}=Q^{*} \tau_{B U} \tau_{U V}
$$

cf. 4.5. By 5.4,

$$
Q^{*} \tau_{B V}=Q \tau_{A V} \quad \text { and } \quad Q^{*} \tau_{B U}=Q \tau_{A U}
$$

This proves our assertion.
5.6. We can now prove the

Theorem. Let $Q$ be complete; $A \in Q$. Then $Q \tau_{A U U V}=Q \tau_{A V}$ for any two points $U, V$.

Proof. Choose a point $W$ joined by lines to $U$ and $V$. By 4.5, $Q^{*}=Q \tau_{A U}$ is complete and, by 5.5 ,

$$
Q^{*} \tau_{U W} \tau_{W V}=Q^{*} \tau_{U V}
$$

Applying 5.5 twice more, we obtain

$$
Q \tau_{A U} \tau_{U W}=Q \tau_{A W} \quad \text { and } \quad Q \tau_{A W} \tau_{W V}=Q \tau_{A V}
$$

Hence

$$
\begin{aligned}
Q \tau_{A U} \tau_{U V} & =Q^{*} \tau_{U V}=Q^{*} \tau_{U W} \tau_{W V}=Q \tau_{A U} \tau_{U W} \tau_{W V} \\
& =Q \tau_{A W} \tau_{W V}=Q \tau_{A V} .
\end{aligned}
$$

5.7. Let $Q$ denote any complete set; $M, N \in Q$. Then by 5.6 and 4.7
(*) $Q \tau_{M B}=Q \tau_{M N} \tau_{N B}=Q \tau_{N B}$ for every $B$.
Suppose now that $Q$ is any non-void complete set. On account of (*) we may define

$$
Q_{B}:=Q \tau_{M B}
$$

where $M \in Q$ is arbitrary.
5.8. Theorem. Let $(G, S, P)$ satisfy $(\mathrm{W})$. Let $Q \subseteq P$ be non-void and complete. Then

$$
\mathscr{F}_{Q}:=\left\{\left(\mathrm{N}_{G}\left(Q_{B}\right), \mathrm{S}\left(Q_{B}\right), Q_{B}\right): B \in P\right\}
$$

is a homogeneous covering. $\mathscr{F}_{Q}$ is complete; cf. 3.9.
Remark. By 4.7, $\left(\mathrm{N}_{G}(Q), \mathrm{S}(Q), Q\right) \in \mathscr{F}_{Q}$.
Proof. Let $M \in Q$. We have $B \in Q_{B}$ for every $B$; also by 5.6 and 4.7,

$$
Q_{C}=Q \tau_{M C}=Q \tau_{M B} \tau_{B C}=Q_{B} \tau_{B C}=Q_{B} \quad \text { for every } C \in Q_{B} .
$$

Thus $\left\{Q_{B}: B \in P\right\}$ is a partition of $P$ into complete sets; cf. 4.5. By $2.2, \mathscr{F}_{Q}$ is a complete covering of $(G, S, P)$. It remains to show that $\mathscr{F}_{Q}$ is homogeneous. Let $\sim$ denote the equivalence relation induced by $\mathscr{F}_{Q}$. We apply 3.5 to (h1). Let $A, B, C, D \mid g ; A B=C D ; A \sim B$. Thus

$$
D \Gamma_{C A}=D C A=B \in Q_{A} \quad \text { and } \quad D \in Q_{A} \tau_{A C}=Q_{C}
$$

and hence $D \sim C$. To (h2). Let $a|A, g ; b| B, g$. Put $A^{\prime}:=(A, b) b, C:=a g$, and $D:=b g$. We have

$$
A^{A^{\prime} D}=A^{(A, b) g}=A^{g}=A^{C} .
$$

Hence $A \Gamma_{A^{\prime} D}=C$. From 5.6,

$$
Q_{A^{\prime}}=Q \tau_{M A^{\prime}}=Q \tau_{M D^{\prime}} \tau_{D A^{\prime}}=Q_{D^{2}} \tau_{D A^{\prime}}=\left\{X: X \Gamma_{A^{\prime} D} \in Q_{D}\right\} .
$$

Hence $A \sim A^{\prime}$ if and only if $C \sim D$. Since $Q_{A}$ is complete, $A \sim B$ implies $A \sim A^{\prime}$.


Figure 15
5.8'. We restate our result in terms of homomorphisms.

Theorem. Let $(G, S, P)$ satisfy $(\mathrm{W})$. Let $Q \subset P$ be complete; $M \in Q$. Then there exists a homomorphism $\varphi$ of $(G, S, P)$ such that

$$
Q=\{B \in P: B \boldsymbol{\varphi}=M \boldsymbol{\varphi}\} \quad \text { and } \quad \mathrm{Z}\left(S_{\boldsymbol{\varphi}}{ }^{\text {even }}\right)=1
$$

The homomorphism $\varphi$ is unique (up to isomorphism), and $\varphi$ is regular; cf. 3.9 .

Proof. According to $5.8, \mathscr{F}_{Q}$ is a homogeneous covering having more than one element. Hence by 3.7 the canonical homomorphism

$$
\varphi: G \rightarrow G / \mathcal{N}\left(\mathscr{F}_{Q}\right)
$$

induces a homomorphism of $(G, S, P)$ with the desired properties; cf. 3.4. Furthermore, by 3.10, this homomorphism is regular; cf. 3.9. Now, let us assume that $\varphi$ is a homomorphism of $(G, S, P)$ satisfying the properties of the theorem. Then by 3.6 the kernel of $\varphi$ is $\mathscr{N}\left(\mathscr{F}_{\varphi}\right) . Q$ is the point set of some spot of $\mathscr{F}_{Q}$ (cf. 5.8), and $Q$ is also the point set of some spot of $\mathscr{F}_{\varphi}$; cf. 3.8. Therefore, $\mathscr{F}_{Q}$ and $\mathscr{F}_{\varphi}$ induce the same equivalence relation $\sim$ on $P$; cf. 4.4. Hence $\mathscr{F}_{Q}=\mathscr{F}_{\varphi}$ by 1.11 (ii). Thus we have

$$
\text { kernel } \varphi=\mathscr{N}\left(\mathscr{F}_{Q}\right)
$$

5.9. As an elementary application of 5.8 we state a result for which we could not find a direct proof.

Let $A|a, h ; a| g ; b \mid g, h$. If $Q$ is complete and $A, b h \in Q$, then $(a g, h) h \in$ $Q$.


Figure 16
Our proof uses the existence of the homogeneous covering $\mathscr{F}_{Q}$. Applying (h2) twice, we deduce from $A \sim b h$ first $a g \sim b g$, then $(a g, h) h \sim b h$.

In the remaining two sections we consider two special cases of our Theorem 5.8'. We continue to assume that $(G, S, P)$ is a pre-Hjelmslev group satisfying (W).
5.10. ([9]). Let $\alpha$ be a rotation and $M \in \mathrm{~F}(\alpha) \neq P$. There is a unique homomorphism $\varphi$ of $(G, S, P)$ such that

$$
\mathrm{F}(\alpha)=\left\{X: X_{\varphi}=M_{\varphi}\right\} \quad \text { and } \quad \mathrm{Z}\left(S_{\varphi}{ }^{\text {even }}\right)=1 ;
$$

$\varphi$ is regular.
Obviously, this theorem is a consequence of $5.8^{\prime}$, because the set $\mathrm{F}(\alpha)$ is complete; cf. 2.2. Let $Q_{A}:=\left\{X: X_{\varphi}=A \boldsymbol{\varphi}\right\}$, for any point $A$.

Addendum. For every $A$ let $\alpha_{A}$ denote the rotation which satisfies $A \in$ $\mathrm{F}\left(\alpha_{A}\right)$ and $\alpha=\alpha_{A} A C$ for some $C \in P ;$ cf. 1.3. Then $Q_{A}=\mathrm{F}\left(\alpha_{A}\right)$.

Outline of the proof. The construction of $\varphi$ in $5.8^{\prime}$ and the definition of $\mathscr{F}_{Q}$ in 5.7 and 5.8 yield $Q_{A}=Q \tau_{M A}$, where $Q:=\mathrm{F}(\alpha)$. Hence we have to show $Q \tau_{M A}=\mathrm{F}\left(\alpha_{A}\right)$ for every $A \in P$. This is easy.

Remark. Salow's proof for 5.10 is rather complicated. In [7] we give a short direct proof for 5.10 and the addendum, that does not use 5.8 and the tools developed in Sections 4 and 5.
5.11. Points $A, B$ are called neighbors if $A, B \in \mathrm{~F}(\alpha) \neq P$ for some rotation $\alpha$. The neighbor relation is reflexive and symmetric, provided that $|P| \neq 1$. The following theorem is proved in [4].

If the neighbor relation is transitive and $|P| \neq 1$ then there is a unique homomorphism $\psi$ of $(G, S, P)$ such that $A \psi=B \psi$ if and only if $A, B$ are neighbors, and $\mathrm{Z}\left(S \psi^{\text {even }}\right)=1 ; \psi$ is regular.

Proof. For $A \in P$ let

$$
Q_{A}:=\{X: X \text { is a neighbor of } A\} .
$$

(i) $Q_{A}$ is complete.

Let $B, C \in Q_{A}$ and $b|B ; c| C$ such that $b, c$ have a unique intersection $D$. Then $B$ is a neighbor of $C$, i.e., $B, C \in \mathrm{~F}(\alpha) \neq P$ for some rotation $\alpha$. Hence $B, D \in \mathrm{~F}(\alpha) \neq P$ by 2.2. Thus $A, B$ and also $B, D$ are neighbors. This implies $D \in Q_{A}$.

Now 2.2 and the transitivity of the neighbor relation yield
(ii) $F_{A}:=\left(\mathrm{N}_{G}\left(Q_{A}\right), \mathrm{S}\left(Q_{A}\right), Q_{A}\right)$ is a spot for every $A \in P$,
and

$$
\mathscr{F}:=\left\{F_{A}: A \in P\right\} \text { is a complete covering of }(G, S, P) ;
$$

furthermore, $|\mathscr{F}| \neq 1$; cf. 3.4, 3.9.
(iii) $\mathscr{F}$ is homogeneous.

We prove property (h) of 3.4. Let $A, B$ be neighbors, $a \mid A, g$ and $b \mid B, g$. Then $A, B \in \mathrm{~F}(\alpha) \neq P$ for some rotation $\alpha$. Let $\varphi$ denote the homomorphism assigned to $\alpha$ by 5.10. Since $A_{\boldsymbol{\varphi}}=B \boldsymbol{\varphi}, g_{\boldsymbol{\varphi}} \mid a_{\boldsymbol{\varphi}}, b \boldsymbol{\varphi}$, the uniqueness of perpendiculars in ( $G_{\boldsymbol{\varphi}}, S_{\boldsymbol{\varphi}}, P_{\boldsymbol{\varphi}}$ ) implies $a_{\boldsymbol{\varphi}}=b_{\boldsymbol{\varphi}}$, hence $\left(X^{a b}\right) \varphi=X_{\varphi}$ for every point $X$. Thus, by the addendum in 5.10,

$$
X, X^{a b} \in \mathrm{~F}\left(\alpha_{X}\right)
$$

where $\alpha_{X}$ is a rotation satisfying $\alpha=\alpha_{X} X Y$ for some $Y$. Finally, $\mathrm{F}\left(\alpha_{X}\right) \neq$ $P$, since otherwise $A=A^{\alpha_{X}}=A^{\alpha Y X}$, hence $A^{X}=A^{Y}$; but 1.4 implies $X=$ $Y$ and $\alpha=\alpha_{X}$. Thus we proved $X^{a b} \in Q_{X}$ for every $X$, i.e., $a b \in$ $\mathscr{N}(\mathscr{F})$.

The assertion now follows from 3.10.

## References

1. F. Bachmann, Aufbau der Geometrie aus dem Spiegelungsbegriff, Second supplemented edition (Springer, 1973).
2. -Hjelmslev-Gruppen. Arbeitsgemeinschaft über geometrische Fragen, Universität Kiel, second print (1976).
3. W. Klingenberg, Euklidische Ebenen mit Nachbarelementen, Math. Z. 61 (1954), 1-25.
4. F. Knüppel and M. Kunze, Neighbor relation and neighbor homomorphism of Hjelmslev groups, Can. J. Math. 31 (1979), 680-699.
5. —— Reguläre Hjelmslev-Homomorphismen, Geom. Ded. 11 (1981), 195-225.
6. F. Knüppel, Äquiforme Ebenen über kommutativen Ringen und singuläre Prä-Hjelmslevgruppen, Abh. math. Sem. Univ. Hamburg 54 (1983), 229-257.
7.     - The set of fixed points of a rotation in a pre-Hjelmslev group, to appear.
8. E. Salow, Singuläre Hjelmslev-Gruppen, Geom. Ded. 1 (1973), 447-467.
9.     - Fixpunktmenge von Drehungen in Hjelmslev-Gruppen, Abh. math. Sem. Univ. Hamburg 41 (1974), 37-73.

Universität Kiel,
Kiel, W. Germany


[^0]:    Received September 24, 1982 and in revised form June 13, 1983.

