A CLASS OF HOMOMORPHISMS OF PRE-HJELMSLEV GROUPS

FRIEDER KNÜPPEL

Introduction. E. Salow [8] introduced the concept of pre-Hjelmslev groups, a generalization of F. Bachmann's Hjelmslev groups [1] which leads to a more natural theory of homomorphisms and permits a simpler construction of algebraic models. Basically, both types of groups are the groups of motions of a metric plane, the so-called group plane. In such a plane there is a unique perpendicular through any point to any line and the product of three collinear points (three copunctal lines) is a point (a line). Our first section contains the precise definitions and some basic facts.

The homomorphic image of a pre-Hjelmslev group can be more complicated than the pre-image. For instance, there may always be a unique line through two distinct points of the pre-image but not of the image. We study regular homomorphisms of pre-Hjelmslev groups, i.e., homomorphisms with the following property: If two lines intersect at exactly one point, their images will also have precisely one point in common.

Let Q denote a proper subset of the point set of a pre-Hjelmslev group satisfying an enrichment axiom called (W). We call Q complete if the following holds: Suppose two lines have a unique intersection C and both of them are incident with points of Q. Then $C \in Q$. Our main result is the following:

THEOREM. There is a regular homomorphism of the pre-Hjelmslev group such that Q consists of the pre-image points of a point if and only if Q is complete.

The special cases that Q consists of the fixed points of a rotation or that Q is the set of the neighbors of some point have been dealt with in [9] and [4].

In a forthcoming paper we study pre-Hjelmslev groups over commutative rings and establish a one-to-one correspondence between the non-trivial ideals of the ring and the kernels of regular homomorphisms of the pre-Hjelmslev group.

Received September 24, 1982 and in revised form June 13, 1983.

1. Pre-Hjelmslev groups.

The basic assumption. The triplet (G, S, P) consists of a group $G = \{\alpha, \beta, ...\}$ and two sets $S = \{a, b, ...\}$ and $P = \{A, B, ...\}$ of involutions in G such that (i) S and P are invariant under inner automorphisms of G and $S \cap P = \emptyset$, (ii) S generates G, and (iii) $\emptyset \neq P \subseteq S^2 = \{ab\}$.

We assign to such a triplet a geometric structure, the group plane. Its points (lines) are the elements of P (of S). The point A and the line b are incident, A|b or b|A, if Ab is an involution. The lines a and b are orthogonal if $ab \in P$; notation: a|b.

Every $\alpha \in G$ induces a *motion*, i.e., an automorphism of the group plane, given by $X \mapsto X^{\alpha}$, $x \mapsto x^{\alpha}$ for $X \in P$ and $x \in S$. If $\alpha \in P \cup S$, this motion is a *reflection* in α . We do not always distinguish between the element α and the motion induced by α . Thus the set

$$\mathbf{F}(\alpha):=\{X\in P: X^{\alpha}=X\}$$

of "the fixed points of α " is that of those of the induced motion.

A pre-Hjelmslev group is a triplet (G, S, P) satisfying the basic assumption and the following axioms:

(A1) Given A, b, there is a c such that A, b|c. (A2) A, b|c, d implies c = d. (A3) A, B, C|d implies $ABC \in P$. (A4) a, b, c|d implies $abc \in S$.

By (A1) and (A2), there is a unique perpendicular (A, b) through any point A to any line b. (A3) and (A4) are the "Three-reflections axioms". We shall frequently use the following enrichment axiom:

(W) There are lines a, b, c, d with a|b and c|d such that any two of them intersect in exactly one point.

We next collect some elementary results on pre-Hjelmslev groups. If no reference is given, the proof in [2] for Hjelmslev groups remains valid for (G, S, P).

1.1. (i) A|b if and only if $A^b = A$.

(ii) If A|b, c and b|c then A = bc. If A|b then $Ab \in S$ and Ab = (A, b).

(iii) If A, B, C|d then $ABC \in P$ and ABC|d.

(iv) If a, b, c|D then $abc \in S$ and abc|D.

(v) If a, b, c|d then $abc \in S$ and abc|d.

1.2. Let Aa = Bb = cC. Then (A, a) = (B, b) = (C, c).

Occasionally we need the following consequence of 1.2.

1.2'. $AbC \in S$ if and only if (A, b) | C.

https://doi.org/10.4153/CJM-1984-029-4 Published online by Cambridge University Press

Namely, the assumption c: = $AbC \in S$ implies Ab = cC, hence

(A, b) = (C, c) |C.

Conversely, let (A, b) | C. Then

 $B: = b(A, b) \in P$ and A, B, C|(A, b).

1.1 (iii) implies D: = $ABC \in P$ and D|(A, b). Therefore by 1.1 (ii) D(A, b) = d, where d: = (D, (A, b)). Hence $AbC = d \in S$.

An element $\alpha = Aa$ is a glide reflection with the axis $[\alpha]$: = (A, a). If $\alpha \notin S$, then $F(\alpha) = \emptyset$.

1.3. The group G is the disjoint union of the subgroup S^{even} : = $S^2 \cup S^4$... and its coset S^{odd} : = $S \cup S^3$ Let $\alpha \in S^{\text{even}}$ and $F(\alpha) \neq \emptyset$. Then α is a rotation. If $A \in F(\alpha)$ and u|A then $\alpha = uv$ for some v with v|A.

REPRESENTATION THEOREM. Let $A \in P$. Every $\alpha \in S^{\text{even}}$ has a unique decomposition $\alpha = \beta C$ where β is a rotation with $A \in F(\beta)$ and $C \in P$. Every $\alpha \in S^{\text{odd}}$ has a unique decomposition $\alpha = bC$ where b|A and $C \in P$.

1.4. The point C is a *mid-point* of A and B if $A^{C} = B$. Two points have not more than one mid-point. Let $\alpha \in G$. By 1.3, A and A^{α} have a mid-point.

1.5. For any group H, let Z(H) denote its center. Then

 $Z(S^{even}) = \{ \alpha \in S^{even} : F(\alpha) = P \}.$

1.6. For every a define $P_a = \{A:A|a\}$.

Let a, b|c. Let A|a, g and B|b, g. Then the mapping $C \mapsto CAB$ is a bijection of $P_a \cap P_g$ onto $P_b \cap P_g$. In particular, $P_a \cap P_g = \{A\}$ if and only if $P_b \cap P_g = \{B\}$.

Figure 1

1.6'. COROLLARY. Let a, b|c. Let b|d. Then a and d have at most one point in common.

1.7. ([8], Lemma 1). Let a, b|c; A|a, g and B|b, g. Then $F(ag) = \{A\}$ if and only if $F(bg) = \{B\}$.

Applying 1.7 three times, we obtain

1.7'. COROLLARY. Let A|a, b; B|c, d; a|c and b|d. Then $F(ab) = \{A\}$ if and only if $F(cd) = \{B\}$.

Figure 2

1.8. Let
$$\alpha$$
 be a rotation; $g \in S$. Then $\alpha g \in S$ if and only if

 $F(\alpha) \cap P_{g} \neq \emptyset.$

In particular, let $F(\alpha) = \{A\}$. Then $\alpha g \in S$ if and only if A|g.

1.9. Suppose (G, S, P) satisfies (W). (i) Let a|b. Then there are lines c, d such that ab = cd|a, b, c, d and not two of these lines intersect elsewhere. (ii) The lines a and b have a unique intersection if and only if |F(ab)| = 1. In particular, let ab = cd. If a, b have a unique intersection then so will c, d.

1.10. The pre-Hjelmslev group (H, T, Q) is a *pre-Hjelmslev subgroup* of the pre-Hjelmslev group (G, S, P) if H is a subgroup of $G, T \subseteq S, Q \subseteq P$. We then write $(H, T, Q) \leq (G, S, P)$.

Let $(H, T, Q) \leq (G, S, P)$. Then $T = S \cap H$ and $Q = P \cap H$. Let $a, b \in T, C \in Q$. Then a|b (Then a|C) in (H, T, Q) if and only if a|b (a|C) in (G, S, P).

Proof. Since $T^{\text{even}} \subseteq S^{\text{even}}$ and $T^{\text{odd}} \subseteq S^{\text{odd}}$, we have

 $S \cap H \subseteq T^{\text{odd}}$ and $P \cap H \subseteq T^{\text{even}}$.

Let $a \in S \cap H$. Choose $A \in Q$. Then by 1.3, a = bC for some $b \in T$, $C \in Q$ such that bA is an involution. Thus $a \in T$ by 1.1 (ii). Next, let $B \in P \cap H$. By 1.3 there are $g, h \in T$ and $C \in Q$ such that gA and hA are involutions and B = ghC. Here gh and C are uniquely determined. As $B = 1 \cdot B$, this yields $B = C \in Q$. The remaining assertions are obvious.

1.11. For any set $Q \subseteq P$ let S(Q) consist of those lines in S which meet points of Q.

Let $(H, T, Q) \leq (G, S, P)$. Thus $T \subseteq S(Q)$. Suppose (i) If $B \in P$ and A, $A^B \in Q$, then $B \in Q$, (ii) $S(Q) \subseteq T$ (thus S(Q) = T). Then (H, T, Q) is called a spot of (G, S, P). In this case,

$$H = \mathcal{N}_G(Q): = \{ \alpha \in G: \alpha^{-1}Q\alpha \subseteq Q \}.$$

Proof. As (H, T, Q) satisfies the basic assumption, we have $H \subseteq N_G(Q)$. Conversely, let $\alpha \in N_G(Q)$. Choose $A \in Q$. By 1.3 there are $\beta \in G$ and $C \in P$ such that $\alpha = \beta C$. Here β is a product of lines through A. Hence $\beta \in H$, by (ii). As $\alpha \in N_G(Q)$, we have

 $A^{\alpha} = A^{\beta C} = A^C \in Q.$

Thus $C \in Q \subseteq H$, by (i), and $\alpha = \beta C \in H$.

The final propositions of this section aim at Hjelmslev groups (without a "pre"). They will not be used in the sequel.

The pre-Hjelmslev group (G, S, P) is a Hjelmslev group if

 $P = \{ab:a, b \in S \text{ and } ab \text{ is an involution}\}.$

1.12. (cf. [9], 2.8). Let (G, S, P) be a pre-Hjelmslev group; ab = ba; A|a. Then (A, b)b|a. In particular, any two commuting lines in a pre-Hjelmslev group have a point in common.

Proof. Let (A, b) = c. Thus

 $A|c, c^a$ and $bc, b \cdot c^a = (bc)^a \in P$.

Thus $c = c^{a}$, by (A2), and hence bc|a, b.

1.13. Let $A \in P$. Then the pre-Hjelmslev group (G, S, P) is a Hjelmslev group if and only if D(A): = {bc:b, c|A} contains only one involution.

Proof. By (1.1) (ii), A is the only involution in D(A) if (G, S, P) is a Hjelmslev group. Conversely, suppose A is the only involution in D(A). We first show that this remains true if A is replaced by any point B. We may assume that A, B|g for some g. Let $\beta \in D(B)$, $\beta^2 = 1$. By 1.1 (iv), βg is a line c through B. Since $\beta^2 = c^2 = 1$, c and g commute. By 1.12, C: = (A, c)c|g. Hence (A, c) = Cc and g commute. Thus, by our assumption, either (A, c) = g or (A, c) = Ag. Hence (A2) yields that either Cc = g and $\beta = C = B$, or g = c and $\beta = 1$.

Next, let $a, b \in S$ and $ab = ba \neq 1$. By 1.12, there is a point C|a, b. As D(C) contains only one involution, viz. C, we obtain $ab = C \in P$.

We mention without a proof

1.14. (cf. [9], Lemma 2). Suppose the pre-Hjelmslev group (G, S, P) satisfies $Z(S^{even}) = 1$ and has the following property: (Z) If a|b and ab|c then c has a unique intersection with a or b. Then (G, S, P) is a Hjelmslev group.

2. Complete point sets.

2.1. Let $\Pi = (\mathcal{P}, \mathcal{L}, I)$ denote any incidence structure. The set $Q \subseteq \mathcal{P}$ is *complete* (in Π) if it satisfies the following condition: If two lines both meet Q and have a unique intersection, then that point belongs to Q. A substructure of Π is called *complete* (in Π) if its point set is complete in Π . The sets \mathcal{P} and \emptyset are complete; the intersection of complete sets is complete.

Examples. (a) Suppose through any two distinct points of Π there is always a unique line. If there are three non-collinear points, the complete sets in Π are \mathcal{P} , \emptyset , and the one-point sets.

(b) Suppose the homomorphism φ maps Π into an incidence structure $\Pi' = (\mathcal{P}', \mathcal{L}', I)$, and any pair of lines intersecting uniquely in Π is mapped by φ onto a pair of lines intersecting uniquely in Π' . Then $C\varphi^{-1}$ is complete in Π for every $C \in \mathcal{P}'$.

In the remainder of this section, (G, S, P) denotes a pre-Hjelmslev group satisfying (W).

2.2. Let $\alpha \in S^2$; Q: = F(α) $\neq \emptyset$. Hence α is a rotation. It is well known that Q is complete and that (N_G(Q), S(Q), Q) is a spot; cf. [2, page 111 Section 9.4, Folgerung 7, and page 78, 6.3]. We wish to prove the following:

THEOREM. Let $Q \subseteq P$ be complete in (G, S, P). Then $(N_G(Q), S(Q), Q)$ is a spot of (G, S, P).

Proof. The set Q being complete, we have

 $Q = \{ab:a, b \in S(Q) \text{ and } ab \in P\}.$

We wish to show

(A3*) If B, C, $D \in Q$; A, B, C, D|g and AB = CD then $A \in Q$.

At first we prove (A3*) under the additional assumption

(+) |F(gh)| = |F(ghD)| = 1 for some h|C.

Let d = Dg. Thus |F(dh)| = 1, say $F(dh) = \{E\}$. By 1.8, $d = (dh)h \in S$ implies E|h. Thus E|d, h. By (+), |F(gh)| = 1 and g, h|C. Hence by 1.9 (ii), the intersections of h with d and g are unique. Q being complete, this yields, in particular, $E \in Q$. Let b: = Bg and m: = (E, b). As $B, E \in Q$ and b|m, the completeness of Q also implies $bm \in Q$. Finally, let k = mdh and j = Ch. Then

$$A = BDC = bdC = bdhj = bmkj.$$

Figure 3

Hence, by 1.2, (A, j) = (bm, k). The lines h and (A, j) have the common perpendicular j. Also h and g have a unique intersection. By 1.6, the intersection A of g and (A, j) is also unique. Since Q is complete, this yields $A \in Q$.

Figure 4

Now we prove (A3*) without assuming additional assumptions. Let B, $C, D \in Q$; A, B, C, D|g and AB = CD. By 1.9, (i) and (ii), there is a line g' through C such that

 $F(gg') = F(Cgg') = \{C\}.$

Let b = (B, g'), d = (D, g'), B' = bg', D' = dg'. Thus Cg', b, d|g'; B|b, g; D|d, g. As $F(Cg'g) = \{C\}$, 1.7 implies $F(bg) = \{B\}$ and $F(dg) = \{D\}$. The completeness of Q yields B', C, $D' \in Q$. Let A' = CD'B'. Thus A'|g'; cf. 1.1 (iv). The special case of (A3*), which has already been proved, now yields $A' \in Q$. We have

 $A(Bb) = CDb = CDd \cdot db = CDdC \cdot CD'B' = (Dd)^{C}A'.$

Therefore by 1.2, (A, Bb) | A'. Applying 1.7 once more, we obtain

 $F((A, Bb)g) = \{A\}.$

As Q is complete, (A, Bb) | A' and $A', B \in Q$ finally yield $A \in Q$. Let $A \in Q$ and $g \in S(Q)$. Then $B: = (A, g)g \in Q$ and, by (A3*),

$$A^g = BAB \in Q.$$

Hence Q is invariant under inner automorphisms of the group $\langle S(Q) \rangle$. The same will apply to S(Q). Thus $\mathscr{H} = (\langle S(Q) \rangle, S(Q), Q)$ satisfies the basic assumption; cf. Section 1. Obviously, the axioms (A1), (A2) and (A4) are satisfied, while (A3) follows from (A3*). Hence \mathscr{H} is a pre-Hjelmslev subgroup of (G, S, P).

Obviously, \mathcal{H} satisfies the second assumption of 1.11. We verify the first one:

(*) If
$$B \in P$$
 and $A, A^B \in Q$, then $B \in Q$.

For the present, let us assume g|A, B for some line g. By 1.9 (i), there are lines h, j through B such that B = hj and that no two of the lines g, h, j intersect elsewhere. By 1.9 (ii),

$$F(gh) = F(gj) = \{B\}.$$

Let $C = A^B$. Then

$$A^{h} = A^{Bj} = C^{j} | (A, h), (C, j).$$

Hence by 1.7, F((A, h)(C, h)) = { A^h }. As $A, C \in Q$ and Q is complete, this yields $A^h \in Q$. Thus $g, g^h \in S(Q)$. By 1.7,

$$F(ghB) = \{B\} = F(gh).$$

Figure 5

Therefore,

 $F(g \cdot g^h) = F((gh)^2) = \{B\};$

cf. [2], Section 9, Lemma 1. Thus g and g^h intersect only at B. As Q is complete, we obtain $B \in Q$.

Now we are ready to prove (*). Let $B \in P$ and $A, A^B \in Q$.

Choose h, j such that B = hj. Let $C = A^{B}$. As before, we obtain

 $F((A, h)(C, j)) = \{A^h\} = \{C^j\}$

and thus $A^h \in Q$. As $A^h = A^{(A,h)h} = C^{(C,j)j}$, we can apply the special case of (*) which is proved above, and derive $(A, h)h, (C, j)j \in Q$. Thus $B \in Q$, by the completeness of Q.

Finally by 1.11, $S(Q) = N_G(Q)$.

2.3. Let Q and R be complete sets in (G, S, P). Suppose $\emptyset \neq P_g \cap Q \subseteq R$ for some g. Then $Q \subseteq R$.

Proof. Let $A \in P_g \cap Q$. By 1.9 (i), there is a line $h \neq g$ through A such that $F(gh) = F(Agh) = \{A\}$. Let $X \in P_h$. The sets Q and R being complete, we have

 $X \in Q \Leftrightarrow (X, g)g \in Q$ and $X \in R \Leftrightarrow (X, g)g \in R$.

Hence $P_h \cap Q \subseteq R$.

Next, let $Y \in Q$. Then

 $(Y, g)g \in P_g \cap Q \subseteq R$ and $(Y, h)h \in P_h \cap Q \subseteq R$.

By 1.7, Y is the unique intersection of (Y, g) and (Y, h). As R is complete, this yields $Y \in R$.

2.3'. COROLLARY. Let Q and R denote complete sets in (G, S, P). Suppose $\emptyset \neq P_g \cap Q = P_g \cap R$ for some g. Then Q = R.

3. Homomorphisms and coverings. Most of the results of this Section, collected for the readers' convenience, are known; cf. [2; 4; 5; 9].

In this Section, (G, S, P) denotes an arbitrary pre-Hjelmslev group.

3.1. Let φ be a homomorphism of G such that $1 \notin S\varphi \cup P\varphi$. Thus $(G\varphi, S\varphi, P\varphi)$ is well defined. Assume, in addition, that there is not more than one orthogonal line in $(G\varphi, S\varphi, P\varphi)$ through any point to any line. Then φ is a homomorphism of (G, S, P), i.e., $(G\varphi, S\varphi, P\varphi)$ is a pre-Hjelmslev group.

Proof. Obviously, $(G\varphi, S\varphi, P\varphi)$ satisfies (A1) and (A2). We first verify

(*) Let $A \in P$, $b \in S$ and $A\varphi | b\varphi$. Then

$$A\varphi = ((A, b)b)\varphi$$
 and $b\varphi = (A(A, b))\varphi$.

Let g = (A, b). Then

 $A\varphi, g\varphi|(Ag)\varphi, b\varphi.$

The normal of g through A being unique, we obtain $(Ag)\varphi = b\varphi$ and (*). Choosing a = Ag and B = bg, we obtain from (*) that a|A; B|b; $A\varphi = B\varphi$; $a\varphi = b\varphi$. Thus the properties (A3) and (A4) of $(G\varphi, S\varphi, P\varphi)$ follow from the corresponding ones of (G, S, P).

We write $N \triangleleft G$ if N is a normal subgroup of G.

3.2. Let $N \triangleleft G$ satisfy (N0*) $N \cap S = \emptyset$, and (N1*) If B, C|g and $B^C B \in N$, then $BC \in N$. Then $N \subseteq S^{\text{even}}$.

Proof. Suppose $\alpha \in N \cap S^{\text{odd}}$. By 1.3, $\alpha = cB$ where $c \in S$ and $B \in P$. Let g: = (B, c). Then $B^{cg}B = \alpha^g \alpha \in N$. Hence by (N1*), $Bcg \in N$ and therefore $g = \alpha \cdot Bcg \in N$, contradicting (N0*).

3.3. Let $N \triangleleft G$ and let $\varphi: G \rightarrow G/N$ denote the canonical homomorphism. Then φ is a homomorphism of (G, S, P) if and only if

(N0) $N \cap S = \emptyset = N \cap P$, and (N1) If B, C|g and $A^{BC}A \in N$, then $BC \in N$.

(Note that (N0) and (N1) are stronger than (N0*) and (N1*).)

Proof. Obviously, (N0) is satisfied if $(G\varphi, S\varphi, P\varphi)$ is a pre-Hjelmslev group. Then also (N1) is true, because $A^{BC}A \in N$ implies $A\varphi^{B\varphi} = A\varphi^{C\varphi}$, hence $B\varphi = C\varphi$ by 1.4. Conversely, assume (N0) and (N1). Let $A\varphi, g\varphi|b\varphi$. On account of 3.1 it is sufficient to prove that $b\varphi = (A, g)\varphi$. As $A\varphi|b\varphi, N$ contains

 $(bA)^2 = A^{A(A,b)b} \cdot A.$

Hence by (N1),

 $A \cdot (A, b) \cdot b \in N.$

This proves 3.1(*). As $g\varphi|b\varphi$, there is a point $B \in P$ such that

$$g\varphi \cdot b\varphi = B\varphi.$$

On account of 3.1(*), we may assume B|g. Since

 $A^{(A,g)gB}\varphi = A^{gB}\varphi = A^b\varphi = A\varphi,$

(N1) yields $(A, g)gB \in N$ Thus

 $(A, g)\varphi = B\varphi g\varphi = b\varphi.$

3.4. A set \mathscr{F} of spots of (G, S, P) (cf. 1.11) is a *covering* of (G, S, P) if every point of P belongs to exactly one of the spots in \mathscr{F} . Such a covering \mathscr{F} induces an equivalence relation \sim in P. The group of \mathscr{F} is equal to

$$\mathcal{N}(\mathcal{F}):=\{\alpha\in S^{\text{even}}:A^{\alpha}\sim A \text{ for every } A\in P\}.$$

A homogeneous covering F satisfies

(h) Let $A \sim B$. Suppose a|A, g and b|B, g. Then $ab \in \mathcal{N}(\mathcal{F})$.

Let \mathcal{F} denote a homogeneous covering of (G, S, P). Then $AB \in \mathcal{N}(\mathcal{F})$ if and only if $A \sim B$.

Proof. Let $AB \in \mathcal{N}(\mathcal{F})$. Then $A \sim A^{AB} = A^B$. Thus the spot containing A also contains B; cf. 1.11. Conversely, let $A \sim B$. Choose a|A and b|B, a. A, B and ab are points belonging to the same spot. Hence $Aa \cdot b, a \cdot bB \in \mathcal{N}(\mathcal{F})$, by (h). Thus

 $AB = A(ab) \cdot (ab)B \in \mathcal{N}(\mathcal{F}).$

3.5. The covering \mathcal{F} is homogeneous if and only if it satisfies (h1) Suppose A, B, C, D|g; AB = CD; $A \sim B$. Then $C \sim D$; and (h2) Let a|A, g and b|B, g. Then

 $A \sim B \Rightarrow ag \sim bg \Rightarrow A \sim (A, b)b.$

Proof. Let \mathscr{F} be homogeneous. Then (h1) follows immediately from 3.4. Next assume a|A, g and b|B, g. We apply (h). If $A \sim B$, then

 $ag \cdot bg = ab \in \mathcal{N}(\mathcal{F})$ and $ag \sim bg$.

If $ag \sim bg$, then $ab \in \mathcal{N}(\mathcal{F})$; hence

$$A \sim A^{ab} = A^b = A^{(A,b)b}$$

and therefore $A \sim (A, b)b$; cf. 1.11.

Conversely, assume (h1) and (h2). Let $A \sim B$; a|A, g; b|B, g. We have to show that $ab \in \mathcal{N}(\mathcal{F})$, i.e., $X^{ab} \sim X$ for every $X \in P$. By 1.1 (v),

c: = $(X, g)ab \in S$ and c|g.

Furthermore

 $(X, g)g \cdot cg = ag \cdot bg.$

As $ag \sim bg$ by (h2), (h1) implies $(X, g)g \sim cg$. By (h2), $X \sim (X, c)c$. We have

$$X^{ab} = X^{(X,g)ab} = X^{c} = X^{(X,c)c}$$

hence

$$(X, c)c \cdot X^{ab} = X \cdot (X, c)c.$$

Also

 $(X, c)c, X, X^{ab}|(X, c).$

Thus (h1) yields $X^{ab} \sim X$.

3.6. Let φ be a homomorphism of (G, S, P). For any $A \in P$ let

 $Q_A: = \{B \in P: B\varphi = A\varphi\}.$

Then

$$\mathscr{F}_{\varphi} := \{ (\mathcal{N}_G(Q_A), \mathcal{S}(Q_A), Q_A) : A \in P \}$$

is a homogeneous covering of (G, S, P) such that

 $\operatorname{kernel}_{\varphi} \subseteq \mathscr{N}(\mathscr{F}_{\varphi}).$

Equality holds if and only if $Z(S\varphi^{even}) = 1$.

Proof. Obviously, \mathscr{F}_{φ} is a covering of (G, S, P); cf. 1.11. (h1) is satisfied because φ is a homomorphism. (h2) follows from the uniqueness of perpendiculars in $(G\varphi, S\varphi, P\varphi)$ and because orthogonal lines have a unique intersection. Thus \mathscr{F}_{φ} is homogeneous. Finally

$$\mathcal{N}(\mathscr{F}_{\varphi}) = \{ \alpha \in S^{\text{even}} : A^{\alpha} \varphi = A \varphi \text{ for all } A \in P \}$$
$$= \{ \alpha \in G : \alpha \varphi \in Z(S \varphi^{\text{even}}) \};$$

cf. 1.5.

3.7. Let \mathscr{F} be a homogeneous covering of (G, S, P); $|\mathscr{F}| \neq 1$. Then $\mathscr{N}(\mathscr{F}) \triangleleft G$ and $\varphi: G \rightarrow G/\mathscr{N}(\mathscr{F})$ induces a homomorphism of (G, S, P) such that $\mathscr{F} = \mathscr{F}_{\varphi}$; cf. 3.6. Moreover, $Z(S_{\varphi}^{even}) = 1$.

Proof. Let \sim denote the equivalence relation in *P* induced by \mathscr{F} . We first show

(*) Let $A \sim B$. Then $A^c \sim B^c$ for every c.

Define a: = (A, c), b: = (B, c), C: = (B, a)a. By 1.11, $A \sim B \sim C$.

Since $AC = C^c A^c$, (h1) therefore yields $A^c \sim C^c$. Applying (h2) twice, we deduce from $B \sim C$ first $bc \sim ac$ and then $B^c \sim (B^c, a)a = C^c$. This yields (*).

Let $\alpha \in N$: = $\mathcal{N}(\mathcal{F})$. Let $c \in S$; β : = α^c ; $X \in P$. Then by the definition of N, $X^{c\alpha} \sim X^c$ and by (*),

$$X^{\beta} = (X^{c\alpha})^{c} \sim (X^{c})^{c} = X.$$

Thus $N \triangleleft G$.

Suppose $A \in N \cap P$. Then $X^A \sim X$ and thus $A \sim X$ for all $X \in P$; thus $|\mathcal{F}| = 1$. As $N \subseteq S^{\text{even}}$, this yields the condition (N0) of 3.3.

Next, let B, C|g and $A^{BC}A \in N$. Put b: = (A, g), c: = bBC, and D: = (A, c)c. Then

$$A^{BC}A = A^{bc}A = A^{c}A = A^{D}A \in N.$$

This implies by 3.4 and 1.11 (i) that $A \sim A^D \sim D$. As b|A, g and c|D, g, the homogeneity of \mathscr{F} yields $BC = bc \in N$. Thus N also satisfies (N1), and φ is a homomorphism of (G, S, P); cf. 3.3.

By 3.4, $A \sim B$ if and only if $AB \in N$, i.e., $(AB)\varphi = 1$ or $A\varphi = B\varphi$. By 3.6, this is equivalent to A and B belonging to the same spot of \mathscr{F}_{φ} . Thus $\mathscr{F} = \mathscr{F}_{\varphi}$. The last statement now follows immediately from 3.6.

3.8. The sections 3.6, 3.7 and 3.4 yield the following result:

The mapping

 $\mathcal{F} \mapsto \mathcal{N}(\mathcal{F})$

is a bijection of the set of the homogeneous coverings \mathscr{F} of (G, S, P) with $|\mathscr{F}| \neq 1$ onto the set of the kernels of those homomorphisms φ of (G, S, P) which satisfy $Z(S\varphi^{\text{even}}) = 1$. If \mathscr{F} is such a covering, then $AB \in \mathscr{N}(\mathscr{F})$ if and only if A and B belong to the same spot of \mathscr{F} .

3.9. A homomorphism of (G, S, P) is *regular* if the images of lines with unique intersections also have unique intersections.

A covering is *complete* if each of its spots is complete.

The homomorphism φ of (G, S, P) is regular if and only if the induced covering \mathcal{F}_{φ} is complete; cf. 3.6.

Proof. Suppose φ is regular. Let *A* and *B* belong to the same spot of \mathscr{F}_{φ} . Let a|A; b|B and suppose *C* is the unique intersection of *a*, *b*. Then

 $A\varphi = B\varphi$ and $C\varphi | a\varphi, b\varphi$.

Hence, φ being regular, $C\varphi = A\varphi = B\varphi$.

Conversely, let \mathscr{F}_{φ} be complete. Let a, b|C. Suppose $a\varphi$ and $b\varphi$ have more than one point in common, say $a\varphi$, $b\varphi|C\varphi$, $D\varphi$ where $C\varphi \neq D\varphi$. The points A: = (D, a)a and B: = (D, b)b satisfy $A\varphi = D\varphi = B\varphi$. Thus A, D, B belong to the same spot F of \mathscr{F}_{φ} while C does not belong to F. Since F is complete. the intersection of a and b is not unique.

3.10. The mapping $\mathscr{F} \mapsto \mathscr{N}(\mathscr{F})$ is a bijection of the set of the complete homogeneous coverings \mathcal{F} of (G, S, P) with $|\mathcal{F}| \neq 1$ onto that of the kernels of the regular homomorphisms φ of (G, S, P) which satisfy $Z(S\varphi^{even}) = 1$.

The proof follows immediately from 3.8 and 3.9.

3.11. If \mathcal{F} is a homogeneous covering of (G, S, P) and $A, B \in P$, the following statements are equivalent:

(i)
$$A \sim B$$
;

(ii)
$$AB \sim \mathcal{N}(\mathcal{F});$$

(iii) $C \sim C^{AB}$ for some point C.

On account of 3.4, it is sufficient to deduce (i) from (iii). We may assume $|\mathscr{F}| \neq 1$. By 3.7, $\mathscr{N}(\mathscr{F})$ is the kernel of a homomorphism φ of (G, S, G)P) such that $\mathscr{F} = \mathscr{F}_{\mathbf{v}}$. Hence (iii) and 3.4 imply

 $(C\varphi)^{A\varphi} = (C\varphi)^{B\varphi}$

Applying 1.4 to $(G\varphi, S\varphi, P\varphi)$, we obtain $A\varphi = B\varphi$, i.e., (i).

3.12. Let $|P| \neq 1$. The normal subgroups N of G with $N \subseteq Z(S^{even})$ are precisely the kernels N of the homomorphisms of (G, S, P) which satisfy $N \cap P^2 = 1.$

Proof. If $N \subseteq Z(S^{even})$, then $AB \in N$ implies $A^A = A = A^{AB} = A^B.$

Hence AB = 1, by 1.4. Obviously, N satisfies the conditions (N0) and (N1) of 3.3. Conversely, suppose N is the kernel of a homomorphism of (G,S, P) and satisfies $N \cap P^2 = 1$. Let $\alpha \in N$. Then

 $A^{\alpha}A = \alpha^{-1}\alpha^A \in N \cap P^2 = 1$ for any $A \in P$.

Thus $F(\alpha) = P$ and, by 1.5, $\alpha \in Z(S^{even})$.

4. Semi-translations and transports. Let (G, S, P) again denote any pre-Hjelmslev group.

4.1. In [9, Section 7] E. Salow introduced semi-translations Γ_{AB} though only for pairs A, B joined by lines. Through our Lemma 4.2 we will be able to drop this restriction and give a definition of $\Gamma_{A,B}$ similar to that of semi-rotations in [6]. This will enable us to generalize Salow's beautiful results; cf. 4.3.

Let $\omega \in P^2$. The semi-translation Γ_{ω} is a pair of mappings of P and S into themselves: If $X \in P$ and $y \in S$, let $X\Gamma_{\omega}$ be the mid-point of X and X^{ω} and let $\gamma \Gamma_{\omega} = [\gamma \omega]$; cf. 1.4 and 1.2. Note that $X^{(X \Gamma_{\omega})} = X^{\omega}$ and $A \Gamma_{AB} = B$.

If A, B|g for some g, the point $X\Gamma_{AB}$ can readily be constructed: Let c: = (X, g). By 1.1 (iii), $cAB = g(gc \cdot AB)$ is the line through the point $gc \cdot AB$ AB on g perpendicular to g. Let d = (X, cAB). Then

 $X^{AB} = (X^{dc})^{AB} = X^{d \cdot cAB}.$

Thus $X\Gamma_{AB} = d \cdot cAB$ is the intersection of d with cAB.

We require the following lemma.

4.2. Let $\alpha \in P^3$. Then $|F(\alpha)| \leq 1$.

Proof. Let $\alpha = ABC$ and $E \in F(\alpha)$. Let a|A. Put b: = (B, a), e: = (E, a). Thus

 $A':=bAe=ba\cdot A\cdot ae|a.$

Finally, let b': = Bb, a': = (A', b') and e': = (E, a'). Thus

C': = b'A'e'|a' and $\alpha C = AB = Abb' = eA'b' = ee'C'$.

Applying 1.3 to αC , we obtain $\alpha = ee'$. By 1.7,

1 = |F(a'b')| = |F(aa')|.

Hence by 1.7', |F(ee')| = 1.

Figure 9

4.3. THEOREM. Let Γ : = Γ_{AB} . Then (i) Γ is injective both on P and on S. (ii) $C|g \Leftrightarrow C\Gamma|g\Gamma$, for all C and g. (iii) If $F(gh) = \{C\}$, then $F(g\Gamma \cdot h\Gamma) = \{C\Gamma\}$.

Proof. To (i). $\Gamma: P \to P$ is injective: Let $E = C\Gamma = D\Gamma$. Then $C^E = C^{AB}$ and $D^E = D^{AB}$. Thus $C, D \in F(ABE)$ and hence C = D, by 4.2.

The injectivity of Γ on S will be dealt with later. Before proving (ii) we show

(*) For any C let
$$\gamma = AB \cdot C\Gamma$$
. Then $F(\gamma) = \{C\}$.

On account of 4.2 we need only show that $C \in F(\gamma)$. By 1.3, there are $\delta \in S^2$ and $D \in P$ such that $AB = \delta D$ and $C \in F(\delta)$. As $C^{C\Gamma} = C^{AB} = C^{\delta D}$, this implies $D = C\Gamma$ and thus $\delta = \gamma$.

To (ii). Let $D = C\Gamma$. As $\gamma = ABD$, (*) and 1.8 yield

 $C|g \Leftrightarrow \gamma g \in S \Leftrightarrow DgAB = (\gamma g)^{AB} \in S.$

By 1.3, there are e|D and E such that gAB = eE. Thus

 $g\Gamma = [eE] = (E, e)$

and the assertion (ii) is equivalent to:

 $DeE \in S \Leftrightarrow (E, e) | D.$

But this follows readily from 1.2'.

To (iii). Let D: = $C\Gamma$; γ : = ABD. Thus by (*), $F(\gamma) = \{C\}$. As $F(gh) = \{C\}$, 1.8 implies C|g, h. Hence, again by 1.8,

 $g':=g\gamma \in S$ and $h':=h\gamma \in S$.

Thus

$$\gamma = gg' = hh'$$
 and $g'h' = g'g \cdot gh \cdot hh' = (gh)^{\gamma}$.

This yields

$$F(g'h') = F(gh)^{\gamma} = \{C^{\gamma}\} = \{C\}$$
 and $C|g', h'$.

As $g\Gamma = [gAB] = [g'D] = (D, g')$ and $h\Gamma = (D, h')$, 1.7' now yields (iii).

Finally, $\Gamma: S \to S$ is injective: Let $g\Gamma = h\Gamma$, i.e.,

[gAB] = [hAB] = [BAh].

The product of two glide reflections with the same axis being the product of two points, we obtain

 $gh = gAB \cdot BAh = XY$

or Xg = Yh for some X, Y; and, by 1.2, there is a line j|g, h. Let C: = gj and D: = hj. Then by (iii),

 $\{C\Gamma\} = F(g\Gamma \cdot j\Gamma) = F(h\Gamma \cdot j\Gamma) = \{D\Gamma\}.$

As Γ is injective on P, this implies C = D and thus g = h.

4.4. Given $\omega \in P^2$, define the *transport* τ_{ω} through

 $Q\tau_{\omega} = \{C: C\Gamma_{\omega^{-1}} \in Q\}$ for every $Q \subseteq P$.

As Γ_{ω} indeed not be surjective, $Q\tau_{\omega}$ can be void for some ω , Q. If $A \in Q$, then $B \in Q\tau_{AB}$ because $B\Gamma_{BA} = A$.

Let \mathscr{F} denote a homogeneous covering of (G, S, P). Then $Q_A \tau_{AB} = Q_B$ for any two points A, B; here $Q_X = \{Y \in P: Y \sim X\}$; cf. 3.4.

Proof. By our definition,

$$Q_A \tau_{AB} = \{C: C\Gamma_{BA} \sim A\} = \{C: C^M = C^{BA} \text{ for some } M \sim A\}.$$

Let $C \in Q_A \tau_{AB}$. By 3.4, $MA \in \mathcal{N}(\mathcal{F})$. Thus $C \sim C^{MA} = C^B \sim B$; cf. 1.11. In particular, $C \in Q_B$. Conversely, let $C \sim B$. Then by 3.4, $CB \in \mathcal{N}(\mathcal{F})$ and thus $C^B = C^{CB} \sim C$. If M denotes the mid-point of C and C^{BA} , then $C^{MA} = C^B \sim C$. Hence $M \sim A$ by 3.11.

4.5. Let τ_{AB} be a transport in a pre-Hjelmslev group which satisfies (W). If the set Q is complete, so is $Q\tau_{AB}$.

Proof. Let $C, D \in Q\tau_{AB}$; c|C; d|D; suppose c and d have the unique intersection E. We have to show $E \in Q\tau_{AB}$. Write $\Gamma = \Gamma_{BA}$. By 1.9 (ii), $F(cd) = \{E\}$. Hence by 4.3 (iii),

 $F(c\Gamma \cdot d\Gamma) = \{E\Gamma\}.$

Thus $c\Gamma$ and $d\Gamma$ intersect precisely at $E\Gamma$. As $C\Gamma$, $D\Gamma \in Q$, and $C\Gamma|c\Gamma$ and $D\Gamma|d\Gamma$ by 4.3 (ii), and since Q is complete, this yields $E\Gamma \in Q$ and thus $E \in Q\tau_{AB}$.

4.5'. THEOREM. Let \mathcal{F} be a homogeneous covering of a pre-Hjelmslev group satisfying (W). If one spot of \mathcal{F} is complete, then \mathcal{F} is complete; cf. 3.9.

The proof follows immediately from 4.4 and 4.5.

4.6. Let Q be a complete point set in a pre-Hjelmslev group satisfying (W). If $\alpha \in Q^3$, then $F(\alpha) \subseteq Q$.

Proof. Let $\alpha = ABC$ where $A, B, C \in Q$. Let $E \in F(\alpha)$. We repeat the construction in the proof of 4.2. As $\alpha = ee'$ and $\alpha C = ee'C'$, we obtain C = C'. Since A, B, C' lie in the complete set Q, the points ab, a'b' and A' belong to Q. By 2.2, Q is the point set of a pre-Hjelmslev subgroup. As $ae = A \cdot ab \cdot A'$ and $a'e' = A' \cdot a'b' \cdot C'$, these products of three points on a and a', respectively, must also belong to Q. Since $|F(ee')| = |F(\alpha)| = 1$, this yields $E \in Q$.

4.7. Let Q be a complete point set in a pre-Hjelmslev group satisfying (W); A, $B \in Q$. Then $Q\tau_{AB} = Q$.

Proof. Let $C^{BA} = C^D$; i.e., $D = C\Gamma_{BA}$. Suppose $C \in Q\tau_{AB}$; thus $D \in Q$ and $BAD \in Q^3$. Hence by 4.6, $C = C^{BAD} \in Q$. Conversely let $C \in Q$. As $A, B, C \in Q$ and Q is the point set of a spot, we obtain $C^D = C^{BA} \in Q$ and thus $D \in Q$; c.f. 2.2 and 1.11 (i).

486

5. Embedding a complete point set into a homogeneous covering. In this section, (G, S, P) denotes a pre-Hjelmslev group satisfying (W).

5.1. Let h|A, B; D|Ah; g = DAh; E = (B, g)g. Let D', E'|g; D'E' = DE;v|B, E'. Then there is a line u through A and D'. If v and g have a unique intersection, so will u and g.

Figure 10

Proof. The elements m: = E'v and Egvh are lines since E'|v and Eg, v, h|B. Thus

$$D'mA = DEvA = Dg \cdot Eg \cdot vA = Ah \cdot Egvh \cdot Ah$$
$$= (Egvh)^{Ah} \in S.$$

Hence by 1.2',

$$u: = (D', m) = (A, D'mA) | A, D'.$$

If v and g have a unique intersection, 1.6 yields on account of u, v|m that the intersection of u with g is unique too.

5.2. Suppose g and h have a common perpendicular a. For any C let B = (C, h)h and E' = (C, g)g. Then there is a line v through B and E' such that

$$|F(vg)| = |F(vh)| = 1.$$

Proof. Let c = (C, a). Then

$$d$$
: = gch \in S and $E'dB = (C, g)c(C, h) \in S$

since (C, g), c, (C, h) | C. Thus by 1.2'.

$$v: = (E', d) = (B, E'db) | E', B, d.$$

As |F(dv)| = 1, a|d, g, h implies that

$$|F(gv)| = |F(hv)| = 1;$$

cf. 1.7.

Figure 11

5.3. Let A = ah, D = ag, B = (C, h)h, E' = (C, g)g; E|(C, h), g; D'E' = DE. Let Q be complete; $A \in Q$. Then $D' \in Q \Leftrightarrow D \in Q$.

Figure 12

Proof. The intersection of a and g being unique, $A, D' \in Q$ implies $D \in Q$. Conversely, let $A, D \in Q$. By 5.2, there is a line v|B, E' such that $F(vg) = \{E'\}$. Let E'': = (B, g)g and D'': = DE''E'. By 5.1, there is a line v|A, D'' such that $F(v'g) = \{D''\}$. Finally, let $D^*: = DE''E$.

Figure 13

Apply 5.1, replacing E by E'' and E' by E. This yields a line $v^* | A, D^*$ such that $F(v^*g) = \{D^*\}$. As Q is complete, we obtain $D'', D^* \in Q$. Hence by 2.2,

$$D' = DEE' = D \cdot EE''D \cdot DE''E' = DD^*D'' \in Q.$$

5.4. Let B = hu; A|h and U|u. If the complete set Q contains A, then

 $Q\tau_{AB}\tau_{BU} = Q\tau_{AU}$

Proof. By 4.5, $Q\tau_{AB}\tau_{BU}$ and $Q\tau_{AU}$ are complete. As they contain U, it is therefore sufficient to prove

 $\mathbf{P}_{u} \cap Q\tau_{AB}\tau_{BU} = \mathbf{P}_{u} \cap Q\tau_{AU};$ cf. 2.3'.

Figure 14

Let $C \in P_u$, E: = BUC, a: = Ah, g: = (E, a), v: = (C, g), E': = gv, D: = ag, D': = E'ED. Then

$$UA = Uha = UBua = CEua = CuEa = CuEgD = CugED$$

= $CuvE'ED = CuvD'$.

Thus

 $C^{UA} = C^{CuvD'} = C^{D'}.$

Hence $C\Gamma_{UA} = D'$ and:

$$C \in Q\tau_{AU} \Leftrightarrow D' \in Q.$$

As $C^{UB} = C^{CE} = C^E$ and $E^{BA} = E^{uhha} = E^a = E^{ga} = E^D$ we have $C\Gamma_{UB} = E$ and $E\Gamma_{BA} = D$.

Therefore:

 $C \in Q\tau_{AB}\tau_{BU} \Leftrightarrow E \in Q\tau_{AB} \Leftrightarrow D \in Q.$

By 5.3, the last relation is also equivalent to $D' \in Q$, i.e., to $C \in Q\tau_{AU}$.

5.5. Let U, V|j. If the complete set Q contains A, then

 $Q\tau_{AU}\tau_{UV} = Q\tau_{AV}.$

Proof. Let B: = (A, j)j. By 4.5, Q^* : = $Q\tau_{AB}$ is a complete set containing *B*. Let *C* be any point of the line *j*. Then *V*, *B*, *C*|*j* implies $CVB \in P_j$ and $C^{CVB} = C^{VB}$, hence $C\Gamma_{VB} = CVB$. The following statements are therefore equivalent:

 $C \in Q^* \tau_{BV};$ $C\Gamma_{VB} = CVB \in Q^*;$ $(CVU)\Gamma_{BU} = CVU \cdot UB \in Q^*;$ $C\Gamma_{VU} = CVU \in Q^* \tau_{BU};$ $C \in Q^* \tau_{BU} \tau_{UV}.$

Thus by 2.3',

$$Q^*\tau_{BV} = Q^*\tau_{BU}\tau_{UV};$$

cf. 4.5. By 5.4,

$$Q^* \tau_{BV} = Q \tau_{AV}$$
 and $Q^* \tau_{BU} = Q \tau_{AU}$.

This proves our assertion.

5.6. We can now prove the

THEOREM. Let Q be complete; $A \in Q$. Then $Q\tau_{AU UV} = Q\tau_{AV}$ for any two points U, V.

Proof. Choose a point W joined by lines to U and V. By 4.5, $Q^* = Q\tau_{AU}$ is complete and, by 5.5,

 $Q^*\tau_{UW}\tau_{WV} = Q^*\tau_{UV}.$

Applying 5.5 twice more, we obtain

$$Q\tau_{AU}\tau_{UW} = Q\tau_{AW}$$
 and $Q\tau_{AW}\tau_{WV} = Q\tau_{AV}$.

Hence

$$\begin{aligned} Q\tau_{AU}\tau_{UV} &= Q^*\tau_{UV} = Q^*\tau_{UW}\tau_{WV} = Q\tau_{AU}\tau_{UW}\tau_{WV} \\ &= Q\tau_{AW}\tau_{WV} = Q\tau_{AV}. \end{aligned}$$

5.7. Let Q denote any complete set; $M, N \in Q$. Then by 5.6 and 4.7

(*) $Q\tau_{MB} = Q\tau_{MN}\tau_{NB} = Q\tau_{NB}$ for every B.

Suppose now that Q is any non-void complete set. On account of (*) we may define

$$Q_B$$
: = $Q\tau_{MB}$,

where $M \in Q$ is arbitrary.

5.8. THEOREM. Let (G, S, P) satisfy (W). Let $Q \subseteq P$ be non-void and complete. Then

$$\mathscr{F}_Q: = \{ (\mathsf{N}_G(Q_B), \, \mathsf{S}(Q_B), \, Q_B) : B \in P \}$$

is a homogeneous covering. \mathcal{F}_O is complete; cf. 3.9.

Remark. By 4.7, $(N_G(Q), S(Q), Q) \in \mathscr{F}_Q$.

Proof. Let $M \in Q$. We have $B \in Q_B$ for every B; also by 5.6 and 4.7,

$$Q_C = Q\tau_{MC} = Q\tau_{MB}\tau_{BC} = Q_B\tau_{BC} = Q_B$$
 for every $C \in Q_B$.

Thus $\{Q_B: B \in P\}$ is a partition of P into complete sets; cf. 4.5. By 2.2, \mathcal{F}_Q is a complete covering of (G, S, P). It remains to show that \mathcal{F}_Q is homogeneous. Let \sim denote the equivalence relation induced by \mathcal{F}_Q . We apply 3.5 to (h1). Let A, B, C, D|g; AB = CD; $A \sim B$. Thus

$$D\Gamma_{CA} = DCA = B \in Q_A$$
 and $D \in Q_A \tau_{AC} = Q_C$

and hence $D \sim C$. To (h2). Let a|A, g; b|B, g. Put A': = (A, b)b, C: = ag, and D: = bg. We have

$$A^{A'D} = A^{(A, b)g} = A^g = A^C.$$

Hence $A\Gamma_{A'D} = C$. From 5.6,

$$Q_{A'} = Q\tau_{MA'} = Q\tau_{MD}\tau_{DA'} = Q_D\tau_{DA'} = \{X: X\Gamma_{A'D} \in Q_D\}.$$

Hence $A \sim A'$ if and only if $C \sim D$. Since Q_A is complete, $A \sim B$ implies $A \sim A'$.

Figure 15

5.8'. We restate our result in terms of homomorphisms.

THEOREM. Let (G, S, P) satisfy (W). Let $Q \subset P$ be complete; $M \in Q$. Then there exists a homomorphism φ of (G, S, P) such that

$$Q = \{B \in P : B\varphi = M\varphi\} \text{ and } Z(S\varphi^{\text{even}}) = 1.$$

The homomorphism φ is unique (up to isomorphism), and φ is regular; cf. 3.9.

Proof. According to 5.8, \mathcal{F}_Q is a homogeneous covering having more than one element. Hence by 3.7 the canonical homomorphism

 $\varphi: G \to G/\mathcal{N}(\mathcal{F}_O)$

induces a homomorphism of (G, S, P) with the desired properties; cf. 3.4. Furthermore, by 3.10, this homomorphism is regular; cf. 3.9. Now, let us assume that φ is a homomorphism of (G, S, P) satisfying the properties of the theorem. Then by 3.6 the kernel of φ is $\mathcal{N}(\mathcal{F}_{\varphi})$. Q is the point set of some spot of \mathcal{F}_Q (cf. 5.8), and Q is also the point set of some spot of \mathcal{F}_Q ; cf. 3.8. Therefore, \mathcal{F}_Q and \mathcal{F}_{φ} induce the same equivalence relation \sim on P; cf. 4.4. Hence $\mathcal{F}_Q = \mathcal{F}_{\varphi}$ by 1.11 (ii). Thus we have

kernel $\varphi = \mathcal{N}(\mathcal{F}_O)$.

5.9. As an elementary application of 5.8 we state a result for which we could not find a direct proof.

Let A|a, h; a|g; b|g, h. If Q is complete and A, $bh \in Q$, then $(ag, h)h \in Q$.

Figure 16

Our proof uses the existence of the homogeneous covering \mathcal{F}_Q . Applying (h2) twice, we deduce from $A \sim bh$ first $ag \sim bg$, then $(ag, h)h \sim bh$.

In the remaining two sections we consider two special cases of our Theorem 5.8'. We continue to assume that (G, S, P) is a pre-Hjelmslev group satisfying (W).

5.10. ([9]). Let α be a rotation and $M \in F(\alpha) \neq P$. There is a unique homomorphism φ of (G, S, P) such that

 $F(\alpha) = \{X: X\varphi = M\varphi\}$ and $Z(S\varphi^{even}) = 1;$

φ is regular.

Obviously, this theorem is a consequence of 5.8', because the set $F(\alpha)$ is complete; cf. 2.2. Let Q_A : = { $X: X\varphi = A\varphi$ }, for any point A.

ADDENDUM. For every A let α_A denote the rotation which satisfies $A \in F(\alpha_A)$ and $\alpha = \alpha_A A C$ for some $C \in P$; cf. 1.3. Then $Q_A = F(\alpha_A)$.

Outline of the proof. The construction of φ in 5.8' and the definition of \mathscr{F}_Q in 5.7 and 5.8 yield $Q_A = Q\tau_{MA}$, where $Q: = F(\alpha)$. Hence we have to show $Q\tau_{MA} = F(\alpha_A)$ for every $A \in P$. This is easy.

Remark. Salow's proof for 5.10 is rather complicated. In [7] we give a short direct proof for 5.10 and the addendum, that does not use 5.8 and the tools developed in Sections 4 and 5.

5.11. Points A, B are called *neighbors* if A, $B \in F(\alpha) \neq P$ for some rotation α . The neighbor relation is reflexive and symmetric, provided that $|P| \neq 1$. The following theorem is proved in [4].

If the neighbor relation is transitive and $|P| \neq 1$ then there is a unique homomorphism ψ of (G, S, P) such that $A\psi = B\psi$ if and only if A, B are neighbors, and $Z(S\psi^{even}) = 1; \psi$ is regular.

Proof. For $A \in P$ let

 Q_A : = {X:X is a neighbor of A }.

(i) Q_A is complete.

Let $B, C \in Q_A$ and b|B; c|C such that b, c have a unique intersection D. Then B is a neighbor of C, i.e., $B, C \in F(\alpha) \neq P$ for some rotation α . Hence $B, D \in F(\alpha) \neq P$ by 2.2. Thus A, B and also B, D are neighbors. This implies $D \in Q_A$.

Now 2.2 and the transitivity of the neighbor relation yield

(ii) F_A : = (N_G(Q_A), S(Q_A), Q_A) is a spot for every $A \in P$,

and

 \mathscr{F} : = { F_A : $A \in P$ } is a complete covering of (G, S, P);

furthermore, $|\mathscr{F}| \neq 1$; cf. 3.4, 3.9.

(iii) F is homogeneous.

We prove property (h) of 3.4. Let A, B be neighbors, a|A, g and b|B, g. Then A, $B \in F(\alpha) \neq P$ for some rotation α . Let φ denote the homomorphism assigned to α by 5.10. Since $A\varphi = B\varphi$, $g\varphi|a\varphi$, $b\varphi$, the uniqueness of perpendiculars in $(G\varphi, S\varphi, P\varphi)$ implies $a\varphi = b\varphi$, hence $(X^{ab})\varphi = X\varphi$ for every point X. Thus, by the addendum in 5.10,

$$X, X^{ab} \in \mathbf{F}(\alpha_X),$$

where α_X is a rotation satisfying $\alpha = \alpha_X XY$ for some Y. Finally, $F(\alpha_X) \neq P$, since otherwise $A = A^{\alpha_X} = A^{\alpha_{YX}}$, hence $A^X = A^Y$; but 1.4 implies X = Y and $\alpha = \alpha_X$. Thus we proved $X^{ab} \in Q_X$ for every X, i.e., $ab \in \mathcal{N}(\mathcal{F})$.

The assertion now follows from 3.10.

FRIEDER KNÜPPEL

References

- 1. F. Bachmann, Aufbau der Geometrie aus dem Spiegelungsbegriff, Second supplemented edition (Springer, 1973).
- 2. Hjelmslev-Gruppen. Arbeitsgemeinschaft über geometrische Fragen, Universität Kiel, second print (1976).
- 3. W. Klingenberg, Euklidische Ebenen mit Nachbarelementen, Math. Z. 61 (1954), 1-25.
- 4. F. Knüppel and M. Kunze, Neighbor relation and neighbor homomorphism of Hjelmslev groups, Can. J. Math. 31 (1979), 680-699.
- 5. —— Reguläre Hjelmslev-Homomorphismen, Geom. Ded. 11 (1981), 195-225.
- 6. F. Knüppel, Äquiforme Ebenen über kommutativen Ringen und singuläre Prä-Hjelmslevgruppen, Abh. math. Sem. Univ. Hamburg 54 (1983), 229-257.
- 7. —— The set of fixed points of a rotation in a pre-Hjelmslev group, to appear.
- 8. E. Salow, Singuläre Hjelmslev-Gruppen, Geom. Ded. 1 (1973), 447-467.
- 9. Fixpunktmenge von Drehungen in Hjelmslev-Gruppen, Abh. math. Sem. Univ. Hamburg 41 (1974), 37-73.

Universität Kiel, Kiel, W. Germany