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THE ABELIAN CASE OF SOLITAR'S CONJECTURE ON 
INFINITE NIELSEN TRANSFORMATIONS 

BY 

OLGA MACEDONSKA-NOSALSKA 

ABSTRACT. The paper proves that the group of infinite bounded Nielsen 
transformations is generated by elementary simultaneous Nielsen trans­
formations modulo the subgroup of those transformations which are equiv­
alent to the identical transformation while acting in a free abelian group. 
This can be formulated somewhat differently: the group of bounded auto­
morphisms of a free abelian group of countably infinite rank is generated 
by the elementary simultaneous automorphisms. This proves D. Solitar's 
conjecture for the abelian case. 

1. Introduction. Nielsen's method consists of a reduction process which changes 
any finite set of generators of a subgroup of a free group into a free set of generators 
(Nielsen-reduced set) ([5], [6]). Since Nielsen's method, applied to a finite set of 
words, deals with a length function which is minimized, it does not tend to reduce an 
infinite set of words in a finite number of steps. The Nielsen transformations of rank 
w ([4], p. 130) build a group which is anti-isomorphic to the group Aut Fn of auto­
morphisms of a free group of rank n and is generated by the elementary Nielsen 
transformations ([4], Theorem 3.2). In 1970, D. Solitar formulated the problem of 
generalization of the Nielsen's theory for the case of the free group Fx of infinite rank. 
The notion of the Nielsen transformation can be naturally generalized for Fx so that the 
group of so-called infinite Nielsen transformations is anti-isomorphic with Aut Foo. It 
is shown in [3] that any countable set of words in F*> can be changed into a Nielsen-
reduced set by an infinite Nielsen transformation. A generalization of the elementary 
Nielsen transformation for F«, is given in [1], where the notion of the elementary 
simultaneous transformation is introduced. 

It has been conjectured by D. Solitar that these elementary simultaneous Nielsen 
transformations generate the subgroup of bounded Nielsen transformations. The con­
jecture still stands (see [1], p. 100). If by Fx we denote a free abelian group of 
countably infinite rank then the automorphism group Aut F^ is isomorphic with the 
group of infinite matrices invertible over Z which contain finite numbers of non-zero 
elements in their rows. The homomorphism Aut Fx —» Aut Fœ is the epimorphism [2] 
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and hence for the group N of infinite Nielsen transformations there exists an anti-
homomorphism onto the group of matrices mentioned above. The kernel H of this 
antihomomorphism consists of those infinite Nielsen transformations which act as the 
identical transformation if applied to a set of words in abelian group. 

2. Nielsen transformations and matrices. Let Fx be a free group with the base 
X = (xi, i E /) where / is the set of natural numbers. Let W = (wh i E /) be another 
base in Foo. By the same letter W we shall denote the infinite Nielsen transformation 
which changes the base X into W. 

2.1. DEFINITION. The infinite Nielsen transformation W changes any set of words 
V — (v/, / E /) into the set WV — (w,( V), i E /) where the word w((V) is obtained from 
Wi by substitution of Xj by vjy j E /, e.g. if w = X\X7, then w(V) = V\V7. 

2.2. DEFINITION. The product of two infinite Nielsen transformations W and U we 
shall write from the right to the left as UW. The product is defined to carry X into the 
base UW = <W;(W), / E /) so that for any set V we get (UW)V = U(W(V)). 

According to those definitions the infinite Nielsen transformation X is the identity 
and the two transformations W and U are inverse to each other if UW — WU = X or, 
which is the same, wt(U) = u{{W) = xt. Referring to the infinite Nielsen trans­
formations we shall omit the word "infinite". 

2.3. DEFINITION. An infinite matrix W = (a0) is called the exponent matrix of the set 
of words W — (wh i E /) if wt — ïlx"ij mod FL. 

Obviously the exponent matrix of a Neilsen transformation, i.e. of a corresponding 
base, is invertible over Z. We shall show that the exponent matrix of the product of two 
Nielsen transformations W and U is the product of matrices UW. Indeed if uk = Uxfk', 
then uk(W) = IXwf*' = 11/(11^)^'' = Rj*JkJ> where <rkj = 2f- $kiaij9 moduloFL, which 
leads to the result. 

In a free abelian group Fx every set of words V = (v,, / E /) is unambiguously 
defined by its exponent matrix V. The Nielsen transformation W of the set V leads to 
the multiplication of the matrix V by the exponent matrix W from the left side so that 
the product of two Neilsen transformations W and U acting on a set V multiplies its 
exponent matrix by the matrix UW, since U(W(V)) = (UW)V. We shall also speak of 
an n x «-exponent matrix for a set of n words in a free group of rank n. 

2.4. DEFINITION. Matrix W = (a/y) is called «-bounded if W is invertible over Z, 
W~] = U = (P/;), and 2,- \au\ < n, 2 ; |p / ; | < n. 

The product of nr and ^-bounded matrices is obviously an «,«2-bounded matrix. 

2.5. DEFINITION. Nielsen transformation. W corresponding to the base W = 
(wt, i E /) is called «-bounded ifLx(wt) < n, Lw(xt) < n, where Lx(Wi) is x-length of 
the word wh Lw(Xj) is w-length of the word xi9 i E /. 

The exponent matrix of «-bounded Nielsen transformation is obviously «-bounded. 
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3. Elementary simultaneous Nielsen transformations. 

3.1. DEFINITION. The transformation of an infinite set of words (wh i E /) of the types 
1—3, given below, will be called elementary simultaneous Nielsen transformations 
f[l], Definition 4.1.): 

1. Permutation of words wh i E /; 
2. Change ofwt to w~ for a subset of words (wh i E M C / ) ; 
3. For I = P U Q a change of every word wq, q E Q to wqw^ for ap, p E P, with 

no change of the words wp, p E P. 

3.2. DEFINITION. The transformations of the type 1,2, and 3 for \P\ = 1 will be called 
according to [1], Definition 4.2, just elementary Nielsen transformations. 

Let us note here that by means of elementary Nielsen transformations even such a 
base as {wh i E /) where w2k-i = x2k-u w2k

 = x2kx2k-u i E / cannot be changed into 
a Nielsen-reduced set X in a finite number of steps. 

3.3. DEFINITION. The exponent matrix of an elementary simultaneous Nielsen trans­
formation is called the elementary simultaneous matrix. 

3.4 DEFINITION. An elementary simultaneous Nielsen transformation of a set V 
induces an elementary simultaneous transformation of the rows of exponent matrix V 
of the next three types: 

1. Permutation of rows; 
2. Multiplication of elements of some rows for — 1; 
3. For I = P U Q a change of every row with number q E Q to a sum or difference 

of this row and another row with number p E P, with no change of the rows with 
numbers p E P. 

Since a product of n elementary simultaneous matrices is 2"-bounded matrix, we can 
say that not every Nielsen transformation is a product of a finite number of elementary 
simultaneous transformations, but we shall prove here that every n-bounded matrix is 
a product of a finite number of elementary simultaneous matrices which gives the 
positive solution for D. Solitar's conjecture in the abelian case. 

4. Lemmas on matrices. It will be convenient for us to rearrange the set / of natural 
numbers according to a new ordering 9. Since every exponent matrix A is a function 
from / x / to Z, the A can be rewritten as a function <pA from 9/ x 9/ to Z. 

We shall see that the new ordering does not affect the multiplication of matrices. We 
say that the ordering 9 corresponds to the splitting / = U 4 if in every lk the new 
ordering coincides with the natural one, and all elements from Ik preceed those from 
/*+,, that is if ij E /*, i<j, then 9(1) < 9(7); if/ E IkJ EIk+l, then 9 ( 0 < 9(7). 
So, let â be any fixed countable ordinal, then we denote by $ the set of non-limit 
ordinals $ = (a, l < a < â ) . The elements from the set <I> we denote by small Greek 
letters. Let 9 :/ —» O be a bijection defining the new ordering in /, then any matrix 
A = (au) can be rewritten as 9A = (a^) for a^ = ^ - ' ( ^ - ' ( T , ) - We shall check that 
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for the exponent matrices <p(AB) = 9A9Z?. Indeed, if we denote AB = C, where B and 
C have elements bu and ci} correspondent^ and 9Z?, 9C have elements p ^ , crCT1, then 

0"ET, ~ ^ " ' ( ^ " ' ( Î I ) ~ ^ a*p ' ( ^x^ i K<p ' ( 11 ) 

- 2J otç9(K)|39(K)T, - 2 / o t ^ P ^ , 
K £ / p,e<l> 

where the last equality holds since the sum is finite. 
Such properties of matrices as being n-bounded or elementary simultaneous do not 

depend on the ordering 9, hence if 9 A is a product of a finite number of elementary 
simultaneous matrices, then the same is true for A. We note also that A is elementary 
simultaneous of the third type if and only if there exists a splitting I = UIk, such that 
for the corresponding ordering 9 A consists of diagonally placed squares of the form 

e = ± 1 , 0 , corresponding to the elementary Nielsen transformations. 
In the next two lemmas we shall consider the ordering 9, corresponding to a splitting 

/ = P U Q, where \P\, \Q\ = 00. A matrix V is supposed n-bounded. 

4.1. LEMMA. / / 

then V is a product of a finite number of elementary simultaneous matrices. 

PROOF. We note first that 

E 0 \ / 0 E\ IE A\ 10 E 
A El \E Ol \0 E> \E O 

where the first and the last matrices are elementary simultaneous, corresponding to the 

permutation of the rows. Now in the matrix ( ) we use the low rows with numbers 

q E Q to act simultaneously on the rows with numbers p E P. We need no more then 
n simultaneous transformations of the third type to achieve the result. 

4.2. LEMMA. Ifq>V=[ ), then V is a product of a finite number of elementary 

simultaneous matrices. 
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PROOF. Since V is «-bounded we can change 9 V into 9 V7 = ( ) by a finite 

number of elementary simultaneous transformations of the rows. Now, since \Q\ = 00, 
we can split Q = \JQh where |G,-| = », 1 = 1, 2, . . . , then the splitting/ = / ) U ( U g i ) 
defines the corresponding new ordering 9' and 

(p'V 

= <p'V,<p'V2. 

The matrices 9' V\ and 9' V2 consist of the squares of the form 

(A 0 \ ( 0 EUE 0\(E -A~\ IE 0\ (E 0\ 
\0 A'1/ \E 0>\A E/\0 E / \A E)\0 -El' 

The first and the last matrices here are elementary simultaneous of the first and second 
types. The three matrices in the middle are by Lemma 4.1 finite products of elementary 
simultaneous matrices of the third type. This leads to the proof of the lemma. (We used 
here a well-known trick of J. H. C. Whitehead and S. Eilenberg.) 

5. The main theorem. We shall show here that in a free abelian group Fa, the action 
of an «-bounded Nielsen transformation W is equivalent to the action of a finite product 
of elementary simultaneous Nielsen transformations or, which is the same, that every 
«-bounded matrix is a product of a finite number of elementary simultaneous matrices. 

We shall consider a free abelian group r 00 with the abelian base X = (xi9 i E / ) , and 
with another base W = (w,, / E /) of which the exponent matrix W is «-bounded. By 
U = (ui9 i E /) we denote the inverse base (such that Wj(U) = w,(W) = xi9 i E /) with 
the exponent matrix U equal to W~l. For any word v 6 FM we denote by /(v) the set 
of generators JC, in the reduced form of v, so that v = IIJC"', / E /(v). 

5.1. LEMMA. In the free abelian group Fx with the bases X, W and U given above, 
there exists an infinite set of elements {vq, q E Q CI) having the following properties: 

1. vq = Ux]j where 
la. 2 \yj\ < «, 
lb. q' < q implies max I(vq>) < min I(vq), 
2. vq- uqYluJqj where 
2a. 2 / \aqj\ < «2, 
2b. j £ Q. 

PROOF. We build a sequence of subgroups in F„: 
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gp(wi) C gp(xu ..., xt]) C . . . C gp(wu . . . , w^_,) C £/?(*,, . . . , xtk) 

C gp(w,, . . . , wTk) C £/?(*,, . . . , *,t+I) C . . . 

such that 

(1) 1 <f, < 7 \ < . . . < / * < r i k < r / k + I < . . . 

(2) xtk+l £gp(xl9 ...,xtk), k>0. 

Now we shall define a set of elements (vr, r E R Ç /) which satisfies the required 
properties except 2b, and later we shall choose a subset (vq, q E Q C R) satisfying all 
the properties. We define vn as being equal to u{ (hence we take r, = 1), and assume 
that vr,, vr2, . . . , vr„ are defined as required. Then there exists a natural number k such 
that f*-i > max I(vrn). We then consider the element 

u,t+l = n *?' n *?. 
At least one 7, here is not equal to zero, since otherwise 

x<k+i= utk+i(
w)= n wf' E g p u , , . . . , *,A) 

which contradicts (2). We put now rn+] = tk+l and define 

(3) vr„+l = u,t+l n x-p' = n JC7>. 

In this way the set (vr, r E R C I) is consequently defined. Since every r is equal to 
some tk+1, we have from (1) that |/?| = 0°, |A/?| = 00. The properties la, 1 fr are satisfied 
because 

Lx(utk+l) - n, and min /(vrif+l) > r*-, > max /(v rJ. 

We have also 

Vrn+] = Utk+l 1 1 X7* = K,4+1 I I ^ ' ( £ 7 ) = Mr4+I F I " ? , 
' - ' * - ! ' - ' J t - l 

where because of (1)) ^ tk < tk+\. Since Lx(Wi) < n w e getLM0,(£/)) < n and hence 
the number of factors Uj is not greater than (n - l)n. This gives the properties 2,2a. 

Obviously, every subset of (vr, r G /? Ç /) also satisfies the same properties. We 
shall choose now a subset {vq,qE:QQR) to satisfy 2b. A word vr, we shall call proper 
if there exists an infinite subset of words vr which do not contain ur> in its expression 
through Uj. We note that in every subset of n2 words from (vr, r E R) we can find a 
proper word. Indeed, if vS], vSl_, . . . , vSn2 belong to (vr, r E R), and no vs is proper then 
for every s only a finite number of words do not contain us and hence there exist vr 

containing uS{, uS2, . .., uSn2 which contradicts 2a. The required set (vq, q E g C R) 
can be defined now inductively: we take vqi as a proper word with the minimal index 
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in (vr, r E R). Let vqi, . . . , vqn be proper words chosen to satisfy 2b. Then there exists 
an infinite subset/?' C R such that for every r' E R', vr< does not contain uqi, .. ., uRn. 
We now choose vqn+l to be the proper word with the minimal index in the subset 
(vr>, r' ER' CR). So, the required set (vq, q E Q) is defined which finishes the proof. 

5.2. THEOREM. Every n-bounded matrix is a product of a finite number of elementary 
simultaneous matrices. 

PROOF. Let W be an «-bounded matrix, then we can treat it as the exponent matrix 
for the correspondent base W in F*. By means of Lemma 5.1 we construct the set of 
words (vq,qEQ). We note that every vq is a primitive element in the free abelian group 
Foo because we can put it instead of uq into the base U. For every vq we shall consider 
a subgroup Fiq) = gp(xi9 i E I(vq)). By the property \a rank (F{q)) < n. Since vq is 
primitive, it can be included into a base in Fiq). In [7] a method is given to build a base 
Vq in F(q) containing vq as the first element. This base Vq has n x n (or smaller) exponent 
matrix defined by its first row 71,72, . . •, 7„, corresponding to the expression of vq 

through Xj, i E I(vq). Because of the property la there exists only a finite number of 
possibilities for the first row and hence we get only a finite number of different 
exponent matrices Vq, q E Q. It follows that there exists n0 such that every matrix Vq 

is «o-bounded. According to J. H. C. Whitehead's results [8], [9] (or see [4], 
pp. 166-167; [1], p. 119), the set Vq can be changed into (xi9 i E l(vq)) by not more 
than (no - \)n Whitehead's transformations which coincide with the elementary 
Nielsen transformations in an abelian group. It means that every matrix Vq is a product 
of not more than (n0 — \)n elementary matrices. Since by the property lb, Fiq) D F(q>} 

is trivial for q =£ q', we have Fx = n* F{q) x F which gives the splitting 

/ = U (xh i E l(vq)) U (xn i $ U I(vq)), 

and the corresponding new ordering 9. We shall suppose that elements from Vq are 
indexed with /, / E I(vq) and denote by V the base in F«, where 

V = U Vq U (xi9 i $ U /(v,)>. 
9 q 

The exponent matrix V in the ordering cp has a form 

This matrix is a product of not more than (n0 — l)n elementary simultaneous matrices 
and hence the same is true for V and V~l. By Lemma 5.1 the sets Q and P = I\Q are 
infinite. We denote by 9' the ordering corresponding to the splitting / = P U Q. Then 
since by 2b vq(W) = uq(W) U u?>(W) = xqU x?> we have 

, , (A B\ (A - BC B\ IE 0\ 
(1) 9 ' V 9 W = ( C E) = ( Q E)(c E). 
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The matrix ( ) is n0n-bounded as the product of bounded matrices. The matrix 

IE 0 \H / E 0\ J u u u ^ . ^ / x . 
\ ^ rp) = \ r- r ) anc* hence by the property 2a, since C = (a^) , is a 
\C is ' \— C E ' 
n2-bounded. It follows now that the left matrix of the last product in (1) is also 
invertible and bounded. By Lemmas 4.2 and 4.1, VW is a product of a finite number 
of elementary simultaneous matrices. Since the same is true for V~x the proof is 
complete. 
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