NON COMMUTATIVE L_{p} SPACES II

A. KATAVOLOS

Let M be a w^{*}-algebra (Von Neumann algebra), τ a semifinite, faithful, normal trace on M. There exists a w^{*}-dense (i.e., dense in the $\sigma\left(M, M_{*}\right)$ topology, where M_{*} is the predual of $\left.M\right)^{*}$-ideal J of M such that τ is a linear functional on J, and

$$
x \mapsto\|x\|_{p}=\tau\left(|x|^{p}\right)^{1 / p} \quad 1 \leqq p<\infty
$$

(where $|x|=\left(x^{*} x\right)^{1 / 2}$) is a norm on J. The completion of J in this norm is $L_{p}(M, \tau)$ (see [2], [8], [7], and [4]).

If M is abelian, in which case there exists a measure space (X, μ) such that $M=L_{\infty}(X, \mu)$, then $L_{p}(X, \tau)$ is isometric, in a natural way, to $L_{p}(X, \mu)$. A natural question to ask is whether this situation persists if M is non-abelian. In a previous paper [5] it was shown that it is not possible to have a linear mapping

$$
T: L_{p}(M, \tau) \rightarrow L_{p}(X, \mu), \quad p>2
$$

(where τ is a finite trace and (X, μ) a finite measure space) isometric on normal elements, unless M is abelian. In this note, this result is extended to the general case, thus showing that these non-commutative L_{p} spaces constitute a class of Banach spaces distinct from classical ones.

Theorem 1. Let M be a w^{*}-algebra, τ a semifinite faithful normal trace on M. Let (X, μ) be a measure space, $p>2$, and

$$
T: L_{p}(M, \tau) \rightarrow L_{p}(X, \mu)
$$

a linear mapping, isometric on normal elements. Then M is w^{*}-isomorphic to a w^{*}-subalgebra of $L_{\infty}(X, \mu)$, and hence is abelian.

For convenience, the proof will be broken in a series of lemmas, yielding some results on the way which will be needed later. The basic ideas of Lemmas 1 and 2 are contained in [5].

Lemma 1. Let e, $f \in M$ be projections such that ef $=f e=0$ and $\tau(e)$, $\boldsymbol{\tau}(f)<\infty$. Let $X_{e}, X_{f} \subseteq X$ be the supports of $T(e), T(f) \in L_{p}(X, \mu)$ respectively. Then
(i) $X_{e} \cap X_{f}=\emptyset$ (modulo μ-null sets)
(ii) If $g=e+f, M_{0}=g M g, a w^{*}$-subalgebra of M, then $\forall x \in L_{p}\left(M_{0}, \tau\right)$, supp $T x \subseteq X_{0}($ modulo μ-null sets $)$.

Received June 24, 1981.

Proof. (i)

$$
\begin{aligned}
& \|e+f\|_{p}^{p}+\|e-f\|_{p}^{p}=\tau\left(|e+f|^{p}\right)+\tau\left(|e-f|^{p}\right) \\
& \quad=\tau(e+f)+\tau(e+f)=2 \tau(e)+2 \tau(f)=2\|e\|_{p}^{p}+2\|f\|_{p}^{p}
\end{aligned}
$$

since $e f=0$. Therefore

$$
\|T e+T f\|_{p}^{p}+\|T e-T f\|_{p}^{p}=2\|T e\|_{p}^{p}+2\|T f\|_{p}^{p}
$$

which implies (see e.g. [6]) that $(T e)(\omega) \cdot(T f)(\omega)=0$ for μ-almost all $\omega \in X$, i.e., that $X_{e} \cap X_{f}=\emptyset$, modulo μ-null sets.
(ii) We have

$$
(T g)(\omega)=(T e)(\omega)+(T f)(\omega)
$$

Therefore if $(T e)(\omega) \neq 0$, then $(T f)(\omega)=0$, so that $(T g)(\omega)=(T e)(\omega)$ $\neq 0$, i.e., $\omega \in \operatorname{supp} T g=X_{g}$. Therefore if $e \in M$ is a projection smaller than g, then supp $T e \subseteq X_{0}$. But each $x \in M_{0}$ may be approximated, in the operator norm, by a finite linear combination of such projections (by the spectral theorem), that is, by a $y \in M_{0}$ such that supp $T y \subseteq X_{0}$. Now

$$
\|T x-T y\|_{p} \leqq 2\|x-y\|_{p}=2\|g(x-y) g\|_{p} \leqq 2\|g\|_{p}^{2}\|x-y\|^{2}
$$

(the first inequality resulting from the fact that T, being isometric on normal elements, has norm at most 2) so that $T x$ cannot be nonzero on a set of positive measure disjoint from X_{0}. Since each $x \in L_{p}\left(M_{\rho}, \tau\right)$ may be approximated, in the $\|\cdot\|_{p}$-norm, by elements of M_{q}, the lemma follows.

The next corollary will be needed later.
Corollary 1. Let $E \subseteq M$ be a maximal family of pairwise orthogonal projections such that $\tau(e)<\infty$ for $e \in E$. Let X_{e} be as in Lemma 1. Then

$$
x \in L_{p}(M, \tau) \Rightarrow \operatorname{supp} T x \subseteq \cup\left\{X_{e}: e \in E\right\}
$$

Proof. By semifiniteness, $\sum\{e: e \in E\}=1$. Replacing each finite subfamily of E by its sum, one may construct a family $F \subseteq M$ of projections of finite trace, increasing to the identity of M. Let $x \in L_{p}(M, \tau)$ and $\epsilon>0$ be given. Choose $y \in J$ such that $\|x-y\|_{p}<\epsilon / 4$.

Now, since $p>2$, for each $f \in F$

$$
\begin{array}{r}
\|y-f y f\|_{p}{ }^{p}=\tau\left(|y-f y f|^{p}\right) \\
\leqq\| \| y-f y f f^{p-2} \| \tau\left(|y-f y f|^{2}\right) \\
\leqq(2\|y\|)^{p-2} \cdot\|y-f y f\|_{2}{ }^{2} \leqq(2\|y\|)^{p-2}\left(\|y-y f\|_{2}+\|y f-f y f\|_{2}\right)^{2} \\
\leqq(2\|y\|)^{p-2}\left(\|y-y f\|_{2}+\|y-f y\|_{2}\|f\|\right)^{2}
\end{array}
$$

and

$$
\begin{aligned}
\|y-y f\|_{2}^{2} & =\tau\left(\left(y^{*}-f y^{*}\right)(y-y f)\right) \\
& =\tau\left(y^{*} y-y^{*} y f-f y^{*} y+f y^{*} y f\right) \\
& =\tau\left(y^{*} y-y^{*} y f\right)=\tau\left(y^{*} y-f y^{*} y f\right)
\end{aligned}
$$

since

$$
\tau\left(f y^{*} y\right)=\tau\left(f^{2} y^{*} y\right)=\tau\left(f y^{*} y f\right)
$$

by centrality, and similarly

$$
\|y-f y\|_{2}{ }^{2}=\tau\left(y^{*} y-y^{*} f y\right)=\tau\left(y y^{*}-y y^{*} f\right)=\tau\left(y y^{*}-f y y^{*} f\right) .
$$

Since F is an increasing family,

$$
\begin{aligned}
& \sup \left\{f y^{*} y f: f \in F\right\}=y^{*} y \quad \text { and } \\
& \sup \left\{f y y^{*} f: f \in F\right\}=y y^{*}
\end{aligned}
$$

Hence by normality of τ

$$
\sup \left\{\tau\left(f y^{*} y f\right): f \in F\right\}=\tau\left(y^{*} y\right)
$$

and

$$
\sup \left\{\tau\left(f y y^{*} f\right): f \in F\right\}=\tau\left(y y^{*}\right)
$$

Therefore one can choose $f \in F$ so that

$$
\|y-f y f\|_{p}<\epsilon / 4
$$

Then

$$
\|T x-T(f y f)\|_{p} \leqq 2\|x-f y f\|_{p} \leqq 2\|x-y\|_{p}+2\|y-f y f\|_{p}<\epsilon
$$

Now $f y f \in M_{f} \subseteq L_{p}\left(M_{f}, \tau\right)$, hence $T(f y f)$ is supported in X_{f} by Lemma 1. Thus

$$
\operatorname{supp} T(f y f) \subseteq \cup\left\{X_{e}: e \in E\right\}
$$

and hence also

$$
\operatorname{supp} T x \subseteq \cup\left\{X_{e}: e \in E\right\}
$$

Lemma 2. Let $e \in M$ be such that $\tau(e)<\infty$. Then there exists a w^{*} continuous isometric *-homomorphism

$$
T_{e}: M_{e} \rightarrow L_{\infty}\left(X_{e}, \mu\right) \subseteq L_{\infty}(X, \mu)
$$

defined by

$$
T_{e}(x)=\frac{T x}{T e} \quad\left(x \in M_{e}\right)
$$

In particular, M_{e} is abelian.
Proof. Consider the measure μ_{e} defined on μ-measurable subsets A of X by

$$
\mu_{e}(A)=\tau(e)^{-1} \int_{A}|(T e)(\omega)|^{p} d \mu(\omega)
$$

μ_{e} is supported in X_{e}, and equivalent to the restriction of μ to X_{e} (since $|(T e)(\omega)|^{p}>0 \mu$-almost everywhere on $\left.X_{e}\right)$ so that $L_{\infty}\left(X_{e}, \mu_{e}\right)=$ $L_{\infty}\left(X_{e}, \mu\right)$, a w^{*}-subalgebra of $L_{\infty}(X, \mu)$. Moreover, μ_{e} is a probability measure, since

$$
\mu_{e}\left(X_{e}\right)=\tau(e)^{-1}\|T e\|_{p}^{p}=\tau(e)^{-1}\|e\|_{p}^{p}=1
$$

Also scale the trace on M_{e} by defining a new trace t by

$$
t(x)=\tau(e)^{-1} \tau(x), \quad x \in M_{e}
$$

so that $t(e)=1$.
Clearly $L_{p}\left(M_{e}, t\right)$, the completion of M_{e} in the norm ||| $\cdot\left|\left|\left.\right|_{p}\right.\right.$ defined by

$$
\||x|\|_{p}^{p}=t\left(|x|^{p}\right)=\|x\|_{p}^{p} \tau(e)^{-1}
$$

coincides as a topological vector space with $L_{p}\left(M_{e}, \tau\right)$, and hence is a closed subspace of $L_{p}(M, \tau)$.

For $x \in M_{e}, T x / T e$ is a well-defined μ-measurable function supported in X_{e}, by Lemma 1, and hence μ_{e}-measurable. If $x \in M_{e}$ is normal,

$$
\begin{aligned}
\int_{x_{e}}\left|\frac{T x}{T e}\right|^{p} d \mu_{e}=\tau(e)^{-1} \int|T x|^{p} d \mu & =\tau(e)^{-1}\|T x\|_{p}^{p} \\
& =\tau(e)^{-1}\|x\|_{p}^{p}=\| \| x \|_{p}^{p}
\end{aligned}
$$

This shows that the mapping $x \mapsto T x / T e$ extends to a linear mapping

$$
\bar{T}_{e}: L_{p}\left(M_{e}, t\right) \rightarrow L_{p}\left(X_{e}, \mu_{e}\right)
$$

which is isometric on normal elements, and such that $\bar{T}_{e}(e)=1$ ($=$ the characteristic function of X_{e}). By Theorem 3 of [5], the restriction T_{e} of \bar{T}_{e} to M_{e} is a w^{*}-continuous isometric ${ }^{*}$-isomorphism of M_{e} onto its range, a w^{*}-subalgebra of $L_{\infty}\left(X_{e}, \mu_{e}\right)=L_{\infty}\left(X_{e}, \mu\right)$, and hence of $L_{\infty}(X, \mu)$. In particular, M_{e} must be abelian.

Corollary 2. M is abelian.

Proof. As in the proof of Corollary 1, consider a family $F \subseteq M$ of projections of finite trace increasing to the identity of M. Then for each $x \in M$, the net $\{f x f: f \in M\}$ tends, in the w^{*}-topology, to x. Since multiplication is jointly w^{*}-continuous on norm-bounded subsets of M, we have, for $x, y \in M$,

$$
x y=w^{*}-\lim (f x f \cdot f y f)=w^{*}-\lim (f y f \cdot f x f)=y x
$$

because $f x f$, $f y f \in M_{f}$, an abelian algebra by Lemma 2.
Lemma 3. Let $E \subseteq M$ be as in Corollary 1. Then the mapping

$$
\begin{aligned}
& S: M \rightarrow L_{\infty}(X, \mu) \\
& x \mapsto \sum\left\{T_{e}(x e): e \in E\right\}
\end{aligned}
$$

is an isometric w^{*}-isomorphism of M onto its range, a w^{*}-subalgebra of $L_{\infty}(X, \mu)$.

Proof. By semifiniteness, $\sum e=1$. Therefore $x=\sum x e$ (the sum converging in the w^{*}-topology). But $x e=$ exe $\in M_{e}$, since M is abelian. It is clear that

$$
\|x\|=\sup \{\|x e\|: e \in E\}
$$

For each $e \in E$, we have a w^{*}-continuous isometric *-homomorphism

$$
T_{e}: M_{e} \rightarrow L_{\infty}(X, \mu)
$$

and $T_{e}\left(M_{e}\right) \subseteq L_{\infty}\left(X_{e}, \mu\right)$ (Lemma 2). Further, if $e, f \in E, e \neq f$, then $X_{e} \cap X_{f}=\emptyset$ (Lemma 1) and hence

$$
T_{e}\left(M_{e}\right) \cap T_{f}\left(M_{f}\right)=0 .
$$

Since, $\forall x \in M$,

$$
\left\|\sum T_{e}(x e)\right\|_{\infty}=\sup \left\|T_{e}(x e)\right\|_{\infty}=\sup \|x e\|=\|x\|
$$

the mapping S in the statement of the lemma is well-defined, *-linear, isometric, and multiplicative, since, for $x, y \in M$,

$$
\begin{aligned}
S(x) S(y) & =\sum\left\{T_{e}(x e): e \in E\right\} \cdot \sum\left\{T_{f}(y f): f \in E\right\} \\
& =\sum\left\{T_{e}(x e) \cdot T_{e}(y e): e \in E\right\}
\end{aligned}
$$

(for $T_{e}(x e) \cdot T_{f}(y f)=0$ almost everywhere if $e \neq f$)

$$
=\sum\left\{T_{e}(x y e): e \in E\right\}=S(x y)
$$

Finally, $S(M)=\sum \oplus\left\{T_{e}\left(M_{e}\right): e \in E\right\}$ is a w^{*}-subalgebra of $L_{\infty}(X, \mu)$, being the direct sum of the w^{*}-subalgebras $T_{e}\left(M_{e}\right)$. It thus follows automatically that S is a w^{*}-isomorphism of M onto $S(M)$ ([3], I.4, Corollary 1 of Theorem 2).

This concludes the proof of Theorem 1. The last restriction to be removed is the requirement that p be greater than 2 . If $p=2, L_{p}(M, \tau)$ is a Hilbert space, and one can go no further, unless something further is known about the isometry T, such as positivity preservation [1] (which, of course, holds for a *-homomorphism such as S). For $1 \leqq p<2$, duality may be used:

Theorem 2. Let M be a w^{*}-algebra, τ a faithful normal semifinite trace on $M,(X, \mu)$ a measure space. For $1 \leqq p \leqq \infty, p \neq 2$, let

$$
T: L_{p}(M, \tau) \rightarrow L_{p}(X, \mu)
$$

be an onto linear isometry. Then M is w^{*}-isomorphic to $L_{\infty}(X, \mu)$ and hence is abelian.

Proof. (i) Suppose $1 \leqq p<2$. It is well known [2] that the dual of $L_{p}(M, \tau)$ is $L_{q}(M, \tau)$ where $1 / q+1 / p=1$, so that $q>2$. (Here $L_{\infty}(M, \tau)$ $=M$.) The dual map

$$
T^{*}: L_{q}(X, \mu) \rightarrow L_{q}(M, \tau)
$$

defined by

$$
\tau\left(\left(T^{*} x\right) y\right)=\int_{X} x(\omega) \cdot(T y)(\omega) d \mu(\omega)
$$

$\left(x \in L_{q}(X, \mu), y \in L_{p}(M, \tau)\right)$ is an onto isometry, and therefore so is its inverse

$$
\left(T^{*}\right)^{-1}: L_{q}(M, \tau) \rightarrow L_{q}(X, \mu) \quad q>2 .
$$

Thus the problem is reduced to the case $p>2$.
(ii) We use the same notation as in Theorem 1. By Corollary 1,

$$
\operatorname{supp} T x \subseteq \cup\left\{X_{e}: e \in E\right\} \forall x \in L_{p}(M, \tau)
$$

Therefore, since T is onto, we must have $\cup\left\{X_{e}: e \in E\right\}=X$, and the union is disjoint, by Lemma 1 . Moreover, supp $T x \subseteq X_{e}$ if and only if $x \in L_{p}\left(M_{e}, \tau\right)$. For, if supp $T x \subseteq X_{e}$, then writing

$$
T x=\sum\{T(x f): f \in E\}
$$

one concludes that $T(x f)=0$ if $f \neq e$, since supp $T(x f) \subseteq X_{f}$ and $X_{f} \cap X_{e}=\emptyset$ by Lemma 1. Thus $x f=0$ if $f \neq e$, and hence $x=x e \in$ $L_{p}\left(M_{e}, \tau\right)$. The converse is Lemma 1. Therefore T, restricted to $L_{p}\left(M_{e}, \tau\right)$ is an isometry onto $L_{p}\left(X_{e}, \mu\right)$. Hence it induces an onto isometry

$$
\bar{T}_{e}: L_{p}\left(M_{e}, t\right) \rightarrow L_{p}\left(X_{e}, \mu_{e}\right)
$$

(see the proof of Lemma 2). Both \bar{T}_{e} and its inverse, when restricted to M_{e} and $L_{\infty}\left(X_{e}, \mu_{e}\right)$ respectively, preserve the operator (supremum) norm ([5], Theorem 3), and since these restrictions are inverses of each other, it follows that M_{e} and $L_{\infty}\left(X_{e}, \mu_{e}\right)$ are isomorphic.

In view of Lemma 3, the proof is complete if one observes that M is the direct sum of $\left\{M_{e}: e \in E\right\}$, and $L_{\infty}(X, \mu)=L_{\infty}\left(\cup X_{\epsilon}, \mu\right)$ is the direct sum of $\left\{L_{\infty}\left(X_{e}, \mu\right): e \in E\right\}$ where each $L_{\infty}\left(X_{e}, \mu\right)=L_{\infty}\left(X_{e}, \mu_{e}\right)$ since μ_{e} and μ are equivalent on X_{e}.

1. M. Broise, Sur les isomorphismes de certaines algèbres de Von Neumann, Ann. Sci. Ec. Norm. Sup. 83, 3me série (1966), 91-111.
2. J. Dixmier, Formes linéaires sur un anneau d'opérateurs, Bull. Soc. Math. Fr. 81 (1953), 9-39.
3. -Les algèbres d' opérateurs dans l'espace hilbertien, 2me édition (Gauthier-Villars, Paris, 1969).
4. A. Katavolos, Ph.D. Dissertation, Univ. of London (1977).
5. - Are non-commutative L_{p} spaces really non-commutative? Can. J. Math. 33 (1981), 1319-1327.
6. J. Lamperti, On the isometries of certain function spaces, Pacific J. Math. 8 (1958), 459-466.
7. E. Nelson, Notes on non-commutative intergration, J. Funct. Anal. 15 (1974), 103-116.
8. I. E. Segal, A non-commutative extension of abstract intergration, Ann. Math. 57 (1953), 401-457.

University of Athens, Panepistimiopolis, Athens, Greece

