
ON FINITE GROUPS WITH GIVEN
CONJUGATE TYPES I

NOBORU ITO

Let G be a finite group. Let m, m, . . . , nr, where nι> n i> . . . > nr - 1,
be all the numbers each of which is the index of the centralizer of some element
of G in G. We call the vector (ni, n 2, . . . , nr) the conjugate type vector of G.
A group with the conjugate type vector (nu nι, . . . , nr) is said to be a group
of type (nu n2, . . . , nr).

In the present and succeeding papers we want to investigate the structures
of groups of simplest types, that is, the structures of groups of type im, 1), of
type (ni, n 2, 1) and of type (nu n*9 nz9 1). Obviously groups of type (1)
are abelian and conversely. Therefore we omit these groups from our con-
siderations. In the present paper, we treat the case of groups of type {nι, 1)
and some related problems.

A subgroup which is the centralizer of some element is called, by M.
Cipolla, a fundamental subgroup, Now we call, in the present paper, only a
fundamental subgroup which is distinct from G a fundamental subgroup. Some
intrinsic properties of fundamental subgroups have been obtained by Italian
authors, especially by M. Cipolla, G. Scorza and G. Zappa. On the other hand,
some results on the structures of groups with given types of fundamental sub-
groups have been obtained by L. Weisner and S. Cunihin.^ Some of the latters
are generalized in the present paper.

The main results of the present paper are the following: (I) Any group
of type (flu 1) is nilpotent. Further, m is a power of a prime p'> nγ-pa

and any group of type (βa, 1) is the direct product of a i>-subgroup of type
(pa

9 1) and an abelian subgroup. Therefore the structure of groups of type
(flu 1) is reduced to that of ^-groups of type (βa, 1). Then: (II) For any p-
group G of type (pa, 1), G/A is a group of exponent p, where A is abelian and
normal in G. Our considerations are made much complicated by the presence
of centres, and generally speaking, the smaller the centre is, the simpler is the
structure of the group. For instance, if the centre of a ^-group G of type Kpa,
1) is cyclic, then G is of class 2.
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18 NOBORU ITO

§ 1. Preliminaries
In this section we give necessary definitions and notations and prove some

preliminary theorems on fundamental subgroups and p~groups.
Let F be a fundamental subgroup of a group G. Therefore F^G (accord-

ing to our agreement above). We say that F is minimal if F contains no
fundamental subgroup, of G, properly and F is maximal if F is contained in no
fundamental subgroup, of G, properly. Further we say that F is free if F is
both minimal and maximal. An abelian fundamental subgroup is obviously
minimal. Further we say that a group G is of type (F) if every fundamental
subgroup of G is free and that G is of type (A) if every fundamental subgroup
is abelian. A group of type (A) is obviously a group of type (F).

We denote the normalizer of a subset X of a group by 5ΐ(-Y) and the
centralizer by 3(X). Now let F be a fundamental subgroup and let X be an
element of F. If 3(X) BF we call X a central element of F, and if especially
3(X) = F we call X a generating element of F.

PROPOSITION 1.1. Let F be a free fundamental subgroup of a group. Then
F is nilpotent. Further if F contains at least two generating elements one of
which is of order a power of a prime p and the other of which is of order a
power of a prime of q and q*p, then F is abelian.

Proof. Clearly F contains a generating element X of order a power of a
prime p, because of its maximality. Let Y be any element of F of order a
power of a prime q^p* First let us remark the following fact that {XY}
contains both {X} and {Y}. Then F clearly contains 3(XY), whence F must
coincide with 3(XY), because of its minimality. Then 3(Y) contains F, since
3( Y) contains $(XY). In other words Y is a central element of F.

We say that a group G has an abelian partition with a kernel subgroup K,
if G is a set-theoretical join of some abelian subgroups each pair of which
meet only by K. Further we call each of such abelian subgroups a component
cf the partition. Then we have clearly the following

PROPOSITION 1.2. Every group G of type (A) has an abelian partition with
a kernel subgroup Z which is the centre of G and with components which are
fundamental subgroups of G.

PROPOSITION 1.3. Let G be a p-group of exponent different from p and let
G have an abelian partition with a kernel subgroup E which is the unit group
of G. Then a component A which contains at least one element of order
greater than p contains all the elements of order greater than p. In particular
G/A is of exponent p. Further any other component except A is non-normal.

Proof. Let X be an element of A of order greater than p and let Y be a
central element of G of order p. Then since {XY)P = XP*E, A contains XY.
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ON FINITE GROUPS WITH GIVEN CONJUGATE TYPES I 19

Hence A contains Y. Let X1 be any element of G of order greater than p.
Then since (XfY)p = XlP*?E, the component which contains X1 contains Y.
Hence it must coincide with A.

Now we obviously have the following

PROPOSITION 1.4. Let G be a group such that G~HxK9 where Kis abelian.

Then G and H have the same conjugate type vector.
Therefore we shall set a convention that every group G which we consider

contains no abelian direct factor.

We denote as usual the upper central series and the lower central series
of a nilpotent group G by

G and Ά

respectively, c being the class of G. We also denote as usual the commutator
series of a soluble group G by G = A D f t D . . . ΌDn-iΌDn = E, n being the
rank of G. Finally we denote by Sp a ^-Sylow subgroup of a group G.

§2. Groups of type (nlf 1)
The purpose of this section is to show that any group of type (ni, 1) is

nilpotent. With the convention of § 1 any nilpotent group of type (nι, 1) is a
p-group for some prime p. Obviously any group of type (ni, 1) is of type (F).
Hence any fundamental subgroup of it is nilpotent by Proposition 1-1.

Now let us assume that there exists a non-nilpotent group G of type (ni,
1) and we want to show that this assumption leads up to a contradiction. We
first obtain the following

PROPOSITION 2.1. Any fundamental subgroup F of G is abelian. In other
words, G is of type (A).

Proof. Suppose F be a ^>-group for some prime p. Since G is not a p-gτoxxp,
G contains a #-Sylow subgroup SQ{G) different from Eίox some prime q distinct
from p. Then the centre Zi(G) of G contains clearly SQ(G), whence F also
contains Sa(G). This is obviously a contradiction. Therefore Fis not a p-group
for any prime p. Let all the generating elements of prime power order be of
order a power of p for some fixed prime p. Then any <?-Sylow subgroup Sq(F)
*?E of F, where q is a prime distinct from p, is contained in Zi(G). Now, by

the convention of § 1, G contains a non-central element X of order a power of
q. Let us put F' = 3(X). Then a q-Sylow subgroup SQ(Ff) of F' clearly contains
Sη(F) properly. This is obviously a contradiction. Thus F contains at least
two generating elements one of which is of order a power of p for some prime
p and the other of which is of order a power of q for some prime q different
from p. Therefore F is abelian by Proposition 1.1.

Since thus G is of type (A), G possesses the abelian partition with the
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20 NOBORU ITO

kernel subgroup Zι(G) by Proposition 1.2. Now

PROPOSITION 2.2. The class of a ^-Sylow subgroup SpiG) of G is equal to
2 for any prime divisor p of order.

Proof. Assume that Sp(G) is abelian. Then Sp(G) is contained in some
fundamental subgroup of G, whence it follows that all the fundamental subgroups
of G are conjugate one another (under the convention of §1). On the other
hand their set-theoretical join contains all the elements of G. This is clearly
a contradiction. Since any fundamental subgroup F of G is abelian, F thus
contains no Sp(G). Further the centre Zi(Sp(G)) of SpiG) is clearly contained
in Zi(G).

By a theorem of P. Hall,2) we have that lH2(Sp(G))9 Z2iSpiG))J=E, where
H ?(Sp(G)) and ZtiSpiG)) are the second terms of the lower and upper central
series of SP(G). Let P be an element of ZASpiG)) not belonging to Zι(SP(G)).
Then P is a non-central element of G. Put F=,3(P). Then we have clearly
that FBH2(Sp(G)). Since F is abelian, the rank of SpiG) is equal to 2. Let
us assume that the class of Sp{G) is greater than 2 and we show that this
assumption leads up to a contradiction. Since SpiGΪ ZΛG) I Zi(G)=S/>(G) I
ZιiSp(G)), and since the former is a group with an abelian partition with the
kernel subgroup E = Zι(G), the latter factor group SpiG) \ ZiiSpiG)) is also a
group with an abelian partition with the kernel subgroup E = ZΛSp(G)). Hereby
the ^-Sylow subgroup SP{F) of F can be assumed to be one of the component
subgroups of this partition. Since SpiF) EH2iSpiG)), SP(F) is normal in SpiG).
Further Sp(G) \ZιiSpiG)) is not abelian, since we assumed that the class of
Sp{G) is greater than 2. Now SpiG) \ Sp(F) is an abelian group of type (p,
. . ., p) by Proposition 1.3. On the other hand, clearly the normalizer 9ΐ(F)
of F contains Sp(G). So let us consider the subgroup Sp(G)Cp(F), where CpiF)
is the i>-Sylow complement of F Then we can consider SpiG) \ SpiF) as a group
of automorphisms of CpiF)\CP(F)^ZιiG). In fact, clearly CpiF) and CpiF)
,-^ZιiG) are normal in SpiG)CpiF). Further any element of SpiG) which is
commutative with some residue class other than CpiF)^Zi(G) of CpiF)^ZiiG)
in CpiF) is contained in SpiF). To see this let P be an element of SpiG) which
is not contained in SpiF)- Then SiP)^F. Therefore P is not commutative
with any generating element of F which is contained in CpiF). Suppose that
P is commutative with the residue class QiCPiF)^ZιiG)) *CpiF)^ZιiG) of
CpiF)^ZιiG) in CpiF), where Q is an element of CpiF). Then Q is a generat-
ing element of F. The commutator [P, Q] is contained in CpiF)^ZιiG)
EZΛG). Therefore we have clearly IP, QT = lPn, Q] = IP, Qnl for any integer
n, whence [P, Q2-E. This is clearly a contradiction. Hence by a theorem

2) P. Hall (2).

https://doi.org/10.1017/S0027763000016937 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000016937


ON FINITE GROUPS WITH GIVEN CONJUGATE TYPES I 21

of W. Burnside3' Sp{G)/Sp(F) is either cyclic or a generalized quaternion group.
Then Sp(G) ! Sp(F) is a group of order p. Since for any fundamental subgroup
F* there exists a ^-Sylow subgroup S*(G) of G which contains the p-Sylow
subgroup Sp(F*) of F*? we can assume that all the fundamental subgroups are
conjugate in G with one another. In fact, otherwise, a p-Sylow subgroup Sp(G)
of G contains the p-Sylow subgroup SP(F) and Sp(F*) of two distinct fundamental
subgroups F and F*. Now S/»(F) and Sp(F*) are clearly different from each
other. They are abelian and of index p in Sp{G), whence it follows that the
class of SpiG) is equal to 2. This is clearly a contradiction. Therefore all the
fundamental subgroups are conjugate with one another. On the other hand, their
set-theoretical join contains all the elements of G. But clearly it is impossible.
This completes the proof to Proposition 2.2.

Now we have easily the following

PROPOSITION 2. 3. Any fundamental subgroup F of G is normal in G.

Proof. Let Sp(F) be the p-Sylow subgroup of F. Then the normalizers
Tt(F) and yi(Sp{F)) of F and SP(F) must coincide: 91(F) = 5Ϊ(S^(F)). In fact,
since F is abelian, we have 9Ϊ(F) ϋ9ϊ(S/>(F)). Now SP(F) contains a generating
element of F by the covention of § 1. Therefore if 3ΐ(S/,(F)) contains 9ί(F)
properly, then at least one fundamental subgroup F* which is different from
F (one of the conjugates of F) contains a generating element of F, which is
clearly a contradiction. On the other hand, since a /?-Sylow subgroup of G is
of class 2, and Sp(F) contains the centre of a ^-Sylow subgroup of G, 9US/>(F))
clearly contains a ^-Sylow subgroup Sp(G) of G. Thus we have that TiiF)
contains a Sp(G) for any prime A that is, F is normal.

Therefore as a join of its abelian normal subgroup G must be nilpotent.
This is finally a contradiction. Thus we have established the required

THEOREM 1. Any group of type (m, 1) is nilpotent.

§ 3. p-groups of type (pa, 1)

Let G be a i>-group of type (pa, 1). We want to show that G/A is of ex-
ponent p for a suitable abelian normal subgroup A of G. In fact we show,
more generally, the following:

PROPOSITION 3.1. Let G be a i?-grouρ of type (F). Then G/A is of exponent
p for a suitable abelian normal subgroup A of G.

Let Z2 be the second centre of G. Let 3(Z2) be the centralizer of
Z2. Let X be any element of G not belonging to S(Z2). Then Xp belongs to
Zi. In fact, since X does not belong to 3(Z2), there exists an element Y of
Z2 such that IX, Y]*E. Let pa be the order of ίX, Yl Then since [Z, Y]
31 W. Burnside (1).
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22 NOBORU ITO

is contained in Zu we clearly have lXpm, Ypnl = ίX, Ylpm+n. Therefore, as
can easily be seen, 3(X^) contains 3(X) properly. Since G is of type (F),
3(XP) must coincide with G. In other words Xp belongs to Zi as was asserted.
If 3(Z2) is abelian, we put S(Z2) = A. Then A satisfies the required condition.
Further we want to observe that in this case A is not only normal in G, but
also characteristic in G9 which is needed in the following. Now let Gf = 3(Z2)
be non-abelian. Let Z2 be the second centre of G'. Let S'(Z ') be the centralizer
of Z* in G'. Let X be any element of G1 not belonging to S'ίZO. Then Xp

belongs to Zi. In fact, since X does not belong to 3'(ZD there exists an
element Y of Zf

2 such that IX, Yl Φ E. Then since IX, Yl is contained in the
centre Zί of G', we have ίXpm, Ypnl = lX, Ylpm+n. Thus it can be seen that
3(XP) contains 3(X) properly. Since G is of type (F), 3(XP) must coincide
with G. In other words Xp belongs to Zi. If 3'(ZD is abelian, we put S'(Zί)
= A Since A is characteristic in Gf, A satisfies the required condition. Con-

tinuing this process, we obtain the assertion. Further we remark that A con-
tains Zi and any element of G - A is of order p to Zi, which is stronger than
the stated above.

Remark. In general, A does not coincide with Zi. For instance, let G be
a dihedral group of order 2w(w^4). Then obviously G is of type (F) and G/Zi
is not of exponent 2. However, if G is of class 2, then clearly A = Zi. The
same is the case if G is regular in P. HalΓs sense,4' since in such a group the
following assertion holds: "if [_X, Y]*?E, then [ Z ^ Yl has the order less than
that of ίX, Yl" We have the same also when H2 is of exponent p. In fact,
let X be an element of A and let Y be any element of G. Then CX*, Y] = IX,
Ylp.

Now since clearly any ̂ -group of type (pa, 1) is of type (F), we obtain
as a special case of the Proposition 3.1 the required

THEOREM 2. Let G be a p-group of type ipa, 1). Then G/A is of exponent
p for a suitable abelian normal subgroup A of G. Especially, if p = 2, then G is
metabelian. Further, if Hi is of exponent 2, then G is of class 2.

Remark. The writer has to leave open whether A can be different from
Zi in this special case. Further, it may be of use to investigate whether there
exists a group of type (pa, 1) and of arbitrarily high class (or rank).

Now let G be a i>-group of type (pa, 1). Let X be an element of G belong-
ing to Z2 but not to Zi. Then 8(X) contains H2 by a theorem of P. Hall5).
The index of 3(X) in G is pa. Now the set of all the commutators IX, Yl,
where Y runs over all the elements of G, constitutes an elementary abelian

Λ) P. Hall (2).
5> P. Hall (2).
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ON FINITE GROUPS WITH GIVEN CONJUGATE TYPES I 23

central subgroup C(X) of order pa. In fact, ίXpm, YpΊ = ίX, Ylpw+n. Therefore
Xp is a central element. Let us correspond Y to ίX, Y]. Then we clearly
have the isomorphism Gl${X)^C(X). Therefore since 3(X) contains the Frattini
subgroup of G, we obtain the following

PROPOSITION 3.2. Let G be a j£>-group of type (pa, 1). Then the number
of elements of any minimal generator system of G is not less than a and the
order of the subgroup W(Zι) of all the elements of order p of Zi is not less
than pa.

In particular, if Z\ is cyclic, then W(Zi) is of order p. Therefore a = 1.
Then any fundamental subgroup of G is maximal and contains H2. Therefore
Zι contains H2 and G is of class 2. That is,

PROPOSITION 3.3. Let G be a j^-group of type (pa, 1). If Zi is cyclic,
then a = 1 and G is of class 2.

It seems rather difficult to determine the exact structure of groups of type
(pa, 1). Here we merely discuss some examples in this connection.

Example 1. Let p(^2) be a prime. Let G be a group which is defined
by the following relation: # ? = . . . = ap = bp

t2 = . . =&«-i,w = l and C«i, #2]
= £1,2, . . . , CΛΛ-I, β/f] = #Λ-i,Λ. £?s are central elements. It can easily be

verified by means of O. Schreier's extension theory6* that G is of order p~ 2
Now G is of type (pn~ι, 1). To see this we have only to prove that any non-
central element is commutative only with its own powers up to the central
elements. Let a*1. . .#«" and αί 1 ' . . .chιn> be commutative with each other.
Then we have that x\xj = x\xi (i, j-l, . . . , n), whence follows the assertion.

Example 2. Let j)>2 be a prime. Let G be a group which is defined by
the following relation. ap — at = bp' = cp = cp = 1, L#i, a2l = &, C î, #D = Ci, Γ«2- W
= Co and Ci, c2 are central elements. It can easily be verified that G is of

order p5, by means of O. Schreier's extension theory. Now G is of type (p2,
1). In fact, any fundamental subgroup of G is of order not less then pz. If
there exists a fundamental subgroup F of order p\ F is maximal and thus con-
tains H2-{b, Cι, c2). Then there exists an element a^a$2^l which is com-
mutative with b. But this is absurd.
Our G is of class 3.

Example 3. There exists a group of type (p, 1) and not of type (Λ). Let
G be a group defined by the following relations: at — at — at = 0? = if — \, Lai,
#2] = [#3, ad-b,Zai, 0.3] = [tfi, ail = La2, azl = ίa2, «J = 1. Then G satisfies
the condition.

θ» O. Schreier (1).
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§ 4, Groups of type (F) which are non-simple and without centre. Let G

be a non-simple group of type (F). The purpose of this section is to show

that if G is without centre then G is a soluble group of rank 2. On the other

hand, there exist infinitely many simple groups of type (F)9 which we shall

treat in the subsequent paper. The case "with centre" seems rather complicated

and shall be left open.

First we need to prove the following.

PROPOSITION 4.1 (W. Burnside-H. Zassenhaus). Let K be a field and let

M be a finite iΓ-module. Let G be a finite group of linear transformations of

M, such that any linear transformation (=^1) of G fixes no element (=¥0) of

M. Further let every subgroup of G with a non-trivial centre be abelian. Then

G is cyclic.

Proof. Let p and q be primes. Then by a theorem of H. Zassenhaus7) any

subgroup of G of order pq is cyclic. Therefore, since a generalized quaternion

group (naturally non-abelian one) does not enter as a subgroup of G7 any Sylow

subgroup of G is cyclic by a theorem of W. Burnside.8) Therefore G is soluble.

By an induction argument, we can assume that any proper subgroup of G is

cyclic. By a theorem of P. Hall,91 we can assume that G is of order ras , where

r and s are two distinct primes, and Q> and b are natural numbers. Further

a = b = 1. Therefore G is cyclic by a theorem of H. Zassenhaus.105

Remark. Let us drop the last condition on G. In such a general case W.

Burnside11' thought to have proved that any subgroup of G of order paqb is

cyclic. As H. Zassenhaus125 remarked, that is not true. But, as the writer fails

to understand the counter-example of H. Zassenhaus, we wish to give a one:

Let C be a primitive 32 7-th root of units. Let G be a matrix group which
/ C9 \ / 0 0 C21 \

has the generator system A = ( C1S and B = 1 0 0 . Then G is of
\ C36 / \ 0 1 0 /

order 32 7 and it can be verified easily that G constains no matrix (-^l) which

has a characteristic root 1. Now the following fact can be verified immediately.

Let G be a group of order paqb, where p and q are two distinct primes (p>q),

and a>l. Let any proper subgroup of G be cyclic. Then G itself is cyclic.

Therefore W. Burnside's proof fails already for a group of order pq . Naturally

our above example is such a one.

7 ) H. Zassenhau9 (2).
Γ'> W. Burnside (1).
9 1 P. Hall (1).
10> H. Zassenhaus (2).
1 1 ' W. Burnside (1).
125 H. Zassenhaus (2).
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PROPOSITION 4.2. Let G be a group of type (F) and be without centre.

Then any fundamental subgroup F of G is abelian. In other words. G is a

group of type (A).

Proof. Let assume that F is non-abelian. Then evidently F must be a p-

Sylow subgroup Sp(G) of G for some prime p by Proposition 1.1 and the assump-

tions on G. Since any element except E of ZΛSp(G)) is a generating element

of SpiG), and since any fundamental subgroup of non-prime power order is

abelian, any element of Sp(G) is contained in some conjugate of ZiiSpiG)).

Therefore if SpiG) is a group of exponent pr, where r>l, then ZiiSpiG)) is

also a group of exponent pr. Let P be any element of ZΛSpiG)) with order

pr. Let P* be any element of SpiG) of order/, where s<r. Then (PP*)**

= Pps. Since clearly S ίP^) = 3(P) and SCCPP*)^) = 3(PP% it follows that

3(/>) =3(PP*) ^Sp(G), which shows that P* is also a generating element of

SpiG), whence SpiG) is abelian. This is a contradiction. Hence SpiG) must

be of exponent p. If any two distinct conjugates of SpiG) are disjoint, then

clearly SpiG) must be abelian, which is a contradiction. Let P be a maximal

meet of two distinct conjugates of SpiG). Thus P is different from E. Then

a i>-Sylow subgroup SpiΨiiP)) of the normalizer 9MP) of P contains P properly

and is non-normal in 92(P) by a theorem of H. Zassenhaus.13) Let us consider

the subgroup ^ ( ^ ( S ^ ί ϊ K P ) ) ) - ^ where S/WP)) is a Q-Sylow subgroup of

WP) and ^ ( P ^ O K P ) ) ) is the normalizer in Tι(P) of S.iWP)) and' q*p is

a prime. Assume that the order of 5?9?(P}(Sα(9ί(P))) is prime to p. Since any

element except E of Wm^iSqOΊiP))) fixes no element except E oί P, and since

9?9ί(P)(Stf(9((P))) contains no subgroup which is isomorphic to any non-abelian

generalized quaternion group, it follows from our assumptions on G that any

subgroup of 9ί9?tp)(S<7(9ϊ(P))) with a non-trivial centre is abelian. Therefore

by Proposition 4.1 9hff(P)(§?(9?(P))) must be cyclic. Then by W. Burnside's

splitting theorem,14) 9?(P) contains the normal tf-Sylow complement. If this holds

for every prime order divisor of 9ϊ(P) distinct from p, then Spi^liP)) is normal

in 9KP). This is a contradiction. Therefore there must exist at least one

S?(5R(P)) for which its i>-Sylow subgroup Spi'M^iS^OUP))) is different from

E. Let us consider the subgroup ff=S^(9ϊ^(P)(S/(9ϊ(P))) S7(?l(P)) P. Then a

i>-Sylow subgroup SpiH) of H must coincide with its own normalizer in H. since,

otherwise, some element except E of S4(9t(P)) must be commutative with some

element except E of SpiH), which is a contradiction. In fact, let S^hΛSpiH)))

be a q-Sylow subgroup*E oί the normalizer %t{Sp{H)) of SpiH) in H. Then

Sq(%IiSpiH))))-P=ς)hιiSpiH)USηimP)). P is normal in %ΛSPiH)). So

Ϊ is different from its normalizer in S)IH(SP(H)), from which the

H. Zassenhaus (1).
W. Burnside (1), H. Zassenhaus (1).
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assertion follows immediately. Since SP(H) is a group of exponent p, it is, a
posteriori, regular in P. Hall's sense.151 Therefore //contains the normal p-Sylow
complement by a theorem of H. Wielandt,16) which is clearly a contradiction.
This completes the proof.

Remark. In Proposition 4.2, the non-simplicity is not assumed.

PROPOSITION 4.3. Let G be a group of type (F) and be without centre.
Further let G be soluble. Then holds the factorization: G = AZ, where A is
abelian and normal, Z is cyclic and coincides with its own normalizes and the
orders of A and Z are relatively prime. In particular, G is metabelian and of
Frobeniusean type.

Proof. Under the assumptions on G, any fundamental subgroup containing
a normal subgroup different from E is itself normal. Hence there exists the
largest abelian normal subgroup by Proposition 4.2. Let Z be a complemented
subgroup of A. Since any eiement except E of Z fixes no element except E
of- Ay and since G contains no subgroup which is isomorphic to any non-
abelian generalized quaternion group, our assumptions on G imply that any
subgroup of Z with a non-trivial centre is abelian. Therefore by Proposition
4.1, Z must be cyclic. Clearly again Z coincides with its own normalizer and
any two distinct conjugate subgroup of Z are disjoint. Further, the order a of
A is evidently larger than the order z of Z and G is of type Ka, z, 1).

PROPOSITION 4.4. Let G be a group of type (F) and be without centre.
If G is non-simple, then G is soluble.

Proof. Let N be a minimal normal subgroup of G. If N is soluble, then
N is abelian and its centraίizer 3W) is an abelian normal S-subgroup. Therefore
3(iV) coincides with some fundamental subgroup by Proposition 4.2. By a
theorem of I. Schur,ll) there exists a complemented subgroup K of QKN) in G.
Since any element except E of K is commutative with no element except E of
3(Λ0, and since G contains no subgroup which is isomorphic to any non-abelian
generalized quaternion group, we can easily see, by the assumptions on G, that
any subgroup of K with the non-trivial centre is abelian. Therefore by Pro-
position 4. 2, K must be cyclic. Then G is soluble. So let us assume that N
is non-soluble. Then Ar is a direct product of mutually isomorphic simple non-
abelian groups and therefore, in our case. N must be a non-abelian simple group.
Let SP{N)*E be a p-Sylow subgroup of Λr. Then G = λ^USpiN)). Now
*)liSp{N)) is soluble by the above consideration. Therefore G, N is soluble. By
an induction argument, we can assume that G. AΓ is of prime order, say p.

15> P. Hall (2).
16> H. Wielandt (1).
17> H. Zassenhaus (1).
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Suppose p divides the order of N. Then 9?_v(S/>(iV)) contains SP(N) properly.
In fact, otherwise, N contains the normal p-Sylow complement by W. Burnside's
splitting theorem,18* which is a contradiction. Now SJΪ(S/>(ΛO) contains a i>-Sylow
subgroup SpiG) of G and SP(G) is normal in 9HS/,(JV)) by Proposition 4.3.
Therefore also sJl(Sp(N)) is abelian by Proposition 4.3, which is a contradiction.
Thus p does not divide the order of N. Let q be any prime divisor of the order
of N. Then G = *ίl{Sq{N))'N. If there exists no SMSQ(N)) in which SP(G) is
normal, then holds the factorization: yi(SQ(N)) = A Z, where Z = Sp(G) by Pro-
position 4.3, whence ΏyίS^iV)) is abelian, which is a contradiction. Therefore
there exists 9ί(SQ{N)) in which SP(G) is normal. Then m{SQ(N)) = (3l(Sg(N))^N)
xSp(G), whence ^R(SqiN)) is abelian, which is a contradiction. This completes

the proof.

Thus we have established the following.

THEOREM 3. Let G be a group of type (F) which is non-simple and without
centre. Then G is metabelian and possesses the factorization: G = AZ, where
A is abelian and normal, Z is cyclic and coincides with its oiυn normalizes and
the orders of A and Z are relatively prime. Further G is a group of type {a,
2, 1), where a and z are orders of A and Z respectively.

Remark. This theorem can be considered as a generalization of a theorem
of L. Weisner.19)

§ 5. A theorem of S. Cunihin
Let G be a finite group. Let p and q be two distinct prime factors of the

order of G. Let (nι, nι, . . . , nr) be the conjugate type vector of G. If every
ni (i = 1, . . . , r) is prime to either p or q, then we call G, after S. Cunihin, a
group of isolated type. On a group of isolated type S. Cunihin20) formerly ob-
tained the following result: If G is of odd order, then G is not simple. Now
we improve this result as follows:

PROPOSITION 5.1. Let G be of isolated type. Let p and q be two distinct
prime factors of the order of G having the above property. Then G is either
_£-niJpotent or <?-mΊpotent.

Proof. Let P and Q be p and <?-Syϊow subgroups of G respectively. Let
x be an element the index of which is prime to p. Then S(x)"DPyy where v
is some element of G, whence, by duality, S(Py)^x. That is, any element of
G the index of which is prime to p is contained in at least one conjugate
subgroup of P. The same is the case for q. Then we easily obtain the follow-
ing inequality

1 5 ) W. Burnside (1), H. Zassenhaus (2).
I9> L. Weisner (1).
20> S. Cunichin (1).
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[G:

+ CG: 91(3(G))Π C3CQ): e -

Dividing the both sides by G: ^ we obtain

- 1 , (3(0) : eV^l ,
e * G: e ~1'

From this inequality we obtain either 3(P) = 9i(3(-P)> or 3(Q) = 5R(3(O)) B/
symmetry we may assume without loss of generality that 3(P) = 5R(3(P) )• Now,
since 3(P) is normal in 5KP), we have 9U3(P)) ̂ 3KP). Hence 9KP) =3(-P).
This shows that P is centrally contained in 9HP). So we see that G is i>-
nilpotent by W. Burnside's splitting theorem.21)
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