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ASYMPTOTIC BEHAVIOUR OF DISCONJUGATE
#TH ORDER DIFFERENTIAL EQUATIONS

D. WILLETT

1. Introduction. An ordered set (uy, . .., u,) of positive C*(a, b)-solutions
of the linear differential equation
(1.1) Lu = u®™ + py()ucD + ... + po()u = 0
will be called a fundamental principal system on [a, b) provided that
(1.2) tl_i)r;l_%=0, kE=1,...,n—1,
and
(1.3) w* V(@) =1, w™@t)=0, m=0,...,kb—2, k=1,...,n.
A system (uy, . . ., u,) satisfying just (1.2) will be called a principal system on
[a, d). In any principal system (ui, ..., #%,), the solution #; will be called a

manimal solution.

Clearly, if there exists a fundamental principal system for (1.1), then it is
unique. This follows from the fact that principal systems are linearly indepen-
dent sets.

Equation (1.1) is said to be disconjugate on an interval I if no non-trivial
C"(I)-solution (hereafter, simply called ‘“‘solution’’) has more than #n — 1 zeros,
each zero being counted in accordance with its multiplicity, in I. Finally, (1.1)
is said to be normalon I if p, € C(I),k=1,...,n.

Hartman [9] has recently shown that (1.1) has a principal system on
(a,b) (@ > —o0), provided (1.1) is a normal disconjugate equation on [ao, b)
for some a4 such that ¢y < a. For any given set of functions &y, . . ., &, define

t
16580 = [ b,
(1.4) :
I(t, sk b)) = f E(r)I(r, 838 ..., 8)dr,  k=2,...,n
In § 2, we will prove the following results.

THEOREM 1.1. Assume that —0 < ayp < a < b = 0 and that Lu = 0 is a
normal disconjugate equation on [ao, b). Then there exists &,k = 1,...,n, such
that the following hold:
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(l) Ek E Cn_k+l(a01 b)! Ek > 07 Ek(a) = ]-1 k = 1! BN (23

b
(i1) f ()ds =0,k=2,...,n

(iii) The fundamental principal system (uy, . . ., #,) on [a, b) of Lu = 0 exisis
and

(1'5) ul(t) = El(t)yukG) = 51@)1(5,(1;52,---,&): k = 2,...,7’1;
(iv) The Cauchy function g(t, s) for the initial-value problem at t = a for
Lu = 0 satisfies

El—l(t) g(tr S) kl;Il Ek(s) = I(tr S3 g‘h L) En) = (——1)’1—1[(3: t; Em ooy 52)

TaeoreM 1.2. If Lu = 0 is a normal disconjugate equation on [ao, b) and if its
formal adjoint equation L¥v = 0 is normal on [a,, b), then L*v = 0 1s disconjugate

on [ay, b), and its fundamental principal system on [a, b) (@ > ao) is (¥, . .., 71),
where
v n0=(T80)"
() = v (I, a;En, . vy Egr), E=1,...,n—1
and & 1s as in Theorem 1.1. Furthermore,
(1.7) gt s) = u, (D)va(s) — ... + (1) ()i (s).

Hartman [9, pp. 329-331] showed in the general disconjugate case the
existence of a minimal solution as a rather complicated limit of a sequence of
other solutions. Our development in this regard is simpler and along the lines
of the original proof of Morse and Leighton [12] for the case n = 2. We rely
heavily upon the classic results of Pélya [13], which are stated at the beginning
of § 2.

The most interesting aspects of Theorems 1.1 and 1.2 are the possibilities that
the representation (1.7) allows for the general development of an asymptotic
theory for perturbed equations of the form

(1.8) Ly =f{yy,. ..,y%").

We carry out such a development in §§ 3, 4.
The equivalence of (1.8) to the integral equation

(1.9) y=u®+ [ 86960 s

where Lu = 0, is well known. The general asymptotic theory, which can be
derived directly from (1.9), has been worked out in detail by Trench [17],
Locke [11], and Katz [10]. Although quite adequate for equations where
Lu = 0is oscillatory on [a, b), the resulting theory is inadequate for equations
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where Lu = 0 is disconjugate on [a, b). This is clearly illustrated by the known
results [1-4; 6; 20] for the cases when L is either a constant coefficient operator
or an Euler operator, f is linear, and b = 0. For example, the equation

(1.10) ¥ =y =f®)y
has solutions
yi=e[l+oM)], y2=e[l+01)] ast— oo,
provided
(1.11) fmlf(t)|dt<oo.

However, the specialization to (1.10) of the general results obtained in [17; 11;
or 10] requires that [®e?!|f (t)| dt < o0 to make the same conclusion. Our
asymptotic results in § 4 require only (1.11) as the ‘“‘smallness condition’.

We obtain linearly independent solutions v, of (1.8) as solutions of an
operator equation of the form

(1.12) y=u;+ Ty,
where T, is an integral operator with the property that
Tauy=o0(u;), ast—b.

Equation (1.12) is a modification of (1.9) that utilizes the known relative
behaviour at ¢ and b of the fundamental systems (uy, . . ., #,) and (v,, ..., 71).
The only assumption on L is that Lz = 0 be disconjugate. Previous results of a
similar generality have always assumed that L = D" or n = 2. For a more
precise comparison of the asymptotic results in §§ 3 and 4 with previous results,
see § 4.

2. The disconjugate nth order linear equation. In this section, we will
consider equation (1.1), Lu = 0, on intervals (ao, b) or [a, b), where b may be
finite or infinite. For two functions f and g defined on [a, b), we will write
f=o0(g),if g(t) # 0 for t < b in some neighbourhood of b and

. t
hm_f‘(—) = 0.
1-5b g(t)
Let
U1 e Uy
uy’ I 77
Wi(t1, « o ., ) = det
w* P w Y
be the Wronskian determinant of the & functions u,, . .., #;. Essential to our
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proof of the existence of principal systems of Lu = 0 are the following
fundamental results of Pélya [13].

Lemma 2.1. (i) If v £ 0, then

2.1) Wilouy, . .., ouy) = *Wi(uy, . .., ug).

Gi) If us # 0, then '
(2.2) Wil . .oy tuz) = ul*Wia(or, ..., %),
where

v,=(”7f—*1“)', i=1,...,k—1L

THEOREM 2.1. Assume that Lu = 0 is normal on [a,b). Then Lu = 0 is
disconjugate on [a, D), if and only if there exist solutions uy, . .., 4, of Lu = 0
such that
2.3) Wi(uy, ..., u;) >0 on (a,b), E=1,...,n.

Actually, Theorem 2.1 is an improvement of Pélya's original result. We have
utilized the recent result of Sherman [15;16], which is that a normal linear
equation on a half-open interval I is disconjugate on I if and only if it is
disconjugate on the interior of I, to obtain Theorem 2.1.

In what follows, an ordered set (ui,...,u,) of solutions will be called a
Pélya system on the interval (e, b) if (2.3) holds.

TueoreM 2.2. If Lu = 0 s normal on (a, b) and if there exists a Pélya system

(U1, « « -y Un) 00 (a,b) for Lu = 0, then there exists a minimal solution & and
solutions ws, . . . , wy, such that (¢, w,, . . ., w,) is also a Pélya system on (a, b) for
Lu = 0.

Proof. The proof is by induction on the order # of the operator L. Clearly the
theorem is true for all first-order equations. Suppose that the theorem is true
for all (» — 1)st order equations having Polya systems of solutions. Let
Lu = 0 be any normal nth order equation with a Pélya system (u, ..., u,).
Then, u; > 0 on (a, b). Let u = u;(¢)zin Lu = 0. Then, there exists a normal
(n — 1)st order linear operator M on (a, b) such that

(2.4) 0 = Llu,(¢)z] = u(t) M2 (g’ = dz/dt).
Let
vk=(ﬂ‘~+—l)', k=1,...,n—1.
U

Then, (2.4) implies that My, = 0. Furthermore, Lemma 2.1 implies that
Wi, ..., v) = ua Wi (uy, ..., u341) > 0o0n (a,0), k=1,...,n — 1.

Thus, (v1,...,7,-1) is a Pélya system on (a, b) for Mv = 0. The induction
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hypothesis now implies that Mv = 0 has a minimal solution { € C*~1(a, b) and
solutions ¢, ..., {,—1 such that (¢, ¢e, ..., {-1) is @ Pélya system on (a, b).
At this point, the proof separates into two cases. First, suppose that

(2.5) fb &) dt = 0.

In this case, we will show that £ = %, is a minimal solution of Lu = 0. Clearly, ¢
is positive on (a, b). Suppose that Ly = 0 and that ¢ is linearly independent
of £. Then A = (¢/¢)’ is a non-trivial solution of Mv = 0. If X\ and ¢ are linearly
independent in C*~1(a, b), then { = 0(\) because { is a minimal solution. Thus
A (¢) must eventually be of one sign as ¢t — b—, and

fb_ (@) dtl = 00,

because of (2.5). On the other hand, if A and ¢ are linearly dependent functions
in C""'(a, b), then A = ¢{ for some non-zero constant ¢ and (2.5) again implies
(2.6). Therefore, in any case,

(2.6)

£0) = 1 =< 1 —0 asi—b",
<P(t) 2 t
o+ [wa] | [0l -1s
where ¢ < a < b and B = ¢(@)t(a). Thus, £ is a minimal solution, and
furthermore, (&, us, ..., %,) = (41, U2, ..., U,) is a Polya system on (a, b) in
this case.

Next, suppose that (2.5) does not hold. In this case, we will show that

b
(0 =@ [t ds
is a minimal solution of Lz = 0. Clearly £ is a positive solution of Lz = 0 on

(a, b). Let ¢ be a solution of Lu = 0 linearly independent of £. Let A = (¢/u1)’.
Then, M\ = 0. Leta < a < b and 8 = ¢(a)u;~ (). Then,

t
2.7 o) = ux(t)I:B + f A(s) ds] , a <t <b.
At the beginning of this proof, we showed that (vy,...,9,1) was a Polya
system on (a,b) for Mv = 0. Hence, Theorem 2.1 implies that Mv = 0 is

disconjugate on [, b). Thus, A(f) is eventually of one sign, as ¢t —b~, and
f2 X\ (5) ds exists in the extended real numbers. If

J;b A(s) ds # —8,
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then

ol [t as
o0 '/3—!— J:)\(s)ds

Suppose that fﬁ \(s) ds = —pB. Then, (2.7) implies that

— 0, ast—b .

o(t) = —ua(t) ftb A(s) ds.

Now, if { and X are linearly dependent functions in C*~(a, &), then X\ = ¢{ for
some non-zero constant ¢. Hence, ¢ = —c§, which contradicts that ¢ and ¢ are
linearly independent. Thus, { and A must be linearly independent. Since ¢ is a
minimal solution, { = o(\). Thus, by L’'H6pital’s Rule,

0 J 0a 10)

0L o fim e = =0.
t.;rz?_ <P(t) szn_ 13 tirbn_ )\(t) '
— f A(s)ds
t

This completes the proof that £ is a minimal solution in this case.

To complete the induction proof, we still need to show the existence of a
Pélyasystem (¢, ws, ..., w,) in the second case considered above. Recall that the
induction hypothesis implied the existence of a Pélya system (¢, ¢2, .+« , {ne1)
for Mv = 0. Let

w,(t) = ui(t) ftg‘k_l(s) ds k=3,...,ma <a<b).

Then, Lw; = M{¢;—1 = 0. Lemma 2.1 implies that

Wk(s: Ury W3y« « vy ‘ZUIC) = _Wk<u1y gy W3y o v vy wk)
= —u'Wia (=882 ooy $xm1)
=ulka—l(§‘)§‘2y"-y§‘k—l)>0! k=3,...,’ﬂ.
Since Wa(§, u1) = fu:?2 > 0, it is clear that (¢, u1, w3, ..., w,) is a Poélya
system for Lu = 0 in this case.
To prove Theorems 1.1 and 1.2 and to establish the development in sub-
sequent sections, we will need the identities contained in the following two

lemmas. These lemmas can be proved by induction, and their proofs have been
omitted. In what follows, we use the abbreviation

I(t;fl,---;fk) = I(tra;glr"'ygk)'
LeEMMA 2.2. Assume that ¢; € Cla,b),j =1,...,k. Let
k

Jilt, s) = 2;] (=0T ¢y e e oy S IG5 810 ooy Smg)s LS E [a,D),

J=
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where I(t; &xy (ov1) = 1 = I( ¢4, Co) by definition. Then
(28) Jk(ty 3) = I(S’ t; §1y ey g‘k) = (_1)kl(t» S5 i‘k’ ey g'l)
Lemma 2.3. Assume that ¢; € C*~=a,b),j=1,...,k — 1, & € Cla, d).

Let
Ii(t) = I(t; 61, ..., ¢5), j=1,...,k
Then
k
(2.9) Wi(ly, ..., L) = I(t; &y - -4 $1) I:I1 O

Proof of Theorem 1.1. Since Lu = 0 is disconjugate on [a,, b), Theorem 2.1
implies the existence of a Polya system on (ag, d) for Lu = 0. Hence, Theorem 2.2
implies the existence of a Pélya system (¢1, ws, ..., w,) with & a minimal
solution. Without loss of generality, we can assume that £, (¢) = 1, since other-
wise £;(¢) can be replaced by & (¢)¢:71(a). Let u, () = £.(2).

Let v = £(1)2z in Lu = 0. Then, there exists an (z — 1)st order normal
operator M; on (a,, b) such that

0= Lu= &) Mg

y ’
vk=<%>, k=1,...,n—1.

Let

Lemma 2.1 implies that
Wiy, ..y 05) = &7 Wi (8, wey oy Wey) > 0, k=1,...,n— 1.

Hence, (v1,...,%,1) is a Pélya system on (ao, ) for M = 0. Thus,
Theorem 2.2 implies the existence of a minimal solution & € C"1(ay, b) and a
Pélya system (£, w3, . .., W,) of M = 0. Let £(a) = 1. Let

w® = 60 | 866 ds = 6O16;8).
Lemma 2.1 implies that

Wa(uy, ) = E2W1(E) = &% > 0.

Hence, #; and us are linearly independent solutions of Lu = 0. Since u; is a

minimal solution,
w®)| _ f ’
nol = J, £2(s) ds.

Thus, the following statement for j = 2 has been established:
(§;) There exist functions &, . . ., £; such that the following are valid:
(i) &; is the minimal solution on (ag, b) of a normal (» — j + 1)st order
linear equation M; ju = 0 with ¢,;(a) = 1;
(it) Solutions wjt1, . . ., w, of M,;_ju = 0 exist such that (¢;, w41, ..., W,)
is a Polya system on (ao, b);

0 = lim
1->b
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(iii) If Mj—lv = 09 then L[‘El(t)l(t; E?y cvey E]'-lv 'I))] =0 (L[El(t)l(t; 7})] =0
if j = 2);
(iv) szk(s)ds=00,k=2,...,].

Assume that (§F;) (j = 2) is true. Then, there exists an (n — j)th order
normal linear operator M ; on (a,, b) such that

(2.10) 0 = Ma[g;(t)2] = £,()M 2.
Let

yk=<%>) k=j+l,...,n.
J

Then, Lemma 2.1 and (§;) (ii) imply that
Wi@sty oo oy Vi) = E7F 7 Wi Ejy wigay o ooy wie) >0, B =1,...,m —j.

Thus, (V41 -..,¥.) is a Pélya system on (ao, b) for M,y = 0. Hence,
Theorem 2.2 implies (F;41) (i) and (§F,4+1) ().
Let £;41 be the minimal solution of M » = 0 with £;41(¢) = 1. Since

MO = 50 [ £l ds

is a solution of M; ju = 0 which is linearly independent of the minimal

solution £, we conclude that
A b
Ej((t;| = f £ir1(s) ds,

0 = lim
>0

which establishes (§;41) (iv).
Finally, assume that M,;f = 0. Let

b0 = 50 [ 55 as
Thus, M, 1p = 0. Hence, (§,) (iii) implies that
(2.11) 0 = LI b - £ ).
However,
LT oy b )] = LT - s £ )]

Hence, (2.11) implies (§F;4+1) (iii).

We conclude by the Principle of Finite Induction that (§,) is true for
j = 2,...,n. Thus, we obtain functions &, . . ., &, satisfying parts (i) and (ii)
of the theorem. Furthermore, it is clear that the system (u4, ..., u,), where u;
is defined by (1.5), is the fundamental principal system on [a, b) of Lu = 0.
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It is well known that the Cauchy function g(¢, s) for initial-value problems
for Lu = 0 is given by the formula
(2.12) g(t,s) = u,()2,(s) — ...+ (=1 uy(t)z:(s),
where

(2.13) =) =

Wn—l(uly e ooy Up—1y Upy1y o o oy un)
Wn(ul, “ e ,u,,)

Repeated applications of Lemma 2.1 imply that

(2.14) Wy(us, . .., u,) = 51"W,,_1<(ﬂ) <“—> ) =85k
U1 U1

’ k=1,..-,n.

Thus, W, (u1, . . ., u#,)(a) = 1, and so Abel’s formula implies that
t
(2.15) W,(uyy .., u,) = exp (— f p1(s) ds> = P(z).
Lemma 2.1 also implies that
Wn_l(ul, ey Up—1y Upgly o o oy u,,) = E1n_1 L fk"_kWn_k(Il, D In-—k)
k=1,...,n;Wy=1),
where
I; = I(t; Exgry e v oy Exts)s j=1...,n—k
But Lemma 2.3 implies that
Wn—k(Ily e o0y In—k) = I(t; Eny ceey £k+l)$k+1n_k_1 MEICI En—lo
Hence, 2z.(t) = v.(),k = 1,...,n, where v; is defined in (1.6). The two

formulas in part (iv) of the theorem now follow directly from Lemma 2.2 after
substituting from (1.5) and (1.6) into (2.12).

Proof of Theorem 1.2. The general theory of linear differential equations
implies that L*z, = 0, where 2, is defined in (2.13). But in the proof of
Theorem 1.1, we established that z, = »,. Hence, L*y, = 0.

Lemma 2.1 and (1.6) imply that

Wk(vm ey vn—k+l) = vnk“znk_.I vt bpzy2>0 on (a01 b), k=2,... , N

Thus, (@, ...,v1) is a Pélya system on (ao, &). Theorem 2.1 accordingly
implies that L*» = 0 is disconjugate on [a,, b). Finally, a simple application of
L’Hbépital’s Rule implies that (v, . .., ?1) is the fundamental principal system
on [a,b) of L*» = 0.

3. The non-homogeneous equation. In this section, we will consider the
equation

(B.1) Ly =y® 4+ pi(0)y* D+ ...+ )y =f(), —0 <ao=t<b=0,

Assume that Lu = 0 is disconjugate and normal on [ao, &) and let ay < a < b.
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Then, Theorems 1.1 and 1.2 imply that Lu# = 0 has a fundamental principal set
(u1, . . ., u,) of solutions on [a, b) and L*» = 0 has a fundamental principal set
(¥ny . . ., v1) of solutions on [a, b). In what follows, let j, 1 < j < #, be fixed.
We will be concentrating on determining when Ly = f has a solution y; such
thaty; — u; = o(u;) (ast — b-).

With &, = 0if j = 1, ha = 0if j = n, and

e =5 Coruo(®9), joen
med = 3 o ue(29), ot
k=j+ v,(s)
define
_ Jha(t,s) fora <s=t<Db,
(3.2) kit s) = {hz(t, ) forast<s<b.
Let
Q={(s)a=st<ba<s<b,s#t.
LemMA 3.1. The system (v, . . ., v1) given by (1.6) satisfies
yk(_t)]'{>0 fork < j,
l:vj(t) <0 fork >3, @ <t<b.

Proof. Since f’ > 0 implies (1/f)" < 0 in general, we need to prove the
lemma for just one of the cases, say & < j. Let

_vk(t)_I(t;Em"°r£k 1) . —
wn(t) - Y)j(t) - I(t; Em e, Sj:-—l) (I(t! ém £n+l) = 1)

The proof is by induction on #. For n = 2, clearly, wy'(t) = (v1/v5)" > 0.
Suppose that w,_1'(¢) > 0. Then,

’

J. t & (S)u (S) ds
(3.3) wl) =[P

J 56w as

O] f twn_l’(s>< j £ () (r) dr> ds > 0.

:(L2$w®my

THEOREM 3.1. Let h (¢, s) be given by (3.2). Then 3*h/ot* € C(Q),k=0,...,n
Furthermore, for a < v < b,

A P 0 fork=0,...,n— 3,
m%@ﬂ—%m)=¥wm fork =n~2,
P[P (a)o, ' (0)] fork=mn—1;
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4
(ii) u;(t) = (—-1)"’j‘1f k(¢ s) ds, aSt<b;

(iii) (=), s) > 0, ¢ s) € Q.
THEOREM 3.2. Let k(t, s) be given by (3.2). If

J el <w

and
(34) 30 = [ 1 [ otorr oy ar) s,
then Ly; = f on [a, b) and
(3.5) Y9 @) = o(u41(t)), E=0,...,n—1,
where

pa(t) = u;(t),

B® = 3 OO0 O, E=2...,n—1,
(3.6) o

@ = 3 b Olen070) + 27 0)

m#Ej

In order to prove Theorems 3.1 and 3.2, we will need the following lemma.
LEMMA 3.2. Assume that & € Cla,b), ¢ > 0,k = 1,...,n. Then

(B.7) Ru(s,7) = I(5, 758 -+ $L(, a5 81y -4y $1)
—I(S)a;.(m--'yg'l)I(SyT;g_n—Jr--')g-l)<O f07’d<T<S.

Proof. Let 7 be fixed, ¢ < 7 < b, and let

Hy(s) = I(s, 7585+ §)L(S5 80 ooy §1) = L(S58 g0 oo s $0L(8, 75 8y -« + 4 £1),
1<s<b k=1...,7, j=12,...,n.

One can show by double induction on j and % that
Hy(s) <0, 1<s<b, k=1,...,7— 1
Proof of Theorem 3.1. Let
A (8) = hi(t, s) — halt, s).

Then,
h 3"h
AP (r) = E’Tl (r,7) — _57"_2 (r, 7)
3'n -
=EE(T,T)—EE(T,T+), k=0,...,n—l,
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and

9 g@5s)
ds  v,(s) "’

where g(¢, s) is the Cauchy function for L. Thus,

As(t) =

k+1 1 ak
(3.8) AP () = ﬁ‘-}ﬁf ¢, s) + <v—%s—)) 5’67% @ s).

It is well known that

Q"_g( )_{O fork=0,...,n — 2,
T Tl fork=n—1,

and

ak+1g 0 fork=0,.-.,n'_3

99 (r,7) =4—1 fork =n— 2,

—P7'P’" fork=mn—1.
Substituting into (3.8) with ¢ = s = 7, we obtain (i) after some minor compu-
tations.
Since (2, . . ., v1) is a fundamental principal system on [a, b),
%) = o(v;(t)), ast— b, for kb > j,

and

% (t) = 0(v;(¢)), ast—at, fork <j.

Hence, for any ¢ € (@, d), [v:(s)/v;(s)]’ is integrable on [¢, b) for & > j and is
integrable on (a, f] for & < j. Thus,

f:h(t, 5)ds = f;hl(t, s)ds + f:’ Tt ) ds

= [gt,t) — (—=1)"Pu,; (), ()]0, (t)

= (=" u,0),
which establishes (ii).
To establish (iii), we note that

(3.9) hl(ty S) = (——l)n—lgl(t)an(ty S)y

where

j—1 (_1)“_1[[(3; £ .- Ei)

o) = 2, I(s;sn,...,zfm] 6808, a<s <t

(I(s; &y &ng1) = 1= I(t; &, £1)).
Forn =2,3,...,

QS s) = 21 (=) (53 6y e vy Eap) Tt Eay oo, E0)

n—1
= £,(s) ;1 (=)™ (S5 ety ooy E) [ By ey £2)
(I(S; En-ly En) = 1)
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Thus, Lemma 2.2 implies that
(=1)"Q."(ty s) = E(S)I (¢, s; 82y o v vy En1) > 0, a<s<t.
Consider the statement
m,) (=1)Q (¢ s) >0 fora<s <t i=2...,n

We have already shown that (%) is true and (IN,), for j = #, is true. Consider
QM2 £j=n— 1. Apply (3.3) in the proof of Lemma 3.1 to each term in the
sum making up Q. Then,

n _ En(S)I(S; fnt1y . .. ’ Ej+1) : . n—1
0/t 9 = Sy [t e o

Thus, (M,_1) implies (M,). This induction implies that (IM,) is true for
n=23,.... We conclude from (3.9) that

(=1)"h(t,s) >0 fora <s <&
We note next that
(3.10) hao(t, s) = —E.@)P (L, s), e =t<s<b,

where

oy I(Sv Eny LRI E’n 2—1)],
n _ 1)1 + .
Pj (t, S) = 142_:1 ( 1) l: I(S; [ £j+1) I(t, £o0..., £n+l—i)

(I(S; En, En+1) = 1)
Let

I*(s) = [1/I(s5 6 ..., E11)]
and assume that s is fixed and that
I(S; &1y En) =1= I(S; s £n+l)

in the following. Then,
n—j )
(3.11) P/ @, s) = I*(s) ; (D) (53 8n ooy bnpa ) T By vy Engiei)

+ fn(S)I_I(S; Sny e v e fj+1) Z;; (—l)iHI(S; Enty ooy bnyos)

* I(t, 221 ey £n+1—1)
= I*(S)I(t; $2y ceey ij))
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where

n—j
R(S’ T) = ; (_I)H—II(T; Ei+11 ceey En-i—l—i)I(S; gm L ] 511-!-2—1)

4+ I(s; & ... ,£j+1)1_1(5; Eamty v ooy Ei1)
n—j—1

-2 (=)™ (5581 e vy Enpr) I(75 Espn,

i=1

= (“l)n_j{I(S: Tibuy e ooy Eip1) — L(s5 & vy E541)
= I(sim e E) T (S5 By - -y E510)
LG by ey E1) — IS5 Ea, -
= (=1)"7T (85 bty oo E) (S, 75 o v E10)

* I(S;En—ly ey $j+1) - I(S;Em ce ey Ei+l)I(sy T;En—lr .

by Lemma 2.2. Lemma 3.2 now implies that
(=1)"R(s,7) <0 forr <s.
Since I*(s) < 0, we conclude from (3.11) that
(—1)Pp (@, s) >0 fort<s<b,
which implies by (3.10) that
(—1)"=7=1hy(t,s) > 0 fort <s <b.

..y En—i)

] gi—H)]}

oy En)]

Proof of Theorem 3.2. Let y; be given by (3.4). Theorem (3.1) (i) implies that

612 520 - [ e [ oumre i)

(0 fork=0,...,n—2
b
——v,-‘l(t)f f($)v;(s) ds fork=n—1,
t
Pt i
- F—(t)z(i—,)(t) ft F($)v(s)ds+f(t) fork = n.
Since Lk (¢, s) = 0and P’ (¢) = —p1(¢)P (¢), it is an easy matter to verify that
Ly; = f.

We will show next that (3.12) implies (3.5). Let T be fixed, ¢« < T < b.

Lemma 3.1 implies that

(3.13) J;T

Since #, = o(u;) for m < j, (3.13) implies that

n
Ek—l (t» S)

fT |hi(t, s)| ds = o(u;).
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Since v; = 0(v,) for m < j, (3.13) further implies that

fT *hy

- (¢ 5)
Next, Theorem 3.1 implies that

j—1
o ds = o(z1 lum(k)(t)lvm(t)vj_l(t)> , k=1,...,n—1.

(3.14) fb |h(t, s)| ds = (—1)"_j_1fb h(t,s)ds = u;(t) = ui(t),

and Lemma 3.1 implies that

kh t kh k
[ 128 )| as = J 158 @ 9| ds+ f 88 (9)| ds S mnn®),
(3.15) k=1,...,n—2.
S22 @9 s+ s S .

Let € > 0 be given. Then, there exists 7', a < T < b, such that

S romeas <o

Thus,fort = Tand ke =0,...,n — 2,

(fb|f<r>|vj<r>dr)ds=f:-+f:.

dsf |f (s)]v,(s) ds

'
EE (t: S)

o )

lIA

il

£ 0(urs1(t)) + prgr(t)e.

Since € > 0 is arbitrary, we conclude that y® = o(uz41) fork =0,...,n — 2.
Similarly, (3.12) and (3.15) imply that

ly®= D) £ 0(u(®)) + m(t) e

18wl as [ @b as

In

hence, y"= D = 0(u,).

4. Perturbations of linear equations. In this section, we will consider the
equation

(4.1) Ly =f(ty,y,...,y""), @ =t<b =0,

where L is a normal disconjugate nth order linear operator on [ao, 5).
Let ao < a < b. Theorem 1.1 implies that Lz = 0 has the fundamental
principal system (uy, . . ., #,) on [a, b), which can be represented by (1.5). Let
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v, k= 1,...,n, be the functions subsequently defined by (1.6), or equiva-
lently, by (2.13) (v = 2). Define
Rt s) = h(t,s) and w/(t) = m(t), k=1,...,n,

where L (¢, s) is defined in (3.2) and u;(¢) is defined in (3.6). In this section, we
wish to emphasize the dependence of these functions on j. Otherwise, the
situation with respect to L and the notation used in this section are similar to
that of the previous sections; hence, the results there are valid in the present
setting when interpreted properly.

THEOREM 4.1. If there exists 6,1 < 6 < 0, and j, 1 £ j < n, such that for

4.2) S={y€Ca,b): [y®)] <oms’(t)ya =t<b, E=0,...,n—1},

the function f (¢, y (t), . . ., y*~D(t)) is continuous on [a, b) fory € S, the function
4.3) M) = supl|f (&, y(@), ...,y V()| ¥y € S}
is measurable on [a, b), and

b
4.4) f v;(s)M;(s) ds < o0,
then for any solution v, € S of (4.1), there exist ¢,,, m = 1, ..., n, such that
(4.5) yf")(t) = 21 cntt® () + 0(ues’ (t)), k=0,...,n—1.

Furthermore, if 6 < 00, then
(4.6) Cip1 = oo =€, = 0.

Proof. If y; € Sis a solution of (4.1), then y, is a solution of the non-homo-
geneous linear equation Ly = F(t), where F(t) = f(t, ;(), ..., v,V (¢)).
Furthermore, (4.4) implies that

fb v;(s)|F(s)| ds < 0.

Thus, by Theorem 3.2 and the general theory of linear differential equations
there exist constants ¢y, . . ., ¢, such that

20 = 3 an® + [ 10 s>( [ wwre dr) .

Theorem 3.2 also implies (4.5).
If 6 < 0, then (4.6) follows from the fact that

ly; ()] = o’ (8) = du,(t)

and u,, (t)u;~1(t) — 00, as t — b~, when m > j.
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THEOREM 4.2. Let the assumptions of Theorem 4.1 hold. If

b
(4.7) f vj(s)Mj(S) dS < 6 — 1,
then there exists a solution v, of (4.1) such thaty; € S and
(4'8) yj(k) (t) = uj(k) (t) + 0(#k+lj(t))y k= 01 ey — 1.
CoRroLLARY 4.1. Assume that f (¢, y1, . . ., Yn) 1S continuous on [a, b) X R*
and that there exist r, € Cla,b),k = 0,...,n, and there exist comstants
Mok =1,...,n, such that

4.9 [f @y ey dn) | S @) + ;:;1 7:(8) [y,cl)"‘ fora £t <0,

Iy <oo,k=1,...,n Let \ = max (\y, ..., \,) and assume that
b
(4.10) Co = f 2;(s)ro(s) ds < o0
and

4

n b
> oo e s <.
If any one of the following holds:

(i) A<,
(ii) A=1landc <1,
A—1
(iid) A>landc< A= 1 1

)\)\ (1 + 60))\—1 y
then Ly = f has a solution y; € C"[a, b) satisfying (4.8).

TueoRrREM 4.3. Let the assumptions of Theorem 4.1 hold and assume that

(4.11) 'y=fbv,-(s)|f(s,0,...,0)|ds<oo.

If there exist ry, € Cla,b), k = 1,...,n, such that
(412) lf(t) X1y« :xn) _f(trylv ce ey yn), é k§=:i rk(l),xk - yk,,

a 2t <Db, |xl, lyx] <8,
and

@13) v=3 [ n@uenEds st -+

(strict inequality if 6 = ),
then there exists a unique solution vy, of (4.1) in S. Furthermore, (4.8) holds.
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COROLLARY 4.2. Assume that Lu = 0 is a disconjugate normal equation on
[ao, b) and vy € Clao, b), 2 = 0,...,n Foranyj 1 £ j £ n, such that

@1ty [ o@r@iast [ a6l ds

b n b n .
+f ()| ds + 2 f [rairr ()| 25 [ loals) ds < oo,
= =)
there exists a unique solution y; € C"[a,, b) of
(4.15) My =y® + [p1(t) + r1@Oy® P + ...+ [pa () + 7 (D)]y
= ro(t)
satisfying (4.8).

Theorem 4.2 includes the main results of Hale and Onuchic (8, Theorem 2
and subsequent corollaries], who considered the special case of (4.1) given by
assuming L = D" and there exist non-decreasing functions L; such that

If& oy = I; B @) |yl La([y1ls - -« s [9a])s
> f " T (OLe o8, 8677, ... Y dt < o b = o).

Corollary 4.1 includes the special results of Waltman [18; 19], who considered
the equation y®™ = f (¢, y) with

e S rObP and [T AP ar < oo,

Corollary 4.2 includes the well-known result of Dunkel [2] for constant
coefficient operators L with distinct characteristic numbers and the not so
well-known result of Faedo [3; 4] for constant coefficient operators L with
multiple characteristic numbers. Faedo’s result is as follows. Assume that L has

characteristic numbers &y, . . . , B, of multiplicity v, ..., 7., respectively. Let
= max(v1, ..., 7). LThen, My = 0 has a fundamental set yi,...,¥, of
solutions asymptotic, as { — 0, to a fundamental set uy, . .., u, of solutions

of Lu = 0, provided that

(4.16) f ()| dt < o0, m=1,...,n.

Condition (4.16) is equivalent to (4.14) in this setting. Ghizzetti [6] and
Zlamal [20] have also considered the linear situation with L = D" Halanay [7]
seems to be the only one who has obtained results of the same scope, when
applied to a specific equation, as Corollary 4.2. Halanay essentially proved
Corollary 4.2 for the special case of the second-order equation

Y+ @ +r@®ly = 0.
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See the introduction for a comparison of some of the results of this section with
the results of Katz [10] and Locke [11] for equation (1.10).

Proof of Theorem 4.2. Let j,1 < j < n, be fixed and chosen so that the
assumptions hold. Let Cx[a,d) denote the set of vector-valued functions
X)) = (x1(),...,%,(t)) with x;(¢),k = 1, ..., n, continuous on [a, b). For
X € Cxla, d), define

t) %a (£)

X t = ( xl( LA | .

XOT=max i i @)

Since (ui?, ..., m?) € Cs[a,d) and u? > 0 on (e, b), |X ()] is a continuous
real-valued function on (a, b). We consider Cx[a, d) as a Fréchet space by
choosing convergence in Cs[a,bd) to be uniform convergence on compact
subintervals of (a, b) as follows:

X.— X if for any compact J C (a, b), sup [X,(t) — X ()| — 0.
tes
For the number 6 given in the assumptions, let
Cs = {X € C«[a,0): |X(@)| £6,a £t <D}.

Clearly Cj; is a closed convex subset of Cx.
Consider the scalar integral equation

@17) ¥ = u;(1) + J;bhj(t, S)< fsbvf(r)f(r,:v(f), co P (r))df) ds.

Theorem 3.2 implies that any solution y of (4.17) is a solution of (4.1). Let

Eyn=(0,...,0,1), f(s,X) =f(5%1,...,%) X = (X1,.00, %),
Ust) = us@), uf (@), ..., u ")),

J aﬂ—l J
H () = (h’(t, 9L, Tk s>).

Then, (4.17) is equivalent to the system

Y=7TY7,
where

W18) TV = 0,0 ~ Ea”0) [ 0,656 ¥6) ds

+ J;"Hf(t, s)( f: v,;(7) f (r, Y(T))dr) ds.

That is, if there exist ¥ = (y1,...,%,) € Cssuch that TY = ¥, then y; is a
solution of (4.17), and thus (4.1), and ¥:® = ¥;41. Furthermore, Theorem 4.1
implies that v, satisfies (4.8).

We will show that 7" has a fixed point in C;s by using the Schauder-Tychonoff
theorem. This requires showing that T'Cs C Cs, since T  is clearly a completely
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continuous operator on Cj, that is, T is a continuous operator with respect to
uniform convergence on compact subsets of (a,b) and T'Cs is a uniformly
bounded and equicontinuous set.

Theorem 3.1 implies that

b k14
w0l < [ |2k

_(9—tk_ (t) S)
Thus, (3.15) implies that

O] S m’@©,  k=0,...,m—L

0 fork=0,...,n— 2,
ds—l_{v_l(t) for kb =n — 1.

Since

b %’;}T,;{ 3 s)( J'b v;(r)f (, Y(7)) d‘r> ds

<[ s o f e, ¥ a,

we conclude from the assumptions that for any ¥ € C;,

a

o*n?
o (ts)

b b
|TY| 21+ f ;)| f (s, Y(s))|ds =1+ f v;(s)M;(s) ds < a.
Thus, TY E C.s, i.e., TC5 C Ca.
Proof of Corollary 4.1. For any §,1 < § < 0, let

M) = rot) + g o () s (O™
Then,

[ oo as=at I [ n@n@k/ oM ds s ot d

The corollary follows from Theorem 4.2, provided there exists é such that
(4.19) o+ 26— 1.

Clearly (4.19) can be achieved by taking § sufficiently large in cases (i) and (ii),
orif¢ = 0.If A > land ¢ > 0, then (4.19) can be achieved for § = §;, where §,
is the value at which the function

g@) = co+ o — 5+ 1

takes on its minimum in 1 £ § < 0. This minimum is non-positive in this case
because of assumption (iii).

Proof of Theorem 4.3. Consider the mapping 7" defined in (4.18) on the set C;.
Simple computations show that for any X, ¥ € C;,

ITX — TY| <X — V],
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where v is defined in (4.13). Also, it is easy to show that
70| = 14+ v =6(1 — )

by (4.13). Since » < 1, the Principle of Contraction Mappings implies that T
has a unique fixed point in Cs. Subsequently, Theorem 4.1 implies that (4.8)
holds.

Proof of Corollary 4.2. By choosing a sufficiently close to b (sufficiently large,
if b = c0), we can make y and », defined in (4.11) and (4.13), arbitrarily small.
Hence, let 8 > 1 be given. Choose a, ay < a < b, so that (4.13) holds. Then,
Theorem 4.3 implies that there exists a solution y; € C"[a, b) of (4.15), which
satisfies (4.8). Since (4.15) is a normal linear equation on [ay, b), ¥,(¢) can be
uniquely extended as a solution to [a,, b).
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