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Abstract

Some new Gronwall–Ou-Iang type integral inequalities in two independent variables
are established. We also present some of its application to the study of certain classes
of integral and differential equations.
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1. Introduction

One of the most useful methods available for studying a linear and nonlinear system
of ordinary differential equations is the use of linear and nonlinear integral inequalities
which provide explicit bounds on the unknown functions. Over the last scores of years
several new linear and nonlinear integral inequalities have been developed in order to
study the behaviour of solutions of such systems. See, for example, [1–13].

In the study of the boundedness of solutions to linear second-order differential
equations, Ou-Iang [9] established and applied the following useful nonlinear integral
inequality. If u, f are nonnegative continuous functions on R+ = [0,∞), u0 ≥ 0 is a
constant and

u2(t)≤ u2
0 + 2

∫ t

0
f (s)u(s) ds (1.1)
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for all t ∈ R+, then

u(t)≤ u0 +

∫ t

0
f (s) ds, t ∈ R+.

Like the Gronwall type inequalities, (1.1) is also used to obtain the boundedness
of solutions to the unknown function. Furthermore, this result has been extended
and generalized by many authors (see [1–3, 5–7, 11–13]). Therefore, the integral
inequalities of this type are usually known as the Gronwall–Ou-Iang type inequalities.

Recently, Pachpatte in [13] obtained a useful upper bound involving functions in
two independent variables on the inequality

u p(x, y)≤ c + p
n∑

i=1

[∫ αi (x)

αi (x0)

∫ βi (y)

βi (x0)

[ai (s, t)u p(s, t)+ bi (s, t)u(s, t)] dt ds

]
(1.2)

and its variants, under some suitable conditions on the functions involved in (1.2) and
including the constant p > 1. These inequalities are applied to study the boundedness
of the solutions of the retarded partial differential equation (1.3) with the initial
boundary conditions (1.4)

∂

∂y

[
z p−1(x, y)

∂

∂x
z(x, y)

]
= F[x, y, z(x − h1(x), y − g1(y)), . . . , z(x − hn(x), y − gn(y))], (1.3)

z(x, y0)= e1(x), z(x0, y)= e2(y), e1(x0)= e2(y0)= 0. (1.4)

The authors Cheung [2], Cheung–Ma [3], Dragomir–Kim [5, 6] and Pachpatte [13]
established additional new Gronwall–Ou-Iang type integral inequalities involving
functions of two independent variables. Our main aim here, motivated by the
works of Cheung, Cheung–Ma, Dragomir–Kim and Pachpatte, is to establish
some new and more general Gronwall–Ou-Iang type integral inequalities with two
independent variables which are useful in the analysis of certain classes of partial
differential equations.

2. Main results

We shall introduce some notation. Let R denote the set of real numbers and R+
= [0,∞), I = [t0, T ) be the given subsets of R. Let 4= I1 × I2, where I1 = [x0, X)
and I2 = [y0, Y ) are the given subsets of real numbers R. Denote by C i (M, N )
the class of all i-times continuously differentiable functions defined on set M to the
set N . The first-order partial derivatives of a function z(x, y) defined for x, y ∈ R with
respect to x and y are denoted by D1z(x, y) and D2z(x, y), respectively.

LEMMA 2.1. Let u, ai ∈ C(4, R+), αi ∈ C1(I1, I1), βi ∈ C1(I2, I2) be nondecreas-
ing with αi (x)≤ x on I1, βi (y)≤ y on I2 for i = 1, 2, . . . , n. Let ϕ ∈ C(R+, R+) be
an increasing function with ϕ(∞)=∞ and c be a nonnegative constant. Moreover,
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let w1 ∈ C(R+, R+) be a nondecreasing function with w1 > 0 on (0,∞). If

ϕ(u(x, y))≤ c +
n∑

i=1

[∫ αi (x)

αi (x0)

∫ βi (y)

βi (x0)

ai (s, t)w1(u(s, t)) dt ds

]
(2.1)

for all x ∈ I1, y ∈ I2, then, for x0 ≤ x ≤ x1, y0 ≤ y ≤ y1 with x1 ∈ I1, y1 ∈ I2,

u(x, y)≤ ϕ−1
{

G−1
[

G(c)+
n∑

i=1

(∫ αi (x)

αi (x0)

∫ βi (y)

βi (x0)

ai (s, t) dt ds

)]}
, (2.2)

where G(r)=
∫ z

r0

ds

w1[ϕ−1(s)]
, r ≥ r0 > 0,

ϕ−1, G−1 are, respectively, the inverse of ϕ, G and x1 ∈ I1, y1 ∈ I2 are chosen so that

G(c)+
n∑

i=1

(∫ αi (x)

αi (x0)

∫ βi (y)

βi (x0)

ai (s, t) dt ds

)
∈ Dom(G−1),

G−1
[

G(c)+
n∑

i=1

(∫ αi (x)

αi (x0)

∫ βi (y)

βi (x0)

ai (s, t) dt ds

)]
∈ Dom(ϕ−1)

for all x ∈ [x0, x1] and y ∈ [y0, y1].

PROOF. Define a positive function z(x, y) by

z(x, y)= c + ε +
n∑

i=1

[∫ αi (x)

αi (x0)

∫ βi (y)

βi (y0)

ai (s, t)w1(u(s, t)) dt ds

]
,

where ε is an arbitrary small positive number. Then (2.1) can be restated as

u(x, y)≤ ϕ−1
[z(x, y)]. (2.3)

It is easy to observe that z(x, y) is a continuous nondecreasing function for all
x ∈ I1, y ∈ I2 and

D1z(x, y) =
n∑

i=1

[∫ βi (y)

βi (y0)

ai (αi (x), t)w1(u(αi (x), t)) dt

]
α′i (x)

≤

n∑
i=1

[∫ βi (y)

βi (y0)

ai (αi (x), t)w1(ϕ
−1
[z(αi (x), t)]) dt

]
α′i (x)

≤ w1(ϕ
−1
[z(x, y)])

n∑
i=1

[∫ βi (y)

βi (y0)

ai (αi (x), t) dt

]
α′i (x). (2.4)

Using the monotonicity of ϕ−1 and w1, we deduce

w1(ϕ
−1
[z(x, y)])≥ w1(ϕ

−1
[z(x0, y0)])= w1(ϕ

−1
[c + ε]) > 0. (2.5)
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From the definition of G, the inequalities (2.4) and (2.5) give

D1G(z(x, y))=
D1z(x, y)

w1(ϕ−1[z(x, y)])
≤

n∑
i=1

[∫ βi (y)

βi (y0)

ai (αi (x), t) dt

]
α′i (t). (2.6)

Keeping y fixed in (2.6), setting x = σ and integrating it with respect to σ from x0
to x , x ∈ I1 and making the change of variable, we obtain

G(z(x, y))≤ G(z(x0, y))+
n∑

i=1

∫ αi (x)

αi (x0)

∫ βi (y)

βi (y0)

ai (s, t) dt ds.

Since G−1(z) is increasing, letting ε→ 0 yields

z(x, y)≤ G−1
[

G(c)+
n∑

i=1

∫ αi (x)

αi (x0)

∫ βi (y)

βi (y0)

ai (s, t) dt ds

]
(2.7)

for

G(c)+
n∑

i=1

∫ αi (x)

αi (x0)

∫ βi (y)

βi (y0)

ai (s, t) dt ds ∈ Dom(G−1).

Using (2.7) in (2.3), we get the required inequality in (2.2). This completes the proof
of the lemma. 2

In what follows, for any functions fi , gi ∈ C(R+, R+), define

Iαi ,βi [ fi (s, t)+ gi (s, t)] ≡
∫ αi (x)

αi (x0)

∫ βi (y)

βi (y0)

[ fi (s, t)+ gi (s, t)] dt ds.

THEOREM 2.2. Let u, fi ∈ C(4, R+), αi ∈ C1(I1, I1), βi ∈ C1(I2, I2) be nonde-
creasing with αi (x)≤ x on I1, βi (y)≤ y on I2 for i = 1, 2, . . . , n. Let c be a
nonnegative constant. Moreover, assume that ϕ ∈ C(R+, R+) and w1 ∈ C(R+, R+)
are defined as in Lemma 2.1. If

ϕ(u(x, y))≤ c +
n∑

i=1

Iαi ,βi [ fi (s, t)u(s, t)w1(u(s, t))] (2.8)

for all x ∈ I1, y ∈ I2, then, for x0 ≤ x ≤ x2, y0 ≤ y ≤ y2 with x2 ∈ I1, y2 ∈ I2,

u(x, y)≤ ϕ−1
{
�−1

[
G−1

(
G[�(c)] +

n∑
i=1

Iαi ,βi [ fi (s, t)]

)]}
,

where

�(r)=
∫ z

r0

ds

ϕ−1(s)
, r ≥ r0 > 0, G(z)=

∫ z

z0

ds

w1[ϕ−1(�−1(s))]
, z ≥ z0 > 0,
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�−1, ϕ−1, G−1 are, respectively, the inverses of �, ϕ, G and x2 ∈ I1, y2 ∈ I2 are
chosen so that

G(�(c))+
n∑

i=1

Iαi ,βi [ fi (s, t)] ∈ Dom(G−1),

G−1
[

G(�(c))+
n∑

i=1

Iαi ,βi [ fi (s, t)]

]
∈ Dom(�−1),

�−1
{

G−1
[

G(�(c))+
n∑

i=1

Iαi ,βi [ fi (s, t)]

]}
∈ Dom(ϕ−1)

for all x ∈ [x0, x2] and y ∈ [y0, y2].

PROOF. Let us first assume that c > 0. Define a positive function z(x, y) by

z(x, y)= c +
n∑

i=1

Iαi ,βi [ fi (s, t)u(s, t)w1(u(s, t))].

Then z(x, y) > 0, z(x0, y)= z(x, y0)= c and (2.8) can be restated as

u(x, y)≤ ϕ−1
[z(x, y)]. (2.9)

It is easy to observe that z(x, y) is a continuous nondecreasing function for all
x ∈ I1, y ∈ I2 and

D1z(x, y)=
n∑

i=1

[∫ βi (y)

βi (y0)

[ fi (αi (x), t)u(αi (x), t)w1(u(αi (x), t))] dt

]
α′i (x)

≤

n∑
i=1

[∫ βi (y)

βi (y0)

[
fi (αi (x), t)ϕ−1

[z(αi (x), t)]w1(ϕ
−1
[z(αi (x), t)])

]
dt

]
α′i (x)

≤ ϕ−1
[z(x, y)]

n∑
i=1

[∫ βi (y)

βi (y0)

[
fi (αi (x), t)w1(ϕ

−1
[z(αi (x), t)])

]
dt

]
α′i (x).

Using the monotonicity of ϕ−1 and z, we deduce

ϕ−1
[z(x, y)] ≥ ϕ−1

[z(x0, y0)] = ϕ
−1(c) > 0.

From the definition of � and the above relation,

D1�(z(x, y)) =
D1z(x, y)

ϕ−1[z(x, y)]

≤

n∑
i=1

[∫ βi (y)

βi (y0)

[
fi (αi (x), t)w1(ϕ

−1
[z(αi (x), t)])

]
dt

]
α′i (x).

(2.10)

https://doi.org/10.1017/S1446181108000266 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181108000266


116 Y. J. Cho et al. [6]

Keeping y fixed in (2.10), setting x = σ and integrating it with respect to σ from x0
to x , x ∈ I1 and making the change of variable, we obtain

�(z(x, y))≤�(c)+
n∑

i=1

Iαi ,βi [ fi (s, t)w1(ϕ
−1
[z(s, t)])]. (2.11)

Now, an application of Lemma 2.1 to (2.11) gives

z(x, y)=�−1
[

G−1
(

G(�(c))+
n∑

i=1

Iαi ,βi [ fi (s, t)]

)]
. (2.12)

Using (2.12) in (2.9), we get the required inequality.
If c = 0, we carry out the above procedure with ε > 0 instead of c and subsequently

let ε→ 0. This completes the proof. 2

THEOREM 2.3. Let u, fi , gi ∈ C(4, R+), αi ∈ C1(I1, I1), βi ∈ C1(I2, I2) be non-
decreasing with αi (x)≤ x on I1, βi (y)≤ y on I2 for i = 1, 2, . . . , n. Let c be a
nonnegative constant. Moreover, assume that ϕ ∈ C(R+, R+) and w1 ∈ C(R+, R+)
are defined as in Theorem 2.2. If

ϕ(u(x, y))≤ c +
n∑

i=1

Iαi ,βi [ fi (s, t)u(s, t)w1(u(s, t))+ gi (s, t)u(s, t)] (2.13)

for all x ∈ I1, y ∈ I2, then, for x0 ≤ x ≤ x2, y0 ≤ y ≤ y2 with x2 ∈ I1, y2 ∈ I2,

u(x, y)≤ ϕ−1
{
�−1

[
G−1

(
G[p(x, y)] +

n∑
i=1

Iαi ,βi fi (s, t)

)]}
,

where

p(x, y)=�(c)+
n∑

i=1

Iαi ,βi [g(s, t)],

�(r)=
∫ r

r0

ds

ϕ−1(s)
, r ≥ r0 > 0, G(z)=

∫ z

z0

ds

w1[ϕ−1(�−1(s))]
, z ≥ z0 > 0,

�−1, ϕ−1, G−1 are, respectively, the inverses of �, ϕ, G and x2 ∈ I1, y2 ∈ I2 are
chosen so that

Gi (�(c))+
n∑

i=1

Iαi ,βi [ fi (s, t)+ g(s, t)] ∈ Dom(G−1
i ),

G−1
i

[
Gi (�(c))+

n∑
i=1

Iαi ,βi [ fi (s, t)+ g(s, t)]

]
∈ Dom(�−1),

�−1
{

G−1
i

[
Gi (�(c))+

n∑
i=1

Iαi ,βi [ fi (s, t)+ g(s, t)]

]}
∈ Dom(ϕ−1)

for all x ∈ [x0, x2] and y ∈ [y0, y2].
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PROOF. Let us first assume that c > 0. Define a positive function z(x, y) by

z(x, y)= c +
n∑

i=1

Iαi ,βi [ fi (s, t)u(s, t)w1(u(s, t))+ gi (s, t)u(s, t)]. (2.14)

Then z(x, y) > 0, z(x0, y)= z(x, y0)= c and (2.13) can be restated as

u(x, y)≤ ϕ−1
[z(x, y)]. (2.15)

It is easy to observe that z(x, y) is a continuous nondecreasing function for all
x ∈ I1, y ∈ I2 and

D1z(x, y) =
n∑

i=1

[∫ βi (y)

βi (y0)

[
fi (αi (x), t)u(αi (x), t)w1(u(αi (x), t))

+ gi (αi (x), t)u(αi (x), t)
]

dt

]
α′i (x)

≤

n∑
i=1

[∫ βi (y)

βi (y0)

[
fi (αi (x), t)ϕ−1

[z(αi (x), t)]w1(ϕ
−1
[z(αi (x), t)])

+ gi (αi (x), t)ϕ−1
[z(αi (x), t)] dt

]
α′i (x)

]
≤ ϕ−1

[z(x, y)]
n∑

i=1

[∫ βi (y)

βi (y0)

[
fi (αi (x), t)w1(ϕ

−1
[z(αi (x), t)])

+ gi (αi (x), t)
]

dt

]
α′i (x). (2.16)

Using the monotonicity of ϕ−1 and z, we deduce

ϕ−1
[z(x, y)] ≥ ϕ−1

[z(x0, y0)] = ϕ
−1(c) > 0.

From the definition of � and the above relation,

D1�(z(x, y)) =
D1z(x, y)

ϕ−1[z(x, y)]

≤

n∑
i=1

[∫ βi (y)

βi (y0)

[
fi (αi (x), t)w1(ϕ

−1
[z(αi (x), t)])

+ gi (αi (x), t)
]

dt

]
α′i (x).

Keeping y fixed in (2.15), setting x = σ and integrating it with respect to σ from x0 to
x, x ∈ I1 and making the change of variable, we obtain

�(z(x, y))≤�(c)+
n∑

i=1

Iαi ,βi

[
fi (s, t)w1(ϕ

−1
[z(s, t)])+ gi (s, t)

]
.
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Let x ≤ X, y ≤ Y be arbitrary numbers and denote

p(x, y)=�(c)+
n∑

i=1

Iαi ,βi [gi (s, t)].

From the above relation, we deduce

�(z(x, y))≤ p(X, Y )+
n∑

i=1

Iαi ,βi

[
fi (s, t)w1(ϕ

−1(z(s, t)))
]
.

Now, an application of Lemma 2.1 gives

z(x, y)≤�−1
[

G−1
(

G(p(X, Y ))+
n∑

i=1

Iαi ,βi [ fi (s, t)]

)]
.

Using the inequality (2.16) in the inequality (2.14), we get

u(x, y)≤ ϕ−1
{
�−1

[
G−1

(
G(p(X, Y ))+

n∑
i=1

Iαi ,βi [ fi (s, t)]

)]}
.

Taking x = X, y = Y in the above inequality, since X and Y are arbitrary, we can
prove the desired inequality.

If c = 0, we carry out the above procedure with ε > 0 instead of c and subsequently
let ε→ 0. This completes the proof. 2

COROLLARY 2.4. Let u, fi , gi ∈ C(4, R+), αi ∈ C1(I1, I1), βi ∈ C1(I2, I2) be
nondecreasing with αi (x)≤ x on I1, βi (y)≤ y on I2 for i = 1, 2, . . . , n. Let p > 1
and c ≥ 0 be constants. Moreover, assume that w1 ∈ C(R+, R+) is defined as in
Theorem 2.2. If

u p(x, y)≤ c + p
n∑

i=1

Iαi ,βi [ fi (s, t)u(s, t)w1(u(s, t))+ gi (s, t)u(s, t)]

for all x ∈ I1, y ∈ I2, then, for x0 ≤ x ≤ x2, y0 ≤ y ≤ y2 with x2 ∈ I1, y2 ∈ I2,

u(x, y)≤

[
G−1

(
G[B(x, y)] + (p − 1)

n∑
i=1

Iαi ,βi [ fi (s, t)]

)]1/(p−1)

,

where B(x, y)= c(p−1)/p
+ (p − 1)

∑n
i=1 Iαi ,βi [gi (s, t)], G−1 is the inverse func-

tion of

G(z)=
∫ z

z0

ds

w1[s1/(p−1)]
, z ≥ z0 > 0,

and x2 ∈ I1, y2 ∈ I2 are chosen so that

G[B(x, y)] + (p − 1)
n∑

i=1

Iαi ,βi [ fi (s, t)] ∈ Dom(G−1
i )

for all x ∈ [x0, x2] and y ∈ [y0, y2].
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THEOREM 2.5. Let u, fi , gi ∈ C(4, R+), αi ∈ C1(I1, I1), βi ∈ C1(I2, I2) be non-
decreasing with αi (x)≤ x on I1, βi (y)≤ y on I2 for i = 1, 2, . . . , n. Let ϕ ∈
C(R+, R+) be an increasing function with ϕ(∞)=∞ and c be a nonnegative
constant. Moreover, let w1, w2 ∈ C(R+, R+) be nondecreasing functions with
w1, w2 > 0 on (0,∞). If

ϕ(u(x, y))≤ c +
n∑

i=1

Iαi ,βi [ fi (s, t)w1(u(s, t))+ gi (s, t)w2(u(s, t))] (2.17)

for all x ∈ I1, y ∈ I2, then, for x0 ≤ x ≤ x2, y0 ≤ y ≤ y2 with x2 ∈ I1, y2 ∈ I2, we have
the following property.

(1) For the case w2(u)≤ w1(u),

u(x, y)≤ ϕ−1
{

G−1
1

(
G1(c)+

n∑
i=1

Iαi ,βi [ fi (s, t)+ g(s, t)]

)}
.

(2) For the case w1(u)≤ w2(u),

u(x, y)≤ ϕ−1
{

G−1
2

(
G2(c)+

n∑
i=1

Iαi ,βi [ fi (s, t)+ g(s, t)]

)}
,

where

Gi (r)=
∫ z

r0

ds

wi [ϕ−1(s)]
, r ≥ r0 > 0 (i = 1, 2),

and ϕ−1, G−1
i are, respectively, the inverses of ϕ, Gi and x2 ∈ I1, y2 ∈ I2 are chosen

so that

Gi (c)+
n∑

i=1

Iαi ,βi [ fi (s, t)+ gi (c, t)] ∈ Dom(G−1
i )

for all x ∈ [x0, x2] and y ∈ [y0, y2].

PROOF. Let us first assume that c > 0. Define a positive function z(x, y) by

z(x, y)= c +
n∑

i=1

Iαi ,βi [ fi (s, t)w1(u(s, t))+ gi (s, t)w2(u(s, t))].

Then z(x, y) > 0, z(x0, y)= z(x, y0)= c and (2.17) can be restated as

u(x, y)≤ ϕ−1
[z(x, y)]. (2.18)

It is easy to observe that z(x, y) is a continuous nondecreasing function for all
x ∈ I1, y ∈ I2 and

D1z(x, y) ≤
n∑

i=1

[∫ βi (y)

βi (y0)

[
fi (αi (x), t)w1(ϕ

−1
[z(αi (x), t)])

+ gi (αi (x), t)w2(ϕ
−1
[z(αi (x), t)])

]
dt

]
α′i (x).
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(1) When w2(u)≤ w1(u), using the monotonicity of ϕ−1 and z, we deduce

D1z(x, y)≤ w1(ϕ
−1
[z(x, y)])

n∑
i=1

[∫ βi (y)

βi (y0)

[ fi (αi (x), t)+ gi (αi (x), t)] dt

]
α′i (x).

From the definition of G1 and the above relation,

D1G1(z(x, y))≤
n∑

i=1

[∫ βi (y)

βi (y0)

[ fi (αi (x), t)+ gi (αi (x), t)] dt

]
α′i (x). (2.19)

Keeping y fixed in (2.19), setting x = σ and integrating it with respect to σ from x0
to x , x ∈ I1 and making the change of variable, we obtain

z(x, y)≤ G−1
1

(
G(c)+

n∑
i=1

Iαi ,βi [ fi (s, t)+ gi (s, t)]

)
. (2.20)

Using (2.18) and (2.20) in (2.17), we get the required inequality.
If c = 0, we carry aut the above procedure with ε > 0 instead of c and subsequently

let ε→ 0.
(2) When w1(u)≤ w2(u), the proof can be completed similarly. This completes

the proof. 2

THEOREM 2.6. Let u, fi , gi ∈ C(4, R+), αi ∈ C1(I1, I1), βi ∈ C1(I2, I2) be non-
decreasing with αi (x)≤ x on I1, βi (y)≤ y on I2 for i = 1, 2, . . . , n. Let ϕ ∈
C(R+, R+) be an increasing function with ϕ(∞)=∞ and c be a nonnegative
constant. Moreover, let w1, w2 ∈ C(R+, R+) be a nondecreasing function with
w1, w2 > 0 on (0,∞). If

ϕ(u(x, y))≤ c +
n∑

i=1

Iαi ,βi [ fi (s, t)u(s, t)w1(u(s, t))+ gi (s, t)u(s, t)w2(u(s, t))]

(2.21)
for all x ∈ I1, y ∈ I2, then, for x0 ≤ x ≤ x2, y0 ≤ y ≤ y2 with x2 ∈ I1, y2 ∈ I2, we have
the following property.

(1) For the case w2(u)≤ w1(u),

u(x, y)≤ ϕ−1
{
�−1

[
H−1

1

(
H1(�(c))+

n∑
i=1

Iαi ,βi [ fi (s, t)+ gi (s, t)]

)]}
.

(2) For the case w1(u)≤ w2(u),

u(x, y)≤ ϕ−1
{
�−1

[
H−1

2

(
H2(�(c))+

n∑
i=1

Iαi ,βi [ fi (s, t)+ gi (s, t)]

)]}
,
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where

�(r)=
∫ r

r0

ds

ϕ−1(z(s))
, r ≥ r0 > 0,

Hi (z)=
∫ z

z0

ds

wi [ϕ−1(�−1(s))]
, z ≥ z0 > 0 (i = 1, 2),

ϕ−1, �−1, H−1
i are, respectively, the inverses of ϕ, �, Hi for i = 1, 2 and x2 ∈ I1,

y2 ∈ I2 are chosen so that

Hi (�(c))+
n∑

i=1

Iαi ,βi [ fi (s, t)+ gi (s, t)] ∈ Dom(H−1
i ),

H−1
i

(
Hi (�(c))+

n∑
i=1

Iαi ,βi [ fi (s, t)+ gi (s, t)]

)
∈ Dom(�−1)

for all x ∈ [x0, x2] and y ∈ [y0, y2].

PROOF. Let us first assume that c > 0. Define a positive function z(x, y) by

z(x, y)= c +
n∑

i=1

Iαi ,βi [ fi (s, t)u(s, t)w1(u(s, t))+ gi (s, t)u(s, t)w2(u(s, t))].

Then z(x, y) > 0, z(x0, y)= z(x, y0)= c and (2.21) can be restated as

u(x, y)≤ ϕ−1
[z(x, y)].

It is easy to observe that z(x, y) is a continuous nondecreasing function for all x ∈ I1,
y ∈ I2 and

D1z(x, y) ≤ ϕ−1
[z(x, y)]

n∑
i=1

[∫ βi (y)

βi (y0)

[
fi (αi (x), t)w1(ϕ

−1
[z(αi (x), t)])

+ gi (αi (x), t)w2(ϕ
−1
[z(αi (x), t)])

]
dt

]
α′i (x).

Using the monotonicity of ϕ−1 and z, we deduce

ϕ−1
[z(x, y)] ≥ ϕ−1

[z(x0, y0)] = ϕ
−1(c) > 0.

From the definition of � and the above relation,

D1�(z(x, y)) ≤
n∑

i=1

[∫ βi (y)

βi (y0)

[
fi (αi (x), t)w1(ϕ

−1
[z(αi (x), t)])

+ gi (αi (x), t)w2(ϕ
−1
[z(αi (x), t)])

]
dt

]
α′i (x). (2.22)
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Keeping y fixed in (2.21), setting x = σ and integrating it with respect to σ from x0
to x , x ∈ I1 and making the change of variable, we obtain

�(z(x, y))≤�(c)+
n∑

i=1

Iαi ,βi [ fi (s, t)w1(ϕ
−1
[z(s, t)])+ gi (s, t)w2(ϕ

−1
[z(s, t)])].

(2.23)
Now, an application of Theorem 2.5 to (2.23), we can prove the desired inequalities.

If c = 0, we carry out the above procedure with ε > 0 instead of c and subsequently
let ε→ 0. This completes the proof. 2

3. Applications

In this section, we will show that our results are useful in proving the global existence
of solutions to certain differential equations with time delay. First consider the partial
differential equation involving several retarded arguments with the initial boundary
conditions

D2

(
z p−1(x, y)D1z(x, y)

)
= F[x, y, z(x − h1(x), y − k1(y)), . . . , z(x − hn(x), y − kn(y))], (3.1)

z(x, y0)= e1(x), z(x0, y)= e2(y), e1(x0)= e2(y0)= 0, (3.2)

where p > 1 is a constant, F ∈ C(4× Rn, R), e1 ∈ C1(I1, R+), e2 ∈ C1(I2, R+)
and hi ∈ C1(I1, R+), ki ∈ C1(I2, R+) are nonincreasing and such that x − hi (x)≥ 0,
x − hi (x) ∈ C1(I1, I1), y − ki (y)≥ 0, y − ki (y) ∈ C1(I2, I2), h′i (x) < 1, k′i (y) < 1
and hi (x0)= ki (y0)= 0 for i = 1, . . . , n and x ∈ I1, y ∈ I2.

The following theorem deals with a boundedness on the solution of (3.1).

THEOREM 3.1. Assume that F : 4 × Rn
→ R is a continuous function for which

there exists continuous nonnegative functions fi (x, y), gi (x, y) for i = 1, . . . , n and
x ∈ I1, y ∈ I2 such that|F(x, y, u1, . . . , un)| ≤

n∑
i=1

{ fi (x, y)|ui |w1(|ui |)+ gi (x, y)|ui |},

|e1(x)+ e2(y)| ≤ c,

(3.3)

where c is a constant. Let

Mi =max
x∈I1

1
1− h′i (x)

, Ni =max
y∈I2

1
1− k′i (y)

, i = 1, . . . , n. (3.4)

If z(x, y) is any solution of the problem (3.1) with the condition (3.2), then

‖z(x, y)‖ ≤

[
G−1

(
G
[

B(x, y)
]
+ (p − 1)

n∑
i=1

Iφi ,ψi

[
fi (s, t)

])]1/(p−1)

,
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where B(x, y)= c(p−1)/p
+ (p − 1)

∑n
i=1 Iαi ,βi [gi (s, t)], G−1 is the inverse

function of

G(z)=
∫ z

z0

ds

w1
[
s1/(p−1)

] , z ≥ z0 > 0,

for all (x, y) ∈ 41, where φ(x)= x − hi (x), ψ(y)= y − ki (y) and

fi (σ, τ )= Mi Ni fi (σ + hi (s), τ + ki (t)),
gi (σ, τ )= Mi Ni gi (σ + hi (s), τ + ki (t)),

σ, s ∈ I1, τ, t ∈ I2.

PROOF. It is easy to see that the solution z(x, y) of the problem (3.1) satisfies the
equivalent integral equation

z p(x, y) =
∫ x

x0

∫ y

y0

F
(
s, t, z(s − h1(s), t − k1(t)), . . . , z(s − hn(s), t − kn(t))

)
dt ds

+ e1(x)+ e2(y).

From (3.3) and making the change of variables, we have

|z(x, y)|p

≤ c + pIx,y

n∑
i=1

{
fi (x, y)|z(s − hi (s), t − ki (t))|w1(|z(s − hi (s), t − ki (t))|)

+ gi (x, y)|z(s − hi (s), t − ki (t))|

}
≤ c + p

n∑
i=1

Iφi ,ψi

{
fi (σ, τ )|z(σ, τ )|w1(|z(σ, τ )|)+ gi (x, y)|z(σ, τ )|

}
. (3.5)

Now, a suitable application of the inequality given in Corollary 2.4 to (3.5) yields the
desired result. This completes the proof. 2

REMARK 1. Consider the partial differential equation (3.1) with the initial boundary
condition (3.2). Assume that F : 4 × Rn

→ R is a continuous function for which
there exists continuous nonnegative functions gi (x, y) such that

|F(x, y, u1, . . . , un)| ≤

n∑
i=1

gi (x, y)|ui |. (3.6)

Let Mi and Ni be functions defined by (3.4). If z(x, y) is any solution of the
problem (3.1) with the condition (3.2), then the solution z(x, y) can be written as

z p(x, y) =
∫ x

x0

∫ y

y0

F
(
s, t, z(s − h1(s), t − k1(t)), z(s − hn(s), t − kn(t))

)
dt ds

+ e1(x)+ e2(y). (3.7)
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From (3.6) and (3.7), making the change of variables, we have

|z(x, y)|p ≤ c + p
∫ x

x0

∫ y

y0

n∑
i=1

gi (x, y)|z(s − hi (s), t − ki (t))| dt ds

≤ c + p
n∑

i=1

Iφi ,ψi [ gi (x, y)|z(σ, τ )|]. (3.8)

Now, a suitable application of the inequality given in Corollary 2.4 to (3.8) yields

|z(x, y)| ≤

[
c(p−1)/p

+ (p − 1)
n∑

i=1

Iαi ,βi [ gi (s, t)]

]1/(p−1)

for all (x, y) ∈ 4, where φ(x)= x − hi (x), ψ(y)= y − ki (y) and

gi (σ, τ )= Mi Ni gi (σ + hi (s), τ + ki (t)), σ, s ∈ I1, τ, t ∈ I2.

In the following, we present an application of the inequality given in Section 2 to
study the boundedness of the solutions of the initial boundary value problem for the
hyperbolic partial delay differential equations of the form

D2(D1ϕ(z(x, y)))

= F[x, y, z(x − h1(x), y − k1(y)), . . . , z(x − hn(x), y − kn(y))], (3.9)

ϕ(z(x, y0))= e3(x), ϕ(z(x0, y))= e4(y), e3(x0)= e4(y0)= 0, (3.10)

where ϕ ∈ C(R+, R+) is an increasing function with ϕ(0)= 0, ϕ(∞)=∞, F ∈
C(4× Rn, R), e3∈C1(I1, R+), e4 ∈ C1(I2, R+) and hi ∈ C1(I1, R+), ki∈C1(I2, R+)
are nonincreasing and such that

x − hi (x)≥ 0, x − hi (x) ∈ C1(I1, I1),

y − ki (y)≥ 0, y − ki (y) ∈ C1(I2, I2),

h′i (x) < 1, k′i (y) < 1, hi (x0)= ki (y0)= 0

for all i = 1, . . . , n and x ∈ I1, y ∈ I2.
The following theorem deals with a boundedness on the solution of (3.9).

THEOREM 3.2. Assume that F : 4 × Rn
→ R is a continuous function for which

there exists continuous nonnegative functions fi (x, y), gi (x, y) for all i = 1, . . . , n
and x ∈ I1, y ∈ I2 such that|F(x, y, u1, . . . , un)| ≤

n∑
i=1

{ fi (x, y)|ui |w1(|ui |)+ gi (x, y)|ui |w2(|ui |)},

|e3(x)+ e4(y)| ≤ c,

(3.11)
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where c is a constant. Let

Mi =max
x∈I1

1
1− h′i (x)

, Ni =max
y∈I2

1
1− k′i (y)

, i = 1, . . . , n. (3.12)

If z(x, y) is any solution of the problem (3.9) with the condition (3.10), then, for the
case w2(u)≤ w1(u),

|z(x, y)| ≤ ϕ−1
{
�−1

[
H−1

1

(
H1[�(c)] +

n∑
i=1

Iφi ,ψi

[
fi (σ, τ )+ gi (σ, τ )

])]}
,

where ϕ−1, �−1, H−1
1 are, respectively, inverse functions of ϕ, �, H1 for all (x, y)

∈ 4, �(r), H1(z) are as in Theorem 2.6, φ(x)= x − hi (x), ψ(y)= y − ki (y) and

fi (σ, τ )= Mi Ni fi (σ + hi (s), τ + ki (t)),

gi (σ, τ )= Mi Ni gi (σ + hi (s), τ + ki (t))

for all σ, s ∈ I1 and τ, t ∈ I2.

PROOF. It is easy to see that the solution z(x, y) of the problem (3.9) satisfies the
equivalent integral equation:

ϕ(z(x, y))

=

∫ x

x0

∫ y

y0

F(s, t, z(s − h1(s), t − k1(t)), . . . , z(s − hn(s), t − kn(t))) dt ds

+ e3(x)+ e4(y).

From (3.11) and making the change of variables, we have

ϕ(|z(x, y)|) ≤ c +
n∑

i=1

Ix,y

[
fi (x, y)|z(s − hi (s), t − ki (t))|

× w1(|z(s − hi (s), t − ki (t))|)

+ gi (x, y)|z(s − hi (s), t − ki (t))|w2(|z(s − hi (s), t − ki (t))|)
]

≤ c +
n∑

i=1

Iφi ,ψi

{
fi (σ, τ )|z(σ, τ )|w1(|z(σ, τ )|)

+ gi (x, y)|z(σ, τ )|w2(|z(σ, τ )|)
}
. (3.13)

Now, a suitable application of the inequality given in Theorem 2.6 (1) to (3.13) yields
the desired result. This completes the proof. 2

REMARK 2. Consider the partial differential equation (3.9) with the initial boundary
condition (3.10). Assume that F : 4 × Rn

→ R is a continuous function for which
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there exists continuous nonnegative functions gi (x, y) such that

|F(x, y, u1, . . . , un)| ≤

n∑
i=1

gi (x, y)|ui |. (3.14)

Let Mi and Ni be functions defined by (3.12). If z(x, y) is any solution of the
problem (3.9) with the condition (3.10), then the solution z(x, y) can be written as

ϕ(z(x, y))

=

∫ x

x0

∫ y

y0

F(s, t, z(s − h1(s), t − k1(t)), . . . , z(s − hn(s), t − kn(t))) dt ds

+ e3(x)+ e4(y). (3.15)

From (3.14) and (3.15) making the change of variables, we have

ϕ(|z(x, y)|) ≤ c +
∫ x

x0

∫ y

y0

n∑
i=1

gi (x, y)|z(s − hi (s), t − ki (t))| dt ds

≤ c +
n∑

i=1

Iφi ,ψi

[
gi (x, y)|z(σ, τ )|

]
. (3.16)

Now, a suitable application of the inequality given in Theorem 2.3 to (3.16) yields

|z(x, y)| ≤ ϕ−1
{
�−1

(
�(c)+

n∑
i=1

Iφi ,ψi

[
gi (σ, τ )

])}
for all (x, y) ∈ 4, where φ(x)= x − hi (x), ψ(y)= y − ki (y) and

gi (σ, τ )= Mi Ni gi (σ + hi (s), τ + ki (t)), σ, s ∈ I1, τ, t ∈ I2.
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[8] Q.-H. Ma and J. Pečarić, “Some new nonlinear retarded integral inequalities and their
applications”, Math. Inequal. Appl. 9 (2006) 617–632.

[9] L. Ou-Iang, “The boundedness of solutions of linear differential equations y′′ + A(t)y = 0”,
Shuxue Jinzhan 3 (1957) 409–415.

[10] B. G. Pachpatte, “On some new inequalities related to certain inequalities in the theory of
differential equations”, J. Math. Anal. Appl. 189 (1995) 128–144.

[11] B. G. Pachpatte, Inequalities for differential and integral equations (Academic Press, New York,
1998).

[12] B. G. Pachpatte, “Explicit bounds on certain integral inequalities”, J. Math. Anal. Appl. 267 (2002)
48–61.

[13] B. G. Pachpatte, “On some new nonlinear retarded integral inequalities”, J. Inequal. Pure Appl.
Math. 5 (2004) Article 80, ONLINE http://jipam.vu.edu.au/.

https://doi.org/10.1017/S1446181108000266 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181108000266

