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Points of low height on elliptic surfaces with torsion

Sonal Jain

Abstract

We determine the smallest possible canonical height ĥ(P ) for a non-torsion point P of an elliptic
curve E over a function field C(t) of discriminant degree 12n with a 2-torsion point for n = 1, 2, 3,
and with a 3-torsion point for n = 1, 2. For each m = 2, 3, we parametrize the set of triples
(E, P, T ) of an elliptic curve E/Q with a rational point P and m-torsion point T that satisfy
certain integrality conditions by an open subset of P2. We recover explicit equations for all elliptic
surfaces (E, P, T ) attaining each minimum by locating them as curves in our projective models.
We also prove that for n = 1, 2, these heights are minimal for elliptic curves over a function field
of any genus. In each case, the optimal (E, P, T ) are characterized by their patterns of integral
points.

1. Introduction

Let E be an elliptic curve over a field K of characteristic 0. Néron and Tate showed, independ-
ently, that there is a canonical height function

ĥ : E(K)−→ [0,∞)

that descends to a positive definite quadratic form on E(K)/E(K)tors. If K is a function field,
then ĥ takes its values in Q. Let P be a non-torsion point in E(K). It is natural to ask how small
ĥ(P ) can be. In the case where K is a number field, if one bounds the minimal discriminant of
E then there are only finitely many isomorphism classes of curves, and it is a finite problem
to find the smallest non-zero canonical height.

In the case that K = k(C) is a function field of characteristic zero, one may fix the
discriminant degree of the elliptic curve E/K, that is, the degree of the discriminant considered
as a divisor on C. For K = C(t) this is the degree of the minimal discriminant polynomial ∆(t).
The discriminant degree is always a multiple of 12, and an elliptic curve E/k(C) of discrimant
degree 12n is equivalent to an elliptic surface E/k fibred over C of arithmetic genus n.

If d > 12 then there are infinitely many elliptic curves over K of discriminant degree d (see
[12, Appendix 1]). For fixed d, however, the set of values of ĥ is discrete. One may ask, for
fixed d, what is the smallest possible canonical height ĥ(P ) of a non-torsion point?

Following the notation in [3], we let ĥmin(g, 12n) denote the minimal height of a non-torsion
point on an elliptic curve over a function field of genus g of discriminant degree d= 12n, and let
ĥmin(12n) denote the minimal height of a non-torsion point on an elliptic curve of discriminant
degree 12n.

In [12], Oguiso and Shioda classified all rational elliptic surfaces, and as a result determined
ĥmin(0, 12) = 1/30. Nishiyama, in [11], determined ĥmin(0, 24) = 11/420, but was unable to
write down any examples of elliptic surfaces attaining this minimum. Elkies, in [3], used
different techniques to determine that ĥmin(12) = ĥmin(0, 12) = 1/30, ĥmin(24) = ĥmin(0, 24) =
11/420 and ĥmin(0, 36) = 23/840. In addition he exhibited the general equations for all pairs
(E, P ) attaining the minima, characterizing the optimal surfaces for each d as those having
the greatest possible numbers of integral multiples of a point P .
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As most elliptic surfaces have trivial torsion, one expects that the smallest positive height
among those E with a non-trivial torsion subgroup should be greater than that for general E.
In this paper we use an approach similar to that of Elkies in [3] to compute minimum heights
for elliptic surfaces with small d in the cases where E(K)tors = Z/2Z and Z/3Z. We also
characterize the elliptic surfaces attaining the minima by their patterns of integral points. As
one might expect, the surfaces tend to have many integral points. We build projective models
in which we are able to recover explicit equations for all curves attaining the minima. All of the
elliptic surfaces inherit symmetries from the moduli spaces in which they are recovered. For
E(K)tors = Z/2Z, we show that ĥmin(12, Z/2Z) = ĥmin(0, 12, Z/2Z) = 1/12, ĥmin(24, Z/2Z) =
ĥmin(0, 24, Z/2Z) = 3/40, and ĥmin(0, 36, Z/2Z) = 3/40. For E(K)tors = Z/3Z, we show
that ĥmin(12, Z/3Z) = ĥmin(0, 12, Z/3Z) = 1/6, ĥmin(24, Z/3Z) = ĥmin(0, 24, Z/3Z) = 1/6. A
precise statement of our results is given in § 2.

1.1. Further problems

It is interesting to ask what is the global minimum for the canonical height ĥ(P ) of a non-torsion
point P of an elliptic curve over a function field. Elkies has found elliptic curves (E, P ) over
C(t) with ĥ(P ) = 41/1540 and ĥ(P ) = 261/10010 [3, § 1.3]. The 41/1540 curve is conjectured
to be the minimum for d= 48, and the 261/10010 is conjectured to be the minimum for d= 60.
We have found an elliptic curve E/C(t) of discriminant degree 84 with a non-torsion P of
canonical height ĥ(P ) = 2987/120120 [6]. This is currently the smallest known, and we have
heuristics suggesting that this may be a global minimum.

One may also ask asymptotic questions about the behavior of ĥmin(g, d) for fixed g as d→∞.
Hindry and Silverman proved that there exists a constant C > 0 such that

ĥmin(g, 12n) > Cn−Og(1),

proving effectively a conjecture of Lang [9] in the function field case. The error terms Og(1)
vanish for g = 0, 1. They computed an explicit C ≈ 7 · 10−10 [5]. Elkies improved the value of
C ≈ 5 · 10−4, and conjectured what the best possible value for C should be [2]. In a future
paper we compute explicit values for the constant C for elliptic curves with a 2- or 3-torsion
point, and compare these values with the Birch and Swinnerton-Dyer formula. We also examine
the asymptotic behavior of the minimum regulator R2

min(g, d) of a rank two subgroup of E as
d→∞. More generally, we describe the region in the three-dimensional space of reduced binary
forms that is asymptotically obtainable by Mordell–Weil lattices in rank two, proving that the
boundary of the region is cut out by algebraic equations.

One should be able to prove results analogous to Theorems 1–5 (see § 2) for other small
torsion groups of elliptic surfaces. One can also examine similar questions for higher-rank
subgroups. In another paper [7], we compute the minimal regulators for rank two sublattices
of rational and K3 elliptic surfaces, again finding explicit equations for all surfaces attaining
the minima. We use similar ideas to build a P3 model in which to recover the optimal surfaces.

2. Results

Let ĥmin(g, 12n, G) denote the minimal height of a non-torsion point on an elliptic curve E over
a function field K of genus g with torsion subgroup E(K)tors =G. Let ĥ(12n, G) denote the
minimum for an elliptic curve over a function field of any genus. Our results are listed below.

Theorem 1.
(i) (Oguiso and Shioda [12]) ĥmin(0, 12, Z/2) = 1/12.

(ii) ĥmin(12, Z/2Z) = 1/12. Moreover, let E be an elliptic curve of discriminant degree
d= 12 with a 2-torsion point T2 over a complex function field K, and let P ∈ E(K). Then
the following are equivalent:
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(a) ĥ(P ) = 1/12;
(b) each of P , 2P , 3P , 4P is an integral point on E;
(c) K ∼= C(t), and (E, P, T2) is equivalent to the curve

E(q) : y2 = x3 + (t2 − 2qt− 2)x2 − (t2 − 1)(qt+ 1)2x

over the t-line with the rational point

P : (x, y) = ((t+ 1)(qt+ 1), t(qt+ 1)(t+ 1))

and 2-torsion point T2 = (0, 0), for some q ∈ C other than 0 or ±1.

The symmetry t↔−t interchanges P and P + T2 on E(q), and is inherited from the moduli
space in which we recover the family (see § 5.1). Specializing the above family to q = 0 forces
4P = 0 but 2P 6= T2, and thus E(0)(C(t))tors = Z/4Z⊕ Z/2Z. This gives us equations for the
universal elliptic curve with torsion subgroup Z/4Z⊕ Z/2Z. Specializing to q =±1 forces
3P = T2, which gives E(±1)(C(t))tors = Z/6Z. This gives equations for X1(6), the universal
elliptic curve with a 6-torsion point.

Theorem 2.

(i) ĥmin(0, 24, Z/2) = 3/40.
(ii) ĥmin(24, Z/2Z) = 3/40. Moreover, let E be an elliptic curve of discriminant degree

d= 24 with a 2-torsion point T2 over a complex function field K, and let P ∈ E(K). Then
the following are equivalent:

(a) ĥ(P ) = 3/40;
(b) each of P, . . . , 5P is an integral point on E;
(c) K ∼= C(t), and (E, P, T2) is equivalent to the curve

E : y2 = x3 + ((t− 1)2(1 + 3t)2 − 8t(t+ 1)2)x2

+ 16t2((t+ 1)4 − (t− 1)2(1 + 3t)2)x

over the t-line with the rational point

P : (x, y) = (16t3, 16t3(t− 1)(3t+ 1))

and 2-torsion point T2 = (0, 0).

The K3 elliptic surface above also has a symmetry inherited from the moduli space in it is
recovered (see § 5.1), which interchanges P and P + T2.

Theorem 3.

(i) ĥmin(0, 36, Z/2Z) = 3/40.
(ii) Let E be an elliptic curve over C(t) with discriminant degree d= 36 and P a rational

point on E. Then the following are equivalent:
(a) ĥ(P ) = 3/40;
(b) each of P, . . . , 6P is an integral point on E;
(c) (E, P, T2) is equivalent to the curve

E(q) : y2 = x3 + ((q(2 + t)((1− q)t− 2q)((4q + 2) + (2q − 1)t))2

− 2(t2 − q(2 + t)((1− q)t− 2q)((4q + 2) + (2q − 1)t))
· t(2q + 1 + qt)((1− 2q)t− 4q))x2

· t4(4q + 8q2 − t− 2tq + 8tq2 − 2qt2 + 2q2t2)
· (1 + 2q + tq)2(2tq + 4q − t)3x
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over the t-line with the rational point P = (x, y), where

x = −t3(1 + 2q + qt)(2tq + 4q − t)
y = qt3(2 + t)(tq − t+ 2q)(2qt+ 4q − t)
· (−t+ 2tq + 2 + 4q(1 + 2q + qt))

and T2 = (0, 0), for any q other than 0 or −1/2.

As in Theorems 1 and 2, E(q) has a symmetry that interchanges P and P + T2. Specializing
to q = 0, we obtain a singular curve. Specializing to q =−1/2, and changing the Weierstrass
equation by ai 7→ ai/t

i to get the minimal model, one obtains a K3 surface with three I6
fibers at t=∞,−1 and −2, and three I2 fibers at t= 1,−2/3 and −4/3, as well as 6P = 0
and 3P 6= T . This gives us equations for the universal elliptic curve with torsion subgroup
Z/2Z⊕ Z/6Z, an example of a singular K3 surface with all of its Néron–Severi group defined
over Q. We do not claim that ĥmin(36, Z/2Z) = ĥmin(0, 36, Z/2Z) (see § 5.3).

We prove the following analogous results in the case when E has a 3-torsion point T3.

Theorem 4.
(i) (Oguiso and Shioda [12]) ĥmin(0, 12, Z/3Z) = 1/6.

(ii) ĥmin(12, Z/3Z) = 1/6. Moreover, let E be an elliptic curve of discriminant degree d= 12
with a 3-torsion point T3 over a complex function field K, and let P ∈ E(K). Then the following
are equivalent:

(a) ĥ(P ) = 1/6;
(b) each of P , 2P , 3P is an integral point on E;
(c) K ∼= C(t), and (E, P, T3) is equivalent to the curve

y2 + ((1 + q)t+ (2− q))xy + (qt2 + (1− q)t)y = x3

over the t-line with the rational point P : (x, y) = (−t, t2) and 3-torsion point
T3 : (x, y) = (0, 0), for some q ∈ C other than 0 or 1.

The surfaces above have a symmetry of order three inherited from the moduli space in
which they are recovered (see § 5.2). The symmetry permutes {P, P + T, P + 2T} cyclically
by the odd permutations. Specializing to q = 1 forces 2P = T3 and we get equations for X1(6).
Specializing to q = 0 forces 2P =−T3 and we again get equations for X1(6).

Theorem 5.
(i) ĥmin(0, 24, Z/3Z) = 1/6.

(ii) ĥmin(24, Z/3Z) = 1/6. Moreover, let E be an elliptic curve of discriminant degree d= 24
with a 3-torsion point T over a complex function field K, and let P ∈ E(K). Then the following
are equivalent:

(a) ĥ(P ) = 1/6;
(b) each of P , 2P , P ± T , 2P ± T , 3P ± T is an integral point on E;
(c) K ∼= C(t), and (E, P, T ) is equivalent to the curve

y2 + q(q2 − t)2xy + q2t2(q − t)2y = x3

over the t-line with the rational point

P = (x, y) = (−q2t(q − t)2, t2(q − t)3)

and 3-torsion point T3 = (x, y) = (0, 0), where q satisfies q2 − q + 1 = 0.

The surfaces above also inherit the symmetry of order three which permutes {P, P + T, P +
2T} cyclically by the odd permutations. We do not state a result for n= 3 in the case where
E(K)tors = Z/3Z. We found that ĥmin(0, 36, Z/3Z) = 1/6 in this case as well, though we found
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multiple configurations that achieve this height. There was also no nice characterization of
these configurations in terms of their patterns of integral points.

2.1. Outline of methods

In [7, § 3], we define a map

{(E, P, Q)} −→ G = Z[A/D∞],

which associates to each elliptic surface E and pair of sections P, Q ∈ E(K) an element γ in
a free abelian group G (see § 3.3). From this element γ one can compute the correction terms
for the local heights of mP +m′Q, a lower bound for the conductor degree of E, and the
discriminant degree of E. We fix the discriminant degree 12n and search through the finite
number of elements of G that could correspond to triples (E, P, T ), with P a non-torsion point
of small canonical height, and T a 2- or 3-torsion point. We then compute lower bounds for
the canonical height ĥ(P ).

In each case, the lower bound is attained. We use the fact that the optimal configurations
must correspond to elliptic surfaces that have several integral points to find equations. We
parametrize the set of triples (E, P, T ), where E is an elliptic curve over Q, P ∈ E(Q) a
non-torsion point, and T ∈ E(Q) a 2-torsion point, with the property that P , 2P , P + T and
2P + T are all integral by an open subset of P2. A curve C of degree n in this P2 is equivalent
to an elliptic surface fibred over C of discriminant degree 12n, together with a section P and
a 2-torsion section T such that P , 2P , P + T and 2P + T are all integral (that is, they do
not meet the zero section). We recover the d= 12, 24, 36 surfaces as rational curves of degree
n= 1, 2, 3 in this moduli space. Similarly, we parametrize the set of triples (E, P, T ) of E/Q
with a non-torsion point P and a 3-torsion point T , and the property that P , P + T and P − T
are all integral by an open subset of P2, and recover the elliptic surfaces in Theorems 4 and 5
as curves in this moduli space.

Our parametrizations make use of Tate’s trick [14], which Tate used to parametrize the
moduli space X1(N) of elliptic curves with an N -torsion point for small N . Tate’s trick was
first applied in the way we use it by Elkies [4], who parametrized the set of pairs of an elliptic
curve with a rational point (E, P ) such that P, . . . , 4P are all integral.

We summarize the basic strategy of the paper as follows.
(1) Find the element γ ∈ G that yields a lower bound for ĥ(P ).
(2) Show that γ is the unique configuration that could yield an elliptic surface with the

pattern of integral points listed in part (ii)(b).
(3) Construct the general (E, P, T ) with configuration equal to γ by recovering it as a curve

in the corresponding moduli space of each theorem.
To show the result over higher-genus curves, we take advantage of the moduli spaces we

construct in § 5. We show that each configuration that could possibly yield an (E, P, T ) over
a higher-genus curve with very small ĥ(P ) has a pattern of integral points that would imply it
could be recovered as a curve of degree n in the corresponding P2 model. As curves of degree
n= 1, 2 in P2 are rational, this will imply the result over higher-genus curves. We deal with
these configurations in § 5.3.

3. Setup

In this section we discuss the essential tools we will need to use in our proofs of Theorems 1–5.
We begin by defining the naive height. Whenever possible, we give references instead of proofs.

3.1. Naive heights and local correction terms

To a non-constant elliptic curve E/k(C), one can associate a smooth projective surface E/k
with a relatively minimal fibration π : E −→ C such that the generic fiber is an elliptic curve,
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no fibers contain exceptional curves of the first kind, and the surface is non-constant. This
surface is called the Kodaira–Néron model of E (see [8, 10] for a background). The group
E(k(C)) is isomorphic to the group of sections of π defined over C. For a background on
elliptic surfaces, see Chapter 3 of Silverman’s book [13].

We define the naive height h(P ) of a point P ∈ E(k(C)) to be twice the intersection number
of the section sP corresponding to P and the zero section s0. For more on this definition, see
§ 2.3 of our paper [7]. The standard definition of the naive height is 2sP · s0 + 2n, and hence
differs from our definition by 2n. We use this somewhat unconventional definition because
points of naive height zero will be precisely those points that are integral.

The canonical height ĥ(P ) can be described as the sum of the naive height h(P ) and local
correction terms:

ĥ(P ) = h(P ) +
∑
υ

λυ(P ).

The correction terms can be computed from the Kodaira–Néron model of E, and are given
below. The formulas were worked out by Cox and Zucker in [1]. For explicit formulas consistent
with our definitions and notations, see [7, § 2.6]. We will note one particular formula here, as
it is important for our definitions in the following section.

If Eυ is a multiplicative fiber of type Iν and sP passes through component a, then

λυ(P ) = νB(a/ν),

where B(x) = 〈x〉2 − 〈x〉+ 1/6 is the second Bernoulli function of x. The quantity 〈x〉 denotes
the fractional part of x.

We also observe that in the formulas in [7, § 2.6] that the correction terms are bounded
above and below:

−dυ/12 6 λυ(P ) 6 dυ/6.

Here dυ is the local discriminant degree at υ. Summing over υ, if d= 12n is the discriminant
degree we obtain the following bound on the difference between the naive and canonical heights:

−n6 ĥ(P )− h(P ) 6 2n. (1)

We use this observation extensively in our search in § 4.

3.2. Conditions used to eliminate configurations

Below, we list the facts we must use about canonical heights on elliptic surfaces. Each of these
facts is discussed in detail in our paper [7] as well as Elkies’ paper [3]. These conditions will
be used both in our definition of the group G, as well as our search through elements of G for
configurations that might correspond to elliptic surfaces.

(1) The naive height h(P ) takes values in {0, 2, 4, 6, . . . } and satisfies h(m′P ) 6 h(mP ) for
m′|m and mP 6= 0.

(2) The canonical height can be written as a sum of local terms. If mP 6= 0 then

ĥ(mP ) = h(mP ) +
∑
υ

λυ(mP ),

where the sum is taken over places υ ∈ C(C) at which the fiber Eυ is reducible.
(3) The local correction term λυ(mP ) depends only on the Kodaira type of fiber Eυ and

component cυ of Eυ meeting P .
(4) Shioda’s inequality: if E has a non-torsion point then the conductor degree N of E is at

least

N > (d/6) + χ(C) + 1.
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3.3. Notation

We follow the notation given in [7, § 3]. Define the following equivalence relation on Z3:
set (x, y | z)∼ (u, v | w) when xw = uz and yw = vz. Each equivalence class has a unique
representative [x, y | z] with gcd(x, y, z) = 1 and z > 0. Let A denote the quotient of Z3 by
this equivalence relation. The infinite dihedral group D∞ acts on A by [x, y | z] 7→ [z − x,
z − y | z] and [x, y | z]↔ [x+ z, y + z | z]. Let G = Z[A/D∞] be the group of formal Z-linear
combinations of orbits of A under the action of D∞.

We associate to each triple (E, P, Q) of a curve E/K and points P, Q ∈ E(K), an element
γ ∈ G from which one can calculate discriminant degree, conductor degree, and local height
corrections for mP +m′Q. In the case where E has semistable reduction this association is
defined in the following way.

If Eυ is a fiber of E of type Iν lying over υ, then the group of multiplicity one components
Eυ/(Eυ)0 is isomorphic to Z/ν(υ)Z. If P and Q intersect the fiber at the components a(υ) and
b(υ) ∈ Z/ν(υ)Z respectively, we set γ ∈ G equal to

γ =
∑
υ

γυ =
∑
υ

gcd(a(υ), b(υ), ν(υ)) · [a(υ), b(υ) | ν(υ)].

Suppose that [a, b | ν] ∈ A with ν > 0 and gcd(a, b, ν) = 1. We define homomorphisms
λ(m,m′) : G −→Q and d,N : G −→ Z on the generators of G and extend linearly:

λ(m,m′)([a, b | ν]) := νB2((ma+m′b)/ν), d([a, b | ν]) := ν, N([a, b | ν]) := 1.

The height corrections ĥ(mP +m′Q)− h(mP +m′Q) and the discriminant degree are the
images of γ under the homomorphisms λ(m,m′) and d. Each υ contributes 1 to the conductor N .
Since gcd(a(υ), b(υ), ν(υ)) = 1, the conductor degree N 6 N(γ). We obtain formula (2) easily
from the formulas for the height correction terms λυ(P ) in § 3.1:

ĥ(mP +m′Q) = h(mP +m′Q) + λ(m,m′)(γ) for (m, m′) ∈ Z2\(0, 0). (2)
12n= d= d(γ).

N(γ) >N > d/6 + (2− 2g) + r > 1
6d(γ) + 4− 2g.

For the conductor inequality, we assume the rank r > 2. If g = gcd(a(υ), b(υ), ν(υ))> 1, then
we are replacing the Iν fiber at υ with g fibers of type Iν/g, and the values of λ(m,m′), d, and
N do not change. For a fiber of type I0 we write [0].

For a curve with some additive fibers, the definition is given in [7, Table 2 of § 3]. The
important thing to note is the following proposition.

Proposition 6. Let E be an elliptic curve over a function field K of genus g and P, Q ∈
E(K). For each singular fiber Eυ define an element γυ ∈ G according to [7, Table 2]. Then:

(i) λυ(mP +m′Q) = λ(m,m′)(γυ) for each (m, m′) ∈ Z2\(0, 0);
(ii) dυ = d(γυ);
(iii) Nυ 6 N(γυ).

Proof. The first statement can be verified by comparing the values arrived at by the table to
the values arrived at by using formulas in [7, § 2.6]. The other two statements are immediate.

This proposition allows us to consider collections of fibers with semistable reduction.

3.4. Torsion conditions

As discussed in the previous section, we only need to search through configurations that are
composed of collections of fibers of type Iυ in order to compute lower bounds for ĥ. Suppose
that E has a non-trivial torsion subgroup E(K)tors = Z/2Z, and let T be the 2-torsion point.
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The condition that ĥ(T ) = 0 puts a strong restriction on the possible collection of singular
fibers of E. Recall that the components of a special fiber form a group, and we know from the
list of possible groups that if there is a 2-torsion component then it is unique (see [8, 10]). At
each place υ, the point T meets either the identity component of the fiber Eυ, or the 2-torsion
component of Eυ. Let S and S′ denote, respectively, these sets of places. We compute

ĥ(T ) =
∑
υ∈S

dυB(0) +
∑
υ∈S′

dυB(1/2) = 0.

Because B(0) = 1/6 and B(1/2) =−1/12, it follows that

2
∑
υ∈S

dυ =
∑
υ∈S′

dυ.

In the case when G= Z/3Z, we have B(0) = 1/6 and B(1/3) =B(−1/3) =−1/18, it follows
that

3
∑
υ∈S

dυ =
∑
υ∈S′

dυ,

where S and S′ denote, respectively, the set of places at which the 3-torsion point T meets
identity and non-identity components of a singular fiber Eυ. One can deal with any torsion
group in a similar fashion, though the restriction that d be small will not allow many of the 19
possibilities.

4. Computing lower bounds for the canonical height

In this section we translate the conditions listed in §§ 3.2 and 3.4 into algorithms that search
through elements of the group G.

4.1. Lower bounds for elliptic surfaces with 2-torsion

We begin with elliptic surfaces with 2-torsion. Algorithm 1 describes precisely how we search
through elements of G for configurations that might correspond to elliptic surfaces with
2-torsion. We apply the algorithm to the cases n= 1, 2, 3 and compute lower bounds.

Algorithm 1 Finding elements of G corresponding to curves with 2-torsion.

1 Choose a pair of partitions {νi}N1
i=1 and {µi}N2

i=1of 4n such that N1 +N2 > 2n+ 3.
2 Choose 0 6 ai 6 νi/2 and 0 6 bi 6 µi so that γ =

∑N1
i=1[ai, 0 | νi] +

∑N2
i=1[bi, µi | 2µi] ∈ G.

3 Compute the sum of the correction terms λ(m,m′)(γ).
4 Select naive height h(1,0) ∈ {0, 2, 4, 6, . . .} for P less than some bound.
5 Set ĥ(1,0)(γ) = h(1,0) + λ(1,0)(γ), and check the value is greater than 0.
6 Compute canonical heights: ĥ(m,m′)(γ) =m2ĥ(1,0)(γ).
7 Calculate naive heights h: h(m,m′)(γ) = ĥ(m,m′)(γ)− λ(m,m′)(γ).
8 Check that entries of h satisfy the naive height inequality h(m,m′)(γ) 6 h(km,km′)(γ).

4.1.1. n= 1. We assume that the naive height h(P ) = 0. If h(P ) > 2 then by equation (1)
we have ĥ(P ) > 1, hence searching through configurations γ with h(1,0) = 0 covers all (E, P, T )
with ĥ(P )< 1. We find that the lower bound for ĥ(P ) occurs for

γ = [1, 2 | 4] + [1, 1 | 2] + [0, 1 | 2] + [1, 0 | 3] + [0],

with ĥ(1,0)(γ) = 1/12 and N(γ) = 5. We have h(m,0) = 0 for m= 1, . . . , 4. We find no other
configurations with h(m,0) = 0 for m= 1, . . . , 4. The lower bound for ĥ(P ) is attained by the
one parameter family of elliptic curves over P1 in Theorem 1.
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4.1.2. n= 2. We assume that the naive height h(P ) = 0 or 2. If h(P ) > 4 then by
equation (1) ĥ(P ) > 2. Hence searching through γ with h(1,0) = 0, 2, we cover at least all
(E, P, T ) with ĥ(P )< 2. The lower bound for ĥ(P ) occurs for the configuration

γ = [3, 4 | 8] + [1, 0 | 5] + [1, 2 | 4] + [1, 0 | 2] + 2[0, 1 | 2] + [0],

with N(γ) = 7, h(m,0) = 0 for m= 1, . . . , 5 and h(m,1) = 0 for m= 1, 2, 4. Searching through
our list of configurations, we find no other configuration with h(m,0) = 0 for m= 1, . . . , 5.
This configuration is attained by the single elliptic surface in Theorem 2. We find one other
configuration attaining the minimum:

γ′ = [1, 4 | 8] + [1, 0 | 5] + [1, 2 | 4] + [1, 0 | 2] + 2[1, 1 | 2] + [0].

This configuration corresponds to shifting P by the torsion point T , and in § 5.1 we will see
that it is equivalent to γ under the symmetry of the moduli space in which we recover the
curve.

4.1.3. n= 3. We again assume that the naive height is h(P ) = 0 or 2. If h(P ) > 4 then by
equation (1) we would have ĥ(P ) > 1. Searching through configurations γ with h(1,0) = 0, 2, we
cover at least all (E, P, T ) with ĥ(P )< 2. The lower bound for ĥ(P ) is again 3/40, and occurs for

γ = [3, 4 | 8] + [1, 3 | 6] + [1, 2 | 4] + 2[0, 1 | 2] + [1, 0 | 5] + [1, 0 | 3] + [1, 0 | 2] + 2[0],

with N(γ) = 10, h(m,0) = 0 for m= 1, . . . , 6 and h(m,1) = 0 for m= 1, . . . , 4. We find no other
configurations that have h(m,0) = 0 for m= 1, . . . , 6. We find one other configuration with
ĥ(γ) = 3/40:

γ′ = [1, 4 | 8] + [2, 3 | 6] + [1, 2 | 4] + 2[1, 1 | 2] + [1, 0 | 5] + [1, 0 | 3] + [1, 0 | 2] + 2[0].

This configuration, however, is equivalent to γ. In § 5.1 we will see that this configuration
corresponds to shifting P to P + T on the curve in Theorem 3.

4.2. Lower bounds for elliptic surfaces with 3-torsion

Algorithm 2 describes our search through elements of G for configurations that could correspond
to elliptic surfaces with 3-torsion. We apply the algorithm to the cases n= 1, 2 and compute
lower bounds.

Algorithm 2 Finding elements of G corresponding to curves with 3-torsion.

1 Choose a pair of partitions {νi}N1
i=1 and {µi}N2

i=1of 3n such that N1 +N2 > 2n+ 3.
2 Choose 0 6 ai 6 νi/2, 0 6 bi 6 2µi/3 and e ∈ {1, 2} so that γ =

∑N1
i=1[ai, 0 | νi] +∑N2

i=1[bi, eµi | 3µi] ∈ G.
3 Compute the sum of the correction terms λ(m,m′)(γ).
4 Select naive height h(1,0) ∈ {0, 2, 4, 6, . . .} for P less than some bound.
5 Set ĥ(1,0)(γ) = h(1,0) + λ(1,0)(γ).
10 Compute heights: ĥ(m,m′)(γ) =m2ĥ(1,0)(γ).
11 Check that the height matrix has no non-zero entries.
12 Calculate naive heights h: h(m,m′)(γ) = ĥ(m,m′)(γ)− λ(m,m′)(γ).
13 Check that entries of h satisfy the naive height inequality h(m,m′)(γ) 6 h(km,km′)(γ).

4.2.1. n= 1. We again assume that the naive height h(P ) = 0. As in § 4.1, searching
through configurations with h(0,1) = 0 covers all (E, P, T ) with ĥ(P )< 1. We generate a list of
configurations. A lower bound for ĥ(P ) occurs for

γ = [1, 2 | 3] + [1, 1 | 3] + [0, 2 | 3] + [1, 0 | 2] + [0].
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This configuration has ĥ(1,0)(γ) = 1/6, with h(m,m′)(γ) = 0 for

(m, m′) = (1, 0), (2, 0), (3, 0), (1, 1), (2, 1), (1, 2), (2, 2).

We search through our list and see that no other configuration has h(m,0) = 0 for m= 1, 2, 3.
The configuration γ is realized by the one parameter family of rational elliptic surfaces in
Theorem 4.

4.2.2. n= 2. As in § 4.1.2, we assume that the naive height h(P ) is 0 or 2, and generate
a list of configurations. We find that a lower bound for the canonical height occurs for the
configuration

γ = [3, 4 | 6] + [1, 2 | 6] + [1, 4 | 6] + [1, 0 | 3] + 3[0].

The configuration has ĥ(1,0)(γ) = 1/6, with h(m,m′) = 0 for

(m, m′) = (1, 0), (2, 0), (1, 1), (1, 2), (2, 1), (2, 2), (3, 1), (3, 2).

In addition, no other configuration in our list has h(m,m′) = 0 for the same (m, m′). The
configuration is realized by the one parameter family of K3 elliptic surfaces in Theorem 5.

5. Explicit modular parametrizations

In this section we derive the explicit equations in Theorems 1–5. We begin by constructing
projective models.

5.1. Elliptic curves with 2-torsion

We find explicit equations for the optimal 2-torsion surfaces for n= 1, 2, 3, using the fact that
they have a section P with the first several mP and mP + T integral. We first construct a
suitable moduli space in which to work, and then recover the surfaces as curves in this moduli
space. We parameterize triples (E, P, T ) of elliptic curves with a 2-torsion point T and a
point P with the property that P , 2P , P + T , and 2P + T are all integral by an open subset
in P2. The n= 1, 2, 3 surfaces we want to find will then be curves of degree n= 1, 2, 3 in this
moduli space.

We begin with a curve E with a rational point T = (0, 0) placed at the origin:

y2 + a1xy + a3y = x3 + a2x
2 + a4x.

The point T is a 2-torsion point precisely when the slope of the tangent to E at T is vertical.
The slope of this line is a4/a3, and this line is vertical when a3 = 0. Next, replacing y by
y − a1x/2 eliminates the a1 term. Our curve is now of the form

y2 = x3 + a2x
2 + a4x.

Let P = (X, Y ) be another integral point of E that is non-torsion. The point P + T is integral
only if the slope of the secant line through P and T has integral slope. This slope is Y/X, and
we write Y = aX. Writing the Weierstrass equation that the coordinates of T must satisfy, we
obtain

X(X2 + (a2 − a2)X + a4) = 0.

Since X cannot be 0, we find that a4 =X(a2 − a2 −X).
Next we impose the condition that 2P is an integral point. This occurs when the tangent to

E at P has integral slope. This line has slope

2x2 + (a2 + a2)x
2y

=
2x+ (a2 + a2)

2a
.

Thus a divides 2X + a2 and we my write 2X + a2 = a(a+ c) or a2 = a(a+ c)− 2X for some c.
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Figure 1. ∆ vanishes on the conic 4c(b− c) = a2 with multiplicity 1, on a = 0 (vertical axis) and
b =±a (diagonals) with multiplicity 2, and on c = 0 (line at infinity) with multiplicity 4. The conic

meets the lines a = 0, c = 0 at (0 : 1 : 0); the involution a↔ a takes P = ((a + b)c, (a + b)ac) to P + T .

Finally we impose the condition that 2P + T is integral, or the slope of the line through 2P
and T is integral. This slope is

2
c
X +

(
−a− 1

2
c

)
,

and it follows that c divides X. We write X = c(a+ b) for some b, which gives us

y2 = x3 + (a2 − 2bc)x2 + (b2 − a2)c2x
P = ((a+ b)c, (a+ b)ac), T = (0, 0),

with ∆ = 16a2(b− a)2(b+ a)2c4(a2 − 4c(b− c)). This parametrizes triples (E, P, T ) of elliptic
curves with a 2-torsion point T and a rational point P with the property that P , 2P , P + T ,
and 2P + T are all integral: changing (a, b, c) to (λa, λb, λc) yields an isomorphic curve and
we have a parametrization of the (E, P, T ) moduli space by an open subset in P2. A curve C
of degree n in this P2 amounts to an elliptic surface E −→ C of discriminant degree 12n, with
sections P and T such that P , 2P , P + T , and 2P + T are integral and 2T = 0. The surface
will have a configuration of fibers and sections P, T given by

γ = n[0, 1 | 2] + n[1, 1 | 2] + n[1, 0 | 2] + n[1, 2 | 4] + 2n[0],

corresponding to the n points at which C meets the lines a=±b, a= 0 and c= 0, and the
2n points at which C meets the conic 4c(b− c) = a2. We recover the optimal surfaces in
the 2-torsion case as curves in this P2 model. The involution of P2 that corresponds to
interchanging P ↔ P + T is given by (a : b : c)−→ (−a : b : c). The optimal n= 1, 2, 3 surfaces
sit as curves of degree n in this P2. See Figure 1.

5.1.1. n= 1. The optimal n= 1 configuration is

γ = [1, 2 | 4] + [1, 1 | 2] + [0, 1 | 2] + [1, 0 | 3] + [0],

with ĥ(P ) = 1/12. This configuration has conductor N(γ) = 5 and hence should be attained
by a one parameter family of rational elliptic surfaces. Suppose that

λ : P1 −→ P2

(s : s′) 7→ (A :B : C)
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denotes a line in P2 that gives rise to such a rational elliptic surface. Each A, B, C is a
homogenous linear form in s, s′. Without loss of generality we may assume that A= s and
B = s′. We see that the only way to obtain a fiber of type [1, 0 | 3] is to force λ through
the point (0 : 1 : 1), where the line a= 0 and the conic 4c(b− c) = a2 meet. Thus we may set
C = qs+ s′. This gives us a one parameter family of lines

λ(q) : P1 −→ P2

(s : s′) 7→ (s : s′ : qs+ s′),

where each line in this family gives rise to a rational elliptic surface E with a 2-torsion section
T and a section P of height ĥ(P ) = 1/12. Setting t= s/s′ gives the equations in Theorem 1.

5.1.2. n= 2. The optimal n= 2 configuration is given by

γ = [3, 4 | 8] + [1, 0 | 5] + [1, 2 | 4] + [1, 0 | 2] + 2[0, 1 | 2] + [0],

with ĥ(P ) = 3/40. This configuration has conductor N(γ) = 7 and hence should be given by a
single K3 elliptic surface. Suppose that

λ : P1 −→ P2

(s : s′) 7→ (A :B : C)

denote a conic in P2 that gives rise to such a K3 elliptic surface. Each A, B, C is homogeneous
form of degree two in s, s′.

A generic curve of degree two in this moduli space will give rise to a surface having
configuration γ of fibers and sections P, T given by

2[0, 1 | 2] + 2[1, 1 | 2] + 2[1, 0 | 2] + 2[1, 2 | 4] + 4[0].

We will arrive at the optimal configuration by forcing the curve λ to go through some specific
points in the P2 model.

The only way to obtain a fiber of type [3, 4 | 8] is to merge a fiber of type [1, 2 | 4] with two
fibers of type [1, 1 | 2]. This forces λ to go through the point (1 :−1 : 0), where the lines c= 0
and a=−b intersect, meeting the line a=−b with multiplicity 2. Thus we write

λ(q) : P1 −→ P2

(s : s′) 7→ (A, s2 −A, ss′).

This brings us down to a three parameter family whose generic member has a section P of
height 3/8. We use the remaining free parameters to get to the desired configuration, and bring
the height of P down to 3/40.

The only way we can obtain a fiber [1, 0 | 5] is to merge a fiber of type [1, 0 | 2] with three
fibers of type [0]. This forces λ to meet the conic 4c(b− c) = a2 triply at its point of intersection
with the line a= 0, which implies that

−A2 − 4ss′A+ (4s′s3 − 4s′2s2)

has a common factor with A. Then (s− s′)s2s′ has a factor in common with A, which forces
(s− s′)|A, and we may write A= r(s− s′). We force the above equation to have two more
factors of (s− s′). Dividing through by (s− s′) we are left with

4s′s2 + (−4rs′ − r2)s+ r2s′ =−(s− s′)r2 + 4(s− r)ss′.

The linear forms s and s′ cannot divide each other, as γ would have a fiber of type I12 in that
situation. This implies that (s− s′)|(s− r), and we write r = qs+ (1− q)s′. Substituting this
in for r and again dividing through by s− s′, we obtain

−q2s2 + (2q2 − 6q + 4)s′s+ (−q2 + 2q − 1)s′2 = (s− s′)(s′(1− q)2 − q2s) + ss′(3− 4q).
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This forces q = 3/4, and gives us the desired conic in our moduli space:

λ : P1 −→ P2

(s : s′) 7→ ((s− s′)(s′ + 3s) : (s+ s′)2 : 4ss′).

This conic gives rise to the K3 elliptic surface in Theorem 2 by setting t= s/s′.

5.1.3. n= 3. The optimal n= 3 configuration is given by

γ = [3, 4 | 8] + [1, 3 | 6] + [1, 2 | 4] + 2[0, 1 | 2] + [1, 0 | 5] + [1, 0 | 3] + [1, 0 | 2] + 2[0],

with ĥ(P ) = 3/40. The conductor N(γ) = 11, and hence γ should be given by a one parameter
family of elliptic surfaces. Let

λ : P1 −→ P2

(s : s′) 7→ (A :B : C)

denote a rational cubic in P2 that gives rise to such an elliptic surface. Each A, B, C is a
homogeneous cubic form in s, s′.

A generic rational cubic C will give rise to an elliptic surface with configuration γ of fibers
and sections P, T given by

γ = 3[0, 1 | 2] + 3[1, 1 | 2] + 3[1, 0 | 2] + 3[1, 2 | 4] + 6[0],

corresponding to the three points at which C meets the lines a=±b, a= 0 and c= 0, and the
six points at which C meets the conic 4c(b− c) = a2. We again arrive at the optimal n= 3
configuration by forcing the curve λ to go through some specific points.

For the surface corresponding to λ to have a fiber of type [3, 4 | 8], we must merge a fiber of
type [1, 2 | 4] on the line c= 0 with two fibers of type [1, 1 | 2] on the line a=−b. This forces
λ through the point (1 :−1 : 0), meeting the line a=−b with multiplicity two at that point.
Hence we can write B = s2s′ −A and C = sc2, where c2 is a homogeneous quadratic form in
s, s′. This ensures a fiber of type [3, 4 | 8] at s= 0.

Next, to obtain fibers of type [1, 0 | 3] and [1, 0 | 5], we must merge fibers of type [1, 0 | 2]
on the line a= 0 with fibers of type [0]. This forces λ to meet the conic 4c(b− c) = a2 at the
points (0 : 0 : 1) and (0 : 1 : 1), meeting the conic with multiplicity three at (0 : 1 : 1). We force
A2 − 4C(B − C) to have two linear factors in common with A. We calculate

4C(B − C) = 4Ac2s− 4s2c2(c2 − ss′).

This forces A to have two factors in common with s2c2(c2 − ss′). This forces (c2 − ss′)|A and
we write A= r(ss′ − c2). This promotes two of the three [1, 0 | 2] fibers at A= 0 to [1, 0 | 3]
fibers.

To obtain a fiber of type [1, 3 | 6], we must merge another fiber of type [1, 2 | 4] on the line
c= 0 with a fiber of type [0, 1 | 2] on the line a= b. This forces A−B to have a factor in
common with C = sc2. Since

A−B = ss′(2r − s)− 2tc2,

and we already have the desired fiber type at s= 0, we see that (s+ 2r)|c2. We set c2 =
u(2r − s). This gives a fiber of type [1, 0 | 6] at s= 2r, and forces λ through the point (1 : 1 : 0).

Next we try to promote one of the [1, 0 | 3] fibers to a [1, 0 | 5]. This means that one of the two
fibers at A/r = ss′ − c2 = ss′ − u(2r − s) = 0 must meet the conic a2 − 4c(b− c) to order three.
This forces A/r to have a factor in common with C(B − C)/(A/r). We write

C(B − C)/(A/r) = su(s− r)(2r − s).

We already have the desired fiber types at s= 0, u= 0, and 2r = s, so the only possible way
to force a factor of ss′ − u(2r − s)r to share a factor with the quotient above is to force s− r to
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divide ss′ − u(2r − s)r. This implies that s− r|r(s′ − u). Since at this point we already have the
desired fiber type at r = 0 as well, it must be the case that s− r|s′ − u. We set r = q′(s′ − u) + s.
Replacing s′ by s′/q′, and u by u′/q′, and then changing the Weierstrass equation by 1/q′, we
can eliminate q′ from our equations.

We again compute A2 − 4C(B − C) and divide through by the factors (2u− s) and (s′ − u)2

to obtain

−s3 − 2s′s2 + (−s′2 − 2us′ + 3u2)s+ (2us′2 − 4u2s′ + 2u3).

We force the cubic above to have one more factor of (s′ − u) in order to obtain the desired
[1, 0 | 5] fiber at s′ = u. This forces s′ − u to divide s2(s− 2u) and this s′ − u|s− 2u. We set
u= q(s+ 2s′) + s′ to obtain our curve

λ : P1 −→ P2

(s : s′) 7→ (A :B : C)
A= q(2s′ + s)((1− q)s− 2qs′)((4q + 2)s′ + (2q − 1)s)
B = s2s′ − q(2s′ + s)((1− q)s− 2qs′)((4q + 2)s′ + (2q − 1)s)
C = s(2qs′ + s′ + qs)((1− 2q)s− 4qs′).

This cubic gives rise to the elliptic surface in Theorem 3 by setting t= s/s′.

5.2. Elliptic curves with 3-torsion

We find equations for the general elliptic curve E/Q with a 3-torsion point T and another
point P such that P + nT is integral for each n= 0, 1, 2. We parametrize this set of (E, P, T )
by an open in P2. We then recover the n= 1, 2 surfaces as curves in this moduli space.

As in § 5.1, one can easily find equations for the general elliptic curve with a 3-torsion point
T = (0, 0) placed at the origin:

y2 + a1xy + a3y = x3.

Suppose the point P has coordinates (X, Y ). Then since P + T is integral, the slope of the line
through P and T must be integral. Hence X|Y and we write Y =−aX for some constant a.
Next, since 2T = (0, a3) and P + 2T is also integral, we know that the slope of the line through
P and 2T is integral. This slope is equal to −a+ x/a3, and we write a3 =−cX. Finally, writing
the Weierstrass equation that the coordinates of P satisfy, we find that

Y 2 + a1XY + a3X −X3 =X2(a2 − a1a− ac−X) = 0

and we find that X = a2 − a1a+ ac. Finally we set a1 = a+ b+ c.
The conditions on P then amount to a1 = a+ b+ c, a3 = abc, with P at (−ab, a2b). This

gives us our model

E : y2 + (a+ b+ c)xy + abcy = x3,

P = (−ab, a2b).

The translates of P by multiples of T are given by cyclically permuting {a, b, c}, and their
negatives by the odd permutations. The lines a= 0, b= 0, c= 0 give [1, 2 | 3], [1, 1 | 3], and
[0, 2 | 3] fibers, and the residual factor of the discriminant is the singular cubic (a+ b+ c)3 =
27abc, meeting a= 0, b= 0 and c= 0 to order three.

A generic curve C of degree n in this moduli space corresponds to an elliptic surface E −→ C
of discriminant degree 12n with sections P , and T such that P , P + T, and P + 2T are integral
and 3T = 0. The surfaces have a configuration of fibers and sections given by

γ = [1, 2 | 3] + [1, 1, | 3] + [0, 2 | 3] + 3[0],
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Figure 2. ∆ vanishes on the cubic (a + b + c)3 = 27abc with multiplicity 1, on a = 0 and b = 0
(diagonals) with multiplicity 3, and on c = 0 (line at infinity) with multiplicity 3. The cubic meets

the line a = 0 at (0 :−1 : 1), b = 0 at (−1 : 0 : 1) and c = 0 at (0 :−1 : 1). Cyclically permuting
{a, b, c} to {c, a, b} and {b, c, a} sends P = (−ab, a2b) to P + T and P + 2T .

corresponding to the points at which the curve meets a= 0, b= 0, c= 0, and the cubic
(a+ b+ c)3 = 27abc. See Figure 2.

5.2.1. n= 1. The optimal n= 1 configuration is given by

[1, 2 | 3] + [1, 1 | 3] + [0, 2 | 3] + [1, 0 | 2] + [0],

with ĥ(P ) = 1/6. The conductor N(γ) = 5, and hence γ should be realized by a one parameter
family of elliptic surfaces. Let

λ : P1 −→ P2

(s, s′) 7→ (A :B : C)

denote a line in P2 that gives rise to such an elliptic surface. Each A, B, C is of homogeneous
linear form in s, s′.

A generic line in P2 will correspond to a rational elliptic surface with configuration γ of fibers
and sections P, T given by

[1, 2 | 3] + [1, 1 | 3] + [0, 2 | 3] + 3[0],

corresponding to the points at which the line meets a= 0, b= 0, c= 0, and the cubic
(a+ b+ c)3 = 27abc. The cubic intersects itself at (1 : 1 : 1), and forcing the line through this
point merges two [0] fibers, giving the desired configuration. This gives the one parameter
family of lines in P2 through (1 : 1 : 1)

λ : P1 −→ P2

(s : s′) 7→ (s : s′ : qs+ (1− q)s′),

and this family of lines gives rise to the family of rational elliptic surfaces in Theorem 4 (again
we set t= s/s′ in the statement of the theorem).

5.2.2. n= 2. The optimal n= 2 configuration is given by

[3, 4 | 6] + [1, 2 | 6] + [1, 4 | 6] + [1, 0 | 3] + 3[0],
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with ĥ(P ) = 1/6 and conductor N(γ) = 7. We search for a zero parameter family of K3 elliptic
surfaces with the above fiber configuration. Let

λ : P1 −→ P2

(s : s′) 7→ (A :B : C)

denote a conic in P2 that gives rise to such an elliptic surface. Each A, B, C is of homogeneous
linear form in s, s′.

Generically, the curve λ gives rise to an K3 elliptic surface with fiber configuration

2[1, 2 | 3] + 2[1, 1 | 3] + 2[0, 2 | 3] + 6[0].

We again force λ to go through some specific points in our P2 model to arrive at the desired
one parameter family of K3 elliptic surfaces. At the points at which λ meets the lines a= 0,
b= 0 and c= 0, the torsion point T will meet a non-identity component of an I3 fiber. One
can see that the only way to force the desired I6 fibers is to force λ to go through the three
intersection points of these three lines. This amounts to setting A= sr, B = ru and C = su,
bringing our configuration down to

[3, 4 | 6] + [1, 4 | 6] + [1, 2 | 6] + 6[0].

We know that the point P meets the component υ(r3su(s− u)/2) of the fiber at υ. This tells
us that the fiber of type [1, 0 | 3] must occur at s= u, since P meets a non-identity component
of that fiber.

We force

(r3 + 3ur2 + 3u2r + u3)s3 + (3ur3 − 21u2r2 + 3u3r)s2 + (3u2r3 + 3u3r2)s+ u3r3.

to have three factors in common with s− u. We compute the remainder upon dividing the
above expression by s− u, and we obtain

u3(u− r)2(u+ 8r).

Hence we know that (s− u)|(u− r). We set r = q(s− u) + u. This promotes the fiber at s= u
to one of type [1, 0 | 2]. Finally, we divide (A+B + C)3 − 27ABC by (s− u)2, obtaining

q3s4 + (2q3 + 6q2)us3 + (−12q2 + 12q)u2s2

+ (−2q3 + 12q2 − 18q + 8)u3s+ (−q3 + 3q2 − 3q + 1)u4.

Computing the remainder upon division of the above expression by (s− u), we obtain

9(q2 − q + 1)u4.

Table 1. 3-torsion configurations with small N.

Configuration ĥ(γ)

[3, 2 | 6] + [1, 2 | 6] + [1, 2 | 3] + [1, 0 | 6] 1/6

[3, 2 | 6] + [1, 2 | 6] + [1, 4 | 6] + [1, 0 | 4] + 2[0] 1/12

[1, 3 | 9] + [3, 2 | 6] + [1, 2 | 3] + [1, 0 | 5] + [0] 13/90

[1, 3 | 9] + [3, 2 | 6] + [1, 2 | 3] + [1, 0 | 6] 1/9

[4, 3 | 9] + [1, 6 | 9] + [1, 0 | 4] + 2[0] 5/36

[4, 3 | 9] + [1, 6 | 9] + [1, 0 | 5] + [0] 4/45

[2, 3 | 9] + [2, 6 | 9] + [1, 0 | 6] 1/18
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The two roots of the polynomial q2 + q + 1 give us the pair of K3 elliptic surfaces in Theorem 5:

λ : P1 −→ P2

(s : s′) 7→ (qs2 + (−q + 1)s′s : qs′s+ (−q + 1)s′2 : s′s).

This completes the proof of Theorem 5. Setting t= s/s′ yields the equations in the statement
of the theorem.

5.3. Surfaces over higher genus curves

In this section we prove that for d= 12 and d= 24, the minimum heights over elliptic surfaces
over P1 are the minimum for elliptic surfaces over curves of any genus. The fibers and sections
of an elliptic surface E over a curve of genus g > 0 are subject to all of the combinatorial
constraints laid out in §§ 3.2 and 3.4 except Shioda’s inequality in § 3.2 which says that the
conductor degree N of E is bounded below by

N > (d/6) + χ(C) + 1.

In the case where g > 1, the Euler characteristic χ(C) = 2− 2g can be negative, and Shioda’s
inequality becomes trivial. None of the other conditions, however, depend on the genus of the
base curve.

Hence Algorithms 1 and 2 change only in step 1, where we assume that N(γ) > 2n+ 3 = 7.
We remove this restriction, and generate a list of configurations that could possibly correspond
to elliptic surfaces curves of higher genus.

In the case that E(K)tors = Z/2Z and d= 12 or d= 24, we find no new configurations.
Hence we automatically get the result over higher-genus curves. In the case where E(K)tors =
Z/3Z and d= 12 we find no new configurations. However for d= 24, we find several new
configurations. Each of the configurations has h(1,0) = h(1,1) = h(1,2) = 0, and we list them in
Table 1. Hence if any of these configurations is realized by an elliptic surface of discriminant
degree 24, this elliptic surface will correspond to a curve of degree two in our P2 model. A curve
of degree two in P2 is rational, and hence these surfaces will in fact be K3. This contradicts
part (i) of Theorem 5.

Acknowledgements. Many thanks go to Noam Elkies for numerous discussions. Thanks also
go to David Harvey and Matthias Schuett for helpful comments, Michael Burr for help with
the illustrations and the anonymous referee for many comments which improved the paper.
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