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Abstract

We give an explicit construction of the cusp eigenforms on an elliptic curve defined over
a finite field, using the theory of Hall algebras and the Langlands correspondence for
function fields and GLn. As a consequence we obtain a description of the Hall algebra
of an elliptic curve as an infinite tensor product of simpler algebras. We prove that all
these algebras are specializations of a universal spherical Hall algebra (as defined and
studied by Burban and Schiffmann [On the Hall algebra of an elliptic curve I, Preprint
(2005), arXiv:math/0505148 [math.AG]] and Schiffmann and Vasserot [The elliptic Hall
algebra, Cherednik Hecke algebras and Macdonald polynomials, Compositio Math. 147
(2011), 188–234]).
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Introduction

0.1 Introduction
The cusp eigenforms are the building blocks in the theory of automorphic forms. The celebrated
Langlands correspondence for function fields and GLn, proved by Drinfel’d [Dri80] for n= 2 and
Lafforgue [Laf02] for general n, puts in bijection the cusp eigenforms and the irreducible l-adic
representations of the Galois group of the function field. Moreover, through this correspondence
invariants from the automorphic side (the Hecke eigenvalues) match invariants from the Galois
side (Frobenius eigenvalues). This allows one to deduce important information about a Galois
representation by studying its automorphic counterpart and vice versa.
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Cusp eigenforms and the Hall algebra of an elliptic curve

This work is concerned with the unramified cusp eigenforms on an elliptic curve. The goal is
to describe in detail the cusp eigenforms using the theory of Hall algebras. As a by-product we
find that the Hall algebra of an elliptic curve is isomorphic (as a bialgebra) to an infinite tensor
product of specializations of a universal spherical Hall algebra which was defined by Burban and
Schiffmann in [BS05], as well as a strengthening of the multiplicity 1 theorem conjectured by
Kapranov in [Kap97]. Moreover, as a corollary of the structure of the Hall algebra coupled with
recent work of Schiffmann [Sch12a] for the spherical Hall algebra, we can answer a question asked
by Kapranov [Kap97] regarding higher functional equations satisfied by (unramified) Eisenstein
series for GLn over the function field of an elliptic curve.

0.2 General setting
Let X be a smooth, projective, geometrically irreducible curve defined over a finite field Fq. The
study of the Hall algebra HX of coherent sheaves on X was initiated by Kapranov in [Kap97].
Using a classical observation of Weil we can express the space of vector bundles of rank n on X
as the double coset space,

GLn(KX)\GLn(AX)/GLn(OX),

where KX , AX ,OX are the function field and the adèles (respectively the integer adèles) of X.
The elements of the vector bundle part Hvec

X of the Hall algebra are unramified automorphic
forms (with finite support) on the curve X. The multiplication is given by parabolic induction
and the comultiplication by parabolic restriction. The classical notion of a cusp form in number
theory translates into a very nice condition in terms of the coproduct of the Hall algebra. A
fundamental problem in the theory of Hall algebras is to understand the (Hopf) algebra HX

and to relate it to quantum groups. The importance of cusp forms for the Hall algebra business
stems from the fact that they are a (minimal) set of generators for HX .

The classical Hecke operator associated to a point x ∈X on automorphic forms is, in
the language of Hall algebras, given by multiplication with the characteristic function of the
corresponding torsion sheaf. These Hecke operators naturally form a subalgebra inside HX

which is the Hall algebra of the category of torsion sheaves on the curve. We will call this
subalgebra the global Hecke algebra and we denote it by Htor

X . We have an isomorphism of
algebras HX 'Hvec

X n Htor
X .

The space of cusp forms is stable under the Hecke operators. The elements of the eigenspaces
of this action are called cusp eigenforms. The multiplicity 1 theorem [Pia79, Sha74] says that the
action of the Hecke algebra Htor

X on the space of cusp forms is diagonalizable and that, moreover,
every eigenspace is of dimension 1. In other words, for every character of Htor

X there is at most
one eigenvector (up to multiplication by scalars) corresponding to it.

In the seminal paper [Kap97], Kapranov considered the Eisenstein series associated to these
cusp eigenforms and proved some quadratic functional equations satisfied by them as well as
formulas for their coproduct. These functional equations in turn give relations between the
coefficients of the Eisenstein series in the Hall algebra.

For the projective line P1
Fq , due to a theorem of Grothendieck [Gre95], there are no cusp

forms of rank greater than 1. In this case, Kapranov proved (see also [BK01] for a more
elementary approach) that the relations given by the functional equations suffice to give a
complete description of the Hall algebra HP1

Fq
: it is isomorphic to Uv(n̂) n Htor

P1
Fq

where Uv(n̂)

is the nilpotent part (in Drinfel’d’s new realization) of the quantum group Uv(ŝl2) and v = q−1/2.
When X is of genus greater than 0 the functional equations are no longer enough to give

a presentation of HX . To simplify the problem we can define a new algebra UX , called the
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D. Fratila

spherical Hall algebra, as being the subalgebra of HX generated by the coefficients of the simplest
cusp eigenforms: the characteristic functions of the connected components of the Picard group,
together with the characteristic functions of the set of torsion sheaves of (a fixed) degree d for
all d> 1. For instance, when X = P1

Fq we have that UX is isomorphic to U+
v (ŝl2) (in Drinfel’d’s

new realization).

The aim of this paper is to study the cusp eigenforms on an elliptic curve X using some
twisted versions of the spherical Hall algebra UX . The approach turns out to be fruitful for both
theories: it enables us to write down explicitly all the (unramified) cusp eigenforms on X and to
give a presentation of the whole Hall algebra HX .

0.3 Connections

For X an elliptic curve there are several remarkable results that describe the spherical Hall
algebra and connect it to objects from different fields of mathematics. We shortly review them
below for a motivational purpose.

Burban and Schiffmann have proved in [BS05] that the Drinfel’d double DHX of the
Hall algebra HX admits a natural SL2(Z) action, and they have used this action to give a
combinatorial presentation of UX in terms of convex paths in the rank 2 lattice of integers.
They have also proved that the spherical Hall algebra is a two-parameter flat deformation of the
algebra of diagonally symmetric functions C[x1, x2, . . . , y1, y2, . . .]S∞ .

In a more geometric direction, Schiffmann has constructed the algebra UX (or rather a
completion of it) as the (trace à la Grothendieck’s ‘faisceaux-fonctions correspondence’ of the)
Grothendieck group of a certain category of perverse sheaves on the moduli stack of coherent
sheaves on X. This category of perverse sheaves is proved to be exactly the category generated
by the simple factors of the principal Eisenstein sheaves as defined by Laumon in [Lau90] for an
elliptic curve.

In [SV11], it was proved that the spherical Hall algebra is isomorphic to the stable limit of the
spherical double affine Hecke algebra (DAHA) of GLn when n→∞. Inspired by this result the
authors of [SV11] exhibit a strong relationship between the symmetric Macdonald polynomials
and the spherical Hall algebra, and are able to give a geometric construction of the Macdonald
polynomials as the traces of certain Eisenstein sheaves on the moduli space of semistable vector
bundles on X.

Another interesting result is the connection between the spherical Hall algebra UX and the
equivariant K-theory of the Hilbert scheme of A2. In [SV12b], Schiffmann and Vasserot proved
that the convolution algebra in the equivariant K-theory of the Hilbert scheme of points of A2 is
isomorphic to the spherical Hall algebra and hence, by their previous result, to the stable limit
of spherical DAHA for GLn.

We have already mentioned that if the genus of the curve is bigger than 0 then the quadratic
functional equations for the Eisenstein series are no longer sufficient to give a presentation of the
Hall algebra. Kapranov, in [Kap97], asked what are the other functional equations satisfied by
the Eisenstein series that enable us to give a presentation of the Hall algebra. The same problem
can be stated for the spherical Hall algebra. In the case of an elliptic curve an answer to the
problem was given by Schiffmann in [Sch12a]. He proves that there is a cubic functional equation
for the Eisenstein series and that this relation coupled with the quadratic functional equations
provide a presentation of the spherical Hall algebra.
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Cusp eigenforms and the Hall algebra of an elliptic curve

0.4 Results
Let us describe the results of this paper in more detail. A word of warning is necessary: for the
purpose of this introduction we will simplify some notations and we will be a bit lax about some
technical details. References to precise statements and definitions in the text are made.

From now on X will denote an elliptic curve over a finite field Fq.
Let Coh(X) be the category of coherent sheaves on X. To every coherent sheaf F on

X we associate its class in the numerical Grothendieck group K′0(X) := Z2 given by F :=
(rk(F), deg(F)).

For every ν ∈Q ∪ {∞} we denote by Cν the full subcategory of Coh(X) of semistable sheaves
of slope ν. It is an abelian category stable by extensions. From Atiyah’s theorem (see [Ati57])
the categories Cν are all equivalent and hence their Hall algebras are all isomorphic.

For a class α= (r, d) ∈K′0(X) let us define the following element:

1ss
α :=

∑
F∈Cν
F=α

[F ],

the characteristic function of the semistable sheaves of class α, where ν := d/r.
The spherical Hall algebra U+

X is defined to be the subalgebra of HX generated by the
elements 1ss

(1,d), d ∈ Z and 1(0,d), d ∈ Z+. The function
∑

d∈Z 1ss
(1,d) is the simplest example of a

cusp eigenform. It can be proved that for any x ∈ Z+ the elements 1ss
x are contained in U+

X .
We can define similar subalgebras for any cusp eigenform, and then study them and see how

they interact inside the whole Hall algebra. This is roughly the path taken in [Kap97]. We will
pursue a different direction inspired by [BS05]. We will define subalgebras of HX , called twisted
spherical Hall algebras, by suitably twisting the generators of U+

X with characters of the Picard
groups. It will turn out that these subalgebras correspond exactly to the cusp eigenforms which we
were looking for. Moreover, this approach gives us explicit formulas for all these cusp eigenforms.

To this end, we define another set of generators Tx of U+
X by the following generating series:

1 +
∑
r>1

1ss
rαz

r = exp
(∑
r>1

Trα
[r]

zr
)

where α= (p, q) ∈ Z+ is such that gcd(p, q) = 1.
It is clear that the elements Tα, α ∈ Z+ generate the algebra U+

X .
In [BS05], there is defined an action of the group SL2(Z) on the Drinfel’d double DHX of

the Hall algebra HX . The newly defined generators Tα of U+
X enjoy a symmetry property:

γ · Tα = Tγ·α

where γ ∈ SL2(Z) and α ∈ Z+ are such that γ · α ∈ Z+.
Since for torsion sheaves we have a well-defined notion of support we can look at T(0,d),x, the

part of T(0,d) supported on the closed point x ∈X. It turns out that T(0,d) =
∑

x T(0,d),x. Now
using the above mentioned SL2(Z) action we can define similar elements Tα,x for any α ∈ Z+

and any closed point x ∈X. We still have the relation

Tα =
∑
x∈X

Tα,x.

It is not difficult to prove that the elements Tα,x for α ∈ Z+ and x ∈X generate the whole
Hall algebra HX .
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Fix a positive integer n> 1. For a character of the Picard group Pic0(Xn), where Xn :=
X × Spec(Fqn), we define a twisted average of the elements Tα,x, x ∈X, where α ∈ nZ+, by the
formula:

T ρ̃α =
∑
x∈X

ρ̃(x)Tα,x.

For precise definitions and notations see § 3.

To a character ρ ∈ ̂Pic0(Xn) we can associate the subalgebra Uρ̃,+
X of HX generated by the

elements T ρ̃α when α ∈ nZ+. We call this algebra the twisted spherical Hall algebra (for a precise
definition see § 3.5). If n= 1 and ρ is the trivial character of Pic0(X), then we get the spherical
Hall algebra as defined in [BS05].

We call a character ρ ∈ ̂Pic0(Xn) primitive if it has a maximal orbit under the Galois group
Gal(Fqn/Fq). We denote the union over all n> 1 of the primitive characters by P. The Langlands
correspondence for elliptic curves tells us that, roughly, the cusp eigenforms of rank n are
parametrized by the primitive characters of Pic0(Xn) (actually by their Galois orbits). One
of our main results states the following theorem.

Theorem 0.1 (See Theorem 5.1). (i) The automorphic form

T ρ̃n :=
∑
d∈Z

T ρ̃(n,nd)

is a cusp eigenform for every primitive character ρ ∈ ̂Pic0(Xn).

(ii) This gives essentially (up to a C× action) all the cusp eigenforms on the elliptic curve X.

As an immediate consequence we have that the algebra HX is generated by the subalgebras
Uρ̃,+
X for ρ ∈ P.

Our second main result concerns the structure of Uρ̃,+
X and of HX . Along the lines of [BS05]

we prove the following theorem.

Theorem 0.2 (See Theorem 5.2). (i) The algebra Uρ̃,+
X , for ρ ∈ ̂Pic0(Xn) a primitive character,

has a presentation of the following form (see § 3.6 for a precise definition):

it is generated by {tx | x ∈ Z+} modulo the following relations.

(a) If x, x′ are proportional, then

[tx, tx′ ] = 0.

(b) If x, y are such that δ(x) = 1 and such that the triangle ∆x,y has no interior lattice point,
then

[ty, tx] = εx,ycnδ(y)
θx+y

n(ν−1 − ν)
where the elements θz are defined by equating the coefficients of the following two series:∑

i>0

θiz0s
i = exp

(
n(ν−1 − ν)

∑
i>1

tix0s
i

)
for any x0 = (p, q) ∈ Z+ such that gcd(p, q) = 1.
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Cusp eigenforms and the Hall algebra of an elliptic curve

(ii) The twisted spherical Hall algebras Uρ̃,+
X , ρ ∈ P, centralize each other and moreover we

have an isomorphism of bialgebras

HX '
⊗′

ρ̃∈P
Uρ̃,+
X

where the
⊗′ stands for restricted tensor product.

Remark 0.3. The same description of the Hall algebra HX has been obtained recently in [KSV11]
using shuffle algebras.

In [Kap97, § 3.8], Kapranov posed the following problem: find a presentation of the Hall
algebra in terms of the homogeneous parts of the cusp eigenforms and the torsion sheaves
appearing in the formula for the coproduct of these cusp forms. In our context and with the
above notations the question is to find a presentation of the algebra Uρ̃,+

X but only in terms of
the generators T ρ̃(n,±nd), T

ρ̃
(0,nd), d ∈ Z+. Otherwise, it asks for the higher rank relations satisfied

by the residues of the Eisenstein series associated to the cusp eigenform T ρ̃n .
In [Sch12a] an answer to the above question for the spherical Hall algebra UX and X an

elliptic curve is given. Our presentation of Uρ̃,+
X and HX coupled with the results of [Sch12a]

give a complete answer to the above question for the whole Hall algebra in the case of elliptic
curves.

0.5 Outline results
Let us outline the contents of the paper. In § 1 we introduce the notations and we recall Atiyah’s
theorem about vector bundles on elliptic curves. In § 2 we define the Hall algebra HX of X and
its Drinfel’d double DHX . Then we recall the action of SL2(Z) on DHX . We recall the notion
of a cuspidal element in the Hall algebra and the Hecke operators. These are analogous to the
number theoretical situation. In § 3 we define the twisted spherical Hall algebras which will be
the main objects of study in this work. The purpose of § 4 is to give a refresher on automorphic
forms and Rankin–Selberg L-functions as well as to state some of the results of [Kap97] relevant
to our situation. We follow closely the presentation given in [Kap97] to which we refer for full
details. In § 5 we state our main results. In §§ 6 and 7, the technical heart of the paper, we work
out the Langlands correspondence and the actions of the Hecke operators for elliptic curves as
well as some formulas for the Hecke operators in the Hall algebra. In § 8, using the formulas
previously found in §§ 6 and 7, we prove our main results. We include in Appendix A the proofs
of some lemmas which do not fit within the body of the article.

1. Notations and Atiyah’s theorem

In this section we begin by fixing the notations we will use throughout. Then we recall Atiyah’s
classification of vector bundles on an elliptic curve and the theorems of Kuleshov and of Geigle
and Lenzing.

1.1 We fix once and for all an isomorphism of fields between C and Ql, where l 6= p, which is
the identity on Q.

We set Z := Z2, Z∗ := Z− {(0, 0)} and Z± :=±{(q, p) ∈ Z : q > 0 or q = 0 and p> 0}. For a
point x = (q, p) ∈ Z we put δ(x) = gcd(q, p).

If λ= (λ1, . . . , λn) is a partition, then we denote by l(λ) = n its length and by |λ|=
∑

i λi
its size.
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If ν ∈ C∗ − {±1}, then we define the ν-integers by the usual formula

[r]ν =
νr − ν−r

ν − ν−1
.

If ν = v = q−1/2, then we denote [r]ν simply by [r].
For a finite abelian group G we denote by Ĝ its group of characters.

1.2 The letter q will denote a power of a prime number p, k = Fq the finite field with q elements,
X an elliptic curve over Fq (i.e. a smooth projective curve of genus 1 with a rational point)
which is geometrically irreducible. We will fix the ‘origin’ of the curve to be a rational point
x0 ∈X(Fq). For a closed point x ∈X we will denote by OX,x the ring of regular functions at x,
by k(x) its residue field, by Ox the torsion sheaf supported at x whose stalk at x is k(x) and set
qx = #k(x).

We will denote by Coh(X) the category of coherent sheaves on X. For an extension of finite
fields Fqn of Fq we will denote by Xn the fibered product X ×Spec(Fq) Spec(Fqn). By a sheaf we
will always mean a coherent sheaf. Since we will only deal with (the group) Ext1 we will denote
it simply by Ext.

As we fixed the origin we have (by the Riemann–Roch formula) a bijective application
X(Fqn) =Xn(Fqn)→ Pic0(Xn) given by x 7→ OXn(x− x0). Therefore we can transport the group
structure from Pic0(Xn) to X(Fqn) and x0 will be the neutral element. Moreover, the inclusions
X(Fqm)⊆X(Fqn) for m | n are compatible with the group structure. To avoid confusion with
the addition of divisors, if x, y are points in X(Fqn), we will denote their sum in the group law
by x⊕ y ∈X(Fqn).

On the scheme X we have the Frobenius endomorphism FrX which is the identity at the level
of (topological) points and the raising at the qth power at the level of functions.

If R is an Fq-algebra, then this Frobenius endomorphism acts on the R-points X(R) of X by

composition: FrX ◦ xR : SpecR xR−→X
FrX−→X. In particular, for R= Fqn , we get an action of the

Frobenius on the set X(Fqn) of Fqn-points of X, and moreover this action is compatible with the
group structure of X(Fqn). If m | n are positive integers, then we have an obvious identification
X(Fqm) =X(Fqn)FrmX . In particular, X(Fqn) =X(Fq)FrnX .

If we denote by |X| the closed points of the scheme X, then we have an identification of sets
|X| 'X(Fq)/FrX where the quotient means that two Fq-points of X are identified if they have
the same orbit under the Frobenius action FrX . Similarly we have |Xn| 'X(Fq)/FrnX . These two
equalities allow us to define an action of FrX at the level of closed points of Xn. We denote this
action by frobn : |Xn| → |Xn|. It is clear that |Xn|/frobn = |X|.

1.3 The Grothendieck group K0(X) of Coh(X) is isomorphic to Z⊕ Pic(X) and the isomorphism
is given by F 7→ (rk(F), det(F)). Moreover, if we compose this morphism with the one sending
a line bundle to its degree we get a group homomorphism K0(X)→K′0(X) := Z2 given by
F 7→ (rk(F), deg(F)). We will call K′0(X) the numerical Grothendieck group, and for a sheaf
F we will denote by F its image in this group.

On K0(X) we have the Euler bilinear form

〈F , G〉 := dim Hom(F , G)− dim Ext(F , G).

Since the canonical sheaf of an elliptic curve is trivial, the Serre duality gives
dim Hom(F , G) = dim Ext(G, F). In particular we see that the Euler form is skew-symmetric.
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The kernel of the map K0(X) 7→K′0(X) is given by the radical of this bilinear form. Therefore
the Euler form descends to a bilinear form on the numerical Grothendieck group which reads
(by the Riemann–Roch formula):

〈(r1, d1), (r2, d2)〉= r1d2 − r2d1.

1.4 Recall the Frobenius endomorphism FrX of X. By extension of scalars we can define an
endomorphism FrX,n :Xn→Xn of Xn which we will call the Frobenius endomorphism of Xn

relative to X.
If Φn : Pic0(Xn)→X(Fqn) is the isomorphism we fixed at the beginning (see § 1.1), then we

have a commutative diagram.

Pic0(Xn)

Φn
��

Pic0(Xn)
Fr∗X,noo

Φn
��

X(Fqn)
FrX

// X(Fqn)

The Frobenius Fr∗X,n acts (by duality) on each group ̂Pic0(Xn) and we will denote this action

simply by FrX,n. We will also denote by ˜Pic0(Xn) the quotient ̂Pic0(Xn)/FrX,n.
If n, m are positive integers such that m | n, then we define the relative norm maps

Normn
m : Pic(Xn)→ Pic(Xm) by

Normn
m(L) :=

n/m−1⊗
i=0

(Fr∗X,n)mi(L).

The fact that the map is well defined follows from Galois descent: namely, if we have a line
bundle on X such that it is isomorphic to its Frobenius conjugate, then the line bundle descends
to a line bundle on X. For a proof see, for example, [HN75, Lemma 1.2.1].

By dualizing, we obtain relative norm maps between the character groups for which we will
use the same notation,

Normn
m : ̂Pic0(Xm)→ ̂Pic0(Xn),

hoping that it will not cause any confusion.
Recall that we fixed a rational point x0 on X and therefore for any integers n> 1 and d ∈ Z

we can identify canonically Picd(Xn)≡ Pic0(Xn). This allows us to extend trivially any character
ρn of Pic0(Xn) to a character of Pic(Xn) by putting ρn(OXn(x0)) = 1. Unless otherwise specified
we will view the characters of Pic0(Xn) as characters of Pic(Xn).

Set X̃ :=
∐
n

˜Pic0(Xn). For a character ρ̃ ∈ X̃ we will say that it is a character of degree n if

ρ̃ ∈ ˜Pic0(Xn). Sometimes we will abuse language and call the elements of X̃ characters even if
they are actually orbits of characters.

1.5 For a sheaf F on X we denote its slope by µ(F) = deg(F)/rk(F). We say that a sheaf
F on X is semistable (respectively stable) if for any subsheaf 0 ( G ( F we have µ(G)6 µ(F)
(respectively µ(G)< µ(F)). For µ ∈Q ∪ {∞} we will denote by Cµ the full subcategory of Coh(X)
of semistable sheaves of slope µ. It is easy to see that Cµ is an abelian category, closed under
extensions, and the simple objects are exactly the stable sheaves. Notice that C∞ is the category
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of torsion sheaves. It follows from the definitions and from Serre duality that if µ > ν then
Hom(Cµ, Cν) = 0 and Ext(Cν , Cµ) = 0.

Atiyah gave a precise description of the category of sheaves on X, namely the following.

Theorem 1.1 [Ati57]. Any sheaf on X can be written essentially uniquely as a direct sum of
semistable sheaves. For any µ ∈Q we have an exact equivalence of categories between Cµ and C∞.

Atiyah’s proof of this theorem also provides an algorithm to compute these equivalences. His
proof is for an algebraically closed field of characteristic zero, but his methods can be extended
to the finite field case.

We would like to recall here a different (but of the same flavor) algorithm (or proof) given by
Kuleshov [Kul90] in the case of elliptic curves and by Lenzing and Meltzer [LM94] in the case
of weighted projective lines of genus 1 using mutations.

Let τ be a torsion sheaf of degree n and let O denote the trivial line bundle on X. We will
denote by V(τ) the vector bundle which is the ‘universal extension’ of τ by O. This means that
V (τ) fits in an exact sequence of the form

0→O⊗ Ext(τ,O)∗→V(τ)→ τ → 0,

and the class of V(τ) in Ext(τ,O ⊗ Ext(τ,O)∗) = End(Ext(τ,O)) is the identity.
For every µ ∈Q we have obvious equivalences of categories Cµ→ Cµ+1 given by V 7→

V ⊗O O(x0).

Theorem 1.2 (Kuleshov, Geigle–Lenzing). The correspondence τ 7→ V(τ)⊗O(lx0) from C∞
to Cl+1 gives an exact equivalence of categories for every l ∈ Z.

In fact the above construction can be adapted to include all the slopes µ ∈Q, but since we
will not use it here we refer the interested reader to the original papers [Kul90, LM94]. See
also [Sch04, Proposition 8.3] and [Sch12b, § 1].

2. Hall algebra of X

In this section we will define the Hall algebra of X, its Drinfel’d double, the SL2(Z) action, the
cuspidal elements and the Hecke operators. For a nice account of the theory of Hall algebras one
can consult [Sch09].

2.1 Fix a square root v of q−1. Let HX be the C-vector space which has a basis given by {[F ]}
where F runs through the isomorphism classes of objects in Coh(X).

To a triple (F , G,H) of sheaves on X we associate the number PHF ,G of exact sequences

0→G →H→F → 0.

For a sheaf F we denote by aF the cardinal of its automorphism group.
On the vector space HX we define, following [Gre95, Rin90], an associative product

[F ] · [G] := v−〈F ,G〉
∑
H

PHF ,G
aFaG

[H],

a coassociative coproduct

∆([H]) :=
∑
F ,G

v−〈F ,G〉
PHF ,G
aH

[F ]⊗ [G],
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a counit

ε[F ] := δF ,0

and a Hermitian form

([F ], [G]) := δF ,G
1
aF

which is in fact a nondegenerate Hopf pairing, i.e. we have (ab, c) = (a⊗ b,∆(c)).

The vector space HX endowed with these operations is a topological bialgebra. Topological
here means that the coproduct does not actually take values in the tensor product HX ⊗HX

but rather in some completion of it (see [BS05, § 2.3] or [Sch09, Lecture 1] for details).

A more geometric way of defining the Hall algebra is as follows. Consider the space
Fun0(MX , C) of C-valued functions with finite support on the set MX of isomorphism classes
of objects of Coh(X). The set MX should be viewed as some ‘moduli’ space for the objects of
Coh(X). This space of functions identifies naturally as a vector space with HX . We can endow
Fun0(MX , C) with a convolution product: namely, let f, g :MX → C be two functions with
finite support. Then we define

(f ? g)(F) =
∑
G⊆F

v−〈F/G,G〉f(F/G)g(G).

It is easy to see that, using the identification of HX with Fun0(MX , C), we obtain the same
structure of algebra on HX as defined in the previous paragraph.

The coalgebra structure is defined (or proved to be, see [Sch09, Proposition 1.5]) in this new
setting as

∆(f)(F , G) = v〈F ,G〉−2 dim(Ext(F ,G))
∑

ξ∈Ext1(F ,G)

f(cone(ξ)[−1]).

We will use these two definitions of the Hall algebra interchangeably depending on which one
is more adapted to the given situation.

The Hall algebra HX has a natural grading over the numerical Grothendieck group K′0(X) =
Z2 given by HX [α] :=

⊕
F=α K[F ].

We will denote by Htor
X :=

⊕
d>0 HX [0, d] the subalgebra (in fact subbialgebra) of torsion

sheaves and by Hvec
X :=

⊕
(r,d)∈Z2,r>0 Hvec

X [r, d] the subalgebra of vector bundles. Observe though
that Hvec

X is not a subcoalgebra of HX . We denote by πvec the projection map HX →Hvec
X .

2.2 Recall that when we have a bialgebra endowed with a Hopf pairing we can construct its
Drinfel’d double. We will review here its definition in our context, and we invite the interested
reader to take a look [Jos95] or [KRT97] for more details and proofs.

We use Sweedler’s notation for the coproduct: namely, if a ∈HX we denote

∆(a) = a(1) ⊗ a(2)

the summation being understood.

We take two copies of HX which we will denote, in order to avoid confusion, by H+
X and H−X .
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The Drinfel’d double of HX is defined as the quotient of the free product algebra H+
X ∗H

−
X

by the relations

b−(1)a
+
(2)(b(2), a(1)) = a+

(1)b
−
(2)(b(1), a(2))

where ( , ) is the Green product and the overline means complex conjugation1 of the coefficients.
It can be proved that we have an isomorphism of vector spaces DHX 'H+

X ⊗H−X .
Seidel and Thomas [Sei01] have constructed, using the Fourier–Mukai transform, an action

of the braid group B3 on the bounded derived category Db(Coh(X)). Moreover, in our case,
this action is compatible with Atiyah’s classification of coherent sheaves on X. This means
that we can obtain all the above equivalences C∞ ' Cµ as restrictions of certain Fourier–Mukai
transforms. We will briefly review their construction and refer the reader to their paper [Sei01]
for full details.

Let E be a spherical object of the derived category Db(Coh(X)), i.e. E satisfies Hom(E , E) =
Hom(E , E [1]) = k. Seidel and Thomas considered the functor TE :Db(Coh(X))→Db(Coh(X))
defined by

TE(F) = cone(ev : RHom(E , F)⊗k E →F).

The functor TE is an exact equivalence of categories for any spherical object E [Sei01,
Proposition 2.10]. By [Sei01, Lemma 3.2] the functor TE is isomorphic to the Fourier–Mukai
transform with kernel

cone(E∨ � E →O∆) ∈ Db(Coh(X ×X)).

Observe that the objects OX ,Ox0 are spherical, and hence the functors TOX , TOx0 provide
autoequivalences of the category Db(Coh(X)). These two equivalences satisfy a braid relation
(see [Sei01, Proposition 2.13]):

TOx0TOXTOx0 = TOXTOx0TOX .

Proposition 2.1 ([Sei01] and [BS05, Proposition 1.2]). Let Φ := TOx0TOXTOx0 . Then Φ2 =
i∗[1] where i is an involution of the curve X.

By the above, the group generated by TOX , TOx0 , [1] in Aut(Db(Coh(X))) is isomorphic to
the universal covering group S̃L2(Z) of SL2(Z) which is given by the unique nontrivial central
extension of SL2(Z) by Z = 〈[1]〉.

In [BS05, § 3] Schiffmann and Burban proved the following important result.

Theorem 2.2 [BS05, Corollary 3.10]. The S̃L2(Z) action on Db(Coh(X)) descends to an action
of SL2(Z) by algebra automorphisms on DHX .

In the following we will exploit extensively this symmetry of the Hall algebra.

Remark 2.3. Recently, Cramer [Cra10] has extended this result by proving more generally that
any derived autoequivalence of a hereditary category induces an automorphism of the Drinfel’d
double of the Hall algebra.

2.3 In this paragraph we define the notion of cuspidality for elements in the Hall algebra. This
notion is equivalent to the usual definition of cusp automorphic forms in number theory. We will
prove some basic results about these elements.

1 The Drinfel’d double is defined for a bilinear Hopf pairing so we needed to make our sesquilinear Green form
bilinear by conjugating the second term.
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Definition 2.4. An element f ∈HX [r, d]vec, r > 0, is cuspidal if for any vector bundles V,W
on X we have (f, [V] · [W]) = 0.

Observe that [L] is cuspidal for any line bundle L.
The above condition is equivalent to ∆(f) ∈Hvec

X ⊗Htor
X + Htor

X ⊗Hvec
X .

Proposition 2.5. The algebra HX is generated by Htor
X together with the set of cuspidal

elements.

Proof. Denote by B the subalgebra generated by the cuspidals and by the torsion sheaves, and
by B⊥ its orthogonal in HX with respect to Green’s scalar product. Since this scalar product is
nondegenerate it suffices to prove that B⊥ = 0.

Let f ∈B⊥, f 6= 0 be of smallest rank. As f is not cuspidal there exist vector bundles V,W
of smaller rank such that (f, V · W) 6= 0. However, since f was chosen to be of minimal rank in
B⊥ it follows that V and W are in B and therefore f 6∈B⊥, which is a contradiction. 2

For each integer r > 1 denote by H6rX (respectively H<r
X ) the subalgebra of HX generated by

the torsion sheaves plus all the vector bundles of degree less than or equal to r (respectively less
than r).

Proposition 2.6. An element f ∈HX [r, d] is a cusp form if and only if f ∈ (H<r
X )⊥, where ⊥

means the orthogonal with respect to Green’s form.

Proof. If f is a cusp form of rank r then, by the definition, we have (f, V · W) = 0 for any V,W
vector bundles of rank less than r. By linearity it follows that f ⊥H<r

X .
Conversely, let f ∈HX [r, d] ∩ (H<r

X )⊥. Then f is orthogonal to any element in H<r
X ; in

particular, it is orthogonal to any product [V] · [W] where V,W are vector bundles of rank
less than r. Therefore f is a cusp form. 2

Lemma 2.7. Let f ∈HX [r, d] be a cusp form. Write

∆(f) = f ⊗ 1 +
∑
i,l

θi,l ⊗ fi,l

where θi,l ∈HX [0, l] and fi,l ∈HX [r, d− l] such that θi,l are mutually orthogonal (with respect
to the Green form). Then the fi,l are cusp forms.

Proof. We will proceed by contradiction. Suppose there existed some i0, d0 such that fi0,l0 would
not be cuspidal. Then there would exist a, b ∈H>0

X such that (fi0,l0 , a · b) 6= 0.
Therefore we have that (∆(f), θi0,l0 ⊗ a · b) = ‖θi0,l0‖2(fi0,l0 , a · b) 6= 0. However, by using the

Hopf property of Green’s form we get that (∆(f), θi0,l0 · a⊗ b) 6= 0 which is a contradiction with
the cuspidality of f . 2

2.4 Hecke operators
In this subsection we introduce the action of the Hecke operators and we state some of their
properties.

Recall that Htor
X is the Hall algebra of torsion sheaves on X and that Hvec

X is the subalgebra
of HX that consists of functions supported on the vector bundles.
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Definition 2.8. The Hecke operators are given by the application H : Htor
X ⊗Hvec

X →Hvec
X

which is defined by

Hτ (f)(V ′) :=
∑
V⊆V ′
V ′/V'τ

f(V)

where τ ∈Htor
X and f ∈Hvec

X .

We callHτ the Hecke operator associated to τ ∈Htor
X and Htor

X the algebra of Hecke operators.
As HX is an associative algebra we see that the Hecke operators make Hvec

X a left Htor
X -

module. It is the structure of this module (or rather of a completion of it) that is very important
in the classical Langlands correspondence. The determination of its structure as a module over
the algebra of Hecke operators is equivalent to the understanding of the automorphic side in the
Langlands correspondence.

Proposition 2.9. If τ ∈HX [0, d]⊂Htor
X and if f ∈HX [n, d′]vec, then

Hτ (f) = v−rdπvec(τ · f) ∈HX [r, d+ d′]vec

where the multiplication is made in the Hall algebra HX .

Proof. This follows immediately by the definition of the product in the Hall algebra and by the
above formula for the Hecke operators. 2

Recall that a primitive element in a coalgebra (C,∆, ε) is an element x ∈ C that satisfies
∆(x) = x⊗ 1 + 1⊗ x.

For the primitive elements of Htor
X we actually have a nicer description of the associated

Hecke operator.

Lemma 2.10. Let τ ∈HX [0, d] be a primitive element and let f ∈Hvec
X [r, d′]. Then we have

Hτ (f) = v−rd[τ, f ]

where the commutator is taken in the Hall algebra HX .

Proof. By the previous proposition, all we need to prove is that [τ, f ] = πvec(τ · f), or in other
words that the element [τ, f ] of the Hall algebra is supported on the vector bundles. It is enough
to do this for f of the form f = V where V is a vector bundle of rank n and degree d′.

Let F be a coherent sheaf of rank n which is not a vector bundle. We want to prove that
〈[τ, V], F〉= 0. We can write F = vdV ′ · τ ′ for some vector bundle V ′ a (nontrivial) torsion sheaf
τ ′ and an integer d ∈ Z.

Write ∆(V) := V ⊗ 1 +
∑
cF ′,W ′F ′ ⊗W ′ where W ′ are nonzero vector bundles and F ′ are

coherent sheaves.
By the Hopf property of the Green pairing we have

〈[τ, V], F〉 = vd〈[τ ⊗ 1 + 1⊗ τ,∆(V)], V ′ ⊗ τ ′〉
= vd〈[τ ⊗ 1 + 1⊗ τ, V ⊗ 1], V ′ ⊗ τ ′〉

+ vd
∑

cF ′,W ′〈[τ ⊗ 1 + 1⊗ τ, F ′ ⊗W ′], V ′ ⊗ τ ′〉

= vd〈[1⊗ τ, V ⊗ 1], V ′ ⊗ τ ′〉
= 0

where we used the fact that τ ′ is a nonzero torsion sheaf and that W ′ are nonzero vector
bundles. 2
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Corollary 2.11. Let τ1, . . . , τs ∈Htor
X be primitive elements of degree d1, . . . , ds and let V be

a vector bundle of rank r. Then

Hτ1·...·τs(V) = v−r(d1+···+ds)[τ1, [τ2, . . . , [τs, V] . . .]].

Proof. From the associativity of the product in the Hall algebra and the previous lemma we
have Hτ1·τ2 =Hτ1 ◦ Hτ2 . 2

3. Twisted spherical Hall algebras

We define in this section a generalization of the spherical Hall algebra as introduced and studied
in [BS05]. We will call them twisted spherical Hall algebras and they will be one of the main
objects of study in this work.

3.1 Let us begin by recalling some properties of the classical Hall algebra (i.e. the Hall algebra
of finite modules over a discrete valuation ring).

If l is a finite field we denote by u a square root of #l−1. Denote by Al the category of finite
modules over the discrete valuation ring A := l[[t]]. There exists a unique (up to isomorphism)
indecomposable module of length r, denoted I(r), which is defined as the quotient A/trA. For
a partition λ= (λ1, . . . , λn) we write Iλ := I(λ1) ⊕ · · · ⊕ I(λn). The collection {Iλ}λ where λ
runs over all partitions is a complete collection of representatives for the isomorphism classes
of objects of Al. The Hall algebra of the category Al is discussed at full length in [Mac95,
Chapters II and III]. Let us denote by Λt the Macdonald’s ring of symmetric functions over
C[t±1] and by eλ (respectively pλ) the elementary (respectively power-sum) symmetric functions.

We summarize the properties we need about HAl
in the following proposition.

Proposition 3.1 [Mac95]. The assignment I(1r) 7→ ur(r−1)er extends to a bialgebra isomor-

phism Ψl : HAl
→ Λt|t=u2 . Set Fr := Ψ−1

l (pr). Then:

(i) Fr =
∑
|λ|=r nu(l(λ)− 1)Iλ where nu(l) =

∏l
i=1(1− u−2i);

(ii) ∆(Fr) = Fr ⊗ 1 + 1⊗ Fr, and {Fr, r ∈ N} constitutes a basis of primitives in the coalgebra
HAl

;

(iii) (Fr, Fs) = δr,s(rur/(u−r − ur)).

Proof. The proofs may be found in [Mac95, III.7 Example 2, I.5 Example 25 and III.4(4.11)]. 2

3.2 Let x be a closed point of X. Denote by kx its reside field. We will denote by |x| the degree
of x, which by definition is the degree of the field extension kx/k. Consider the category Torx
of torsion sheaves on X supported at x. We have an equivalence of categories Torx 'Akx which
provides us with an isomorphism of bialgebras Ψkx : HTorx → Λt|t=v2|x| .

For r ∈ N and x ∈X we define the elements T(0,r),x ∈HX by the formula

T(0,r),x :=

0 if |x| 6 | r,
[r]
r
|x|Ψ−1

kx
(pr/|x|) if |x| | r.

Explicitly, using Proposition 3.1(1), we have

T(0,r),x :=
[r]|x|
r

∑
|λ|=r/|x|

nux(l(λ)− 1)O(λ)
x .

927

https://doi.org/10.1112/S0010437X12000784 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000784


D. Fratila

Recall that we have an action of SL2(Z) on the algebra DHX . For any x ∈ Z2 − {0} we define
the elements Tx,x by translating the above T(0,r),x elements using this action. More precisely, for
γ ∈ SL2(Z) we define Tγ·(0,r),x := γ · T(0,r),x.

Definition 3.2. For a character ρ̃ ∈ ˜Pic0(Xn) and a closed point x ∈X we define

ρ̃(x) :=
1
n

n−1∑
i=0

ρ((Fr∗X,n)i(OXn(x′))) =
1
d

d−1∑
i=0

ρ((Fr∗X,n)i(OXn(x′)))

where x′ ∈Xn is a closed point that sits above x and d= gcd(|x|, n).

This definition does not depend on the representative of ρ̃ nor on the point x′ we chose since
it is an averaging over all these possible choices.

Definition 3.3. For a character ρ̃ ∈ X̃ (see Paragraph 1.4) and for a point x ∈ Z∗ we define the
element

T ρ̃x :=
∑
x∈X

ρ̃(x)Tx,x.

Proposition 3.4. The set {T ρ̃x | x ∈ Z+, ρ̃ ∈ ˜Pic0(Xd), d= δ(x)}, generates the Hall algebra

HX . Similarly, the set {T ρ̃x | x ∈ Z∗, ρ̃ ∈ ˜Pic0(Xd), d= δ(x)} generates the double Hall
algebra DHX .

Proof. We only prove the second part, the first one being a consequence. For the moment, let
us denote by B the subalgebra defined above.

It is clear that T ρd(0,d), d > 0, ρd ∈ ˜Pic0(Xd) generate the Hall algebra of the torsion sheaves
because of the fact that, in general, any function on a finite commutative group can be written
as a linear combination of characters.

Now using the action of the SL2(Z) on DHX and its compatibility with the definition of T ρ̃x
we see that any semistable sheaf is in the algebra B, and since the Hall algebra is generated by
the semistable sheaves we see that DHX ⊆B. 2

3.3 In this paragraph we take a small detour to give a useful description of the primitive elements
of the (bi)algebra of Hecke operators. We will use this description in the course of the proof of
our main results.

Lemma 3.5. A basis for the primitive elements in the Hall algebra is given by T(0,d),x, x ∈X,
d> 1. Moreover, these elements generate the Hall algebra of torsion sheaves.

Proof. First of all it is clear that a primitive element should be supported on a single point.
Then the statement follows from Proposition 3.1 and the fact that the power-sum functions are
a basis for the primitive elements of the Macdonald’s symmetric functions algebra and that they
generate it as an algebra. To conclude we only need to observe that we can write Htor

X as a
(commutative) restricted tensor product Htor

X '
⊗′

x∈X Htor
X,x where Htor

X,x is the Hall algebra of
torsion sheaves supported at x. 2

Corollary 3.6. A basis for the primitive elements in the Hall algebra is also given by

{T ρ̃0,d, d> 1, ρ̃ ∈ ˜Pic0(Xd)}.
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Proof. This statement is clear because the characters of an abelian group are a basis for the
space of functions on this group. 2

3.4 We introduce the notion of primitivity for characters and state some of their basic properties.

Definition 3.7. We call a character ρn ∈ ̂Pic0(Xn) primitive (of degree n) if its orbit under the
Frobenius endomorphism FrX,n is of maximal cardinal, i.e. if it is of cardinal n.

We will denote the set of primitive characters of degree n modulo the action of Frobenius by
Pn and the set of all primitive characters modulo the Frobenius by P :=

∐
n>1 Pn.

Observe that all the characters of degree 1, i.e. those which are in P̂ic0(X) = P̃ic0(X), are
primitive. The following lemma is proved in Appendix A (see Lemma A.1).

Lemma 3.8. A character ρ ∈ ̂Pic0(Xn) is primitive if and only if there does not exist a character

χ ∈ ̂Pic0(Xd), d < n, d | n, such that ρ= Normn
d (χ).

Corollary 3.9. If ρ ∈ ̂Pic0(Xn), then either it is primitive or there exists a primitive character

χ ∈ ̂Pic0(Xd), d | n, d < n, such that ρ= Normn
d (χ).

Proof. We apply the previous lemma and we take the smallest possible d which satisfies the
property that there exists χ ∈ ̂Pic0(Xd) such that ρ= Normn

d (χ). Then if χ is not primitive, by

the same lemma, there exists a character χ′ ∈ ̂Pic0(Xd′) where d′ < d such that χ= Normd
d′(χ

′).
This contradicts the minimality of d. 2

3.5 We now have all the ingredients to define the twisted spherical Hall algebras.

Definition 3.10. Let n> 1 and ρ̃ ∈ Pn be a primitive character. We define the algebra Uρ̃
X ,

called the twisted spherical Hall algebra of X and character ρ̃, as being the subalgebra of DHX

generated by the elements

{TNormnδ(x)
n (ρ̃)

nx , x ∈ Z∗}.
We define similarly the positive (respectively negative) part Uρ̃,+

X (respectively Uρ̃,−
X ) by

requiring in the above definition that x ∈ Z+ (respectively x ∈ Z−).

Observe that if n= 1 and ρ̃= 1 ∈ P̃ic0(X), the trivial character, then the above definition
specializes to the spherical Hall algebra UX as defined in [BS05, § 4] or as considered implicitly
in [Kap97, § 3.8 and § 5].

3.6 In this subsection we recall the combinatorial description of the spherical Hall algebra as
discovered in [BS05, § 5].

We first need to introduce some notations. For two points x, y ∈ Z∗ which are not proportional
we denote by εx,y := sign(det(x, y)) ∈ {±1} and by ∆x,y the triangle formed by the vectors
o, x, x + y where o = (0, 0) is the origin.

We arrive now at the definition of the universal spherical Hall algebra (see also [BS05, § 6]).

Definition 3.11. Fix σ, σ ∈ C∗ with σ, σ 6∈ {±1}, and set ν := (σσ)−1/2 and

ci := (σi/2 − σ−i/2)(σi/2 − σ−i/2)[i]ν/i.
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Let Enσ,σ be the C-algebra generated by {tx | x ∈ Z∗} modulo the following relations.

(i) If x, x′, o are collinear, then

[tx, tx′ ] = 0.

(ii) If x, y are such that δ(x) = 1 and that ∆x,y has no interior lattice point, then

[ty, tx] = εx,ycnδ(y)
θx+y

n(ν−1 − ν)

where the elements θz are defined by equating the coefficients of the following two series:∑
i>0

θiz0s
i = exp

(
n(ν−1 − ν)

∑
i>1

tix0s
i

)
for any x0 ∈ Z∗ such that δ(x0) = 1.

The algebra Enσ,σ comes equipped with a natural SL2(Z) action given by γ · tx = tγ·x where
γ ∈ SL2(Z) and x ∈ Z∗.

Let us give a more detailed description of the algebra Enσ,σ following [BS05, § 5].
Recall that we wrote Z = Z2 and denoted by o = (0, 0) the origin of Z. By a path in Z we

understand a sequence p = (x1, . . . , xr) of nonzero elements of Z which we represent graphically
as the polygonal line in Z that joins the points o, x1, x1 + x2, . . . , x1 + · · ·+ xr. Let x̂y ∈ [0, 2π)
denote the angle between the segments ox and oy. We will call a path p = (x1, . . . , xr) convex if
x̂1x2 6 x̂1x3 6 · · ·6 x̂1xr < 2π. Put L0 := N(0,−1) and let Conv′ be the collection of all convex
paths p = (x1, . . . , xr) satisfying x̂1L0 > · · ·> x̂rL0. Two convex paths p and q in Conv′ are
said to be equivalent if p is obtained by permuting several segments of q of the same slope.
For example the path ((0, 1), (0, 2), (1, 3)) is equivalent to the path ((0, 2), (0, 1), (1, 3)). We
denote by Conv the set of equivalence classes of paths in Conv′ and we will call the elements of
Conv simply paths. We introduce the positive paths Conv+ and the negative paths Conv− as
the paths p = (x1, . . . , xr) ∈Conv such that x̂rL0 > π respectively π > x̂1L0. By concatenating
paths we obtain an identification Conv ≡Conv+ ×Conv−.

Fix an integer n> 1. To a path p = (x1, . . . , xr) ∈Conv we associate the element tp ∈ Enσ,σ
defined by

tp := tx1 · · · · · txr .
Observe that this is a well-defined element of Enσ,σ due to the relation (1).

In [BS05, Lemma 5.6] it is proved that {tp | p ∈Conv} is a C-basis for the algebra E1
σ,σ

when σ, σ are specialized to be the eigenvalues of the Frobenius endomorphism on the first étale
cohomology group of X.

With the above choice of σ and σ, one of the main results of [BS05] is the following theorem.

Theorem 3.12 [BS05, Theorem 5.4]. The assignment Ω : tx 7→ Tx for x ∈ Z extends to an
algebra isomorphism

Ω : E1
σ,σ→UX ⊗K C.

This isomorphism obviously intertwines the action of SL2(Z) on the two algebras.
One of the goals of this article is to extend the above result to all the twisted spherical Hall

algebras and use it to study the cusp eigenforms on X. It will turn out that each algebra Uρ̃
X is

in fact the subalgebra generated by the coefficients of a cusp eigenform and some torsion sheaves

930

https://doi.org/10.1112/S0010437X12000784 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X12000784


Cusp eigenforms and the Hall algebra of an elliptic curve

naturally associated to this cusp form. As a byproduct we obtain a description of the entire Hall
algebra HX : it is isomorphic to the infinite (restricted and commutative) tensor product of all
the twisted spherical Hall algebras.

4. Automorphic forms and Rankin–Selberg L-functions

We will review here the basic setup of (unramified) automorphic forms and recall the definition
of Rankin–Selberg L-functions. This section is based on [Kap97, §§ 2 and 3]; we invite the reader
to take a look at this work for a more thorough discussion. Throughout we will only work over
an elliptic curve, but everything makes sense for an arbitrary smooth projective curve.

4.1 We denote by KX the field of rational functions on X, by AX the ring of adèles on X, and
by OX the integer adèles.

By a theorem of Weil we know that the set Bunn(X) can be identified with the double
quotient GLn(KX)\GLn(AX)/GLn(OX).

An unramified automorphic form of rank n on X is a C-valued function on Bunn(X).2 Since
we only deal with unramified automorphic forms we will suppress the adjective ‘unramified’.
We denote the vector space of automorphic forms of rank n on X by AFn. Observe that the
automorphic forms with finite support are elements of the Hall algebra HX .

We say that an automorphic form f of rank n is a cusp form if for any proper parabolic
subgroup P 6GLn and for any g ∈GLn(AX) we have∫

UP (KX)\UP (AX)
f(ug) du= 0

where UP is the unipotent radical of P .
In the language of Hall algebras this definition can be restated as follows: an automorphic

form f of rank n is a cusp form if for any nonzero fiber bundles V,W of ranks n′, n′′ < n we have
that ∑

ξ∈Ext(V,W)

f(Cone(ξ)[−1]) = 0

where the notations are the same as for the Hall algebra.
Let AFcusp

n denote the set of cusp forms of rank n and by AFcusp
n,d the set of cusp forms of rank

n and degree d. We have the following important proposition.

Proposition 4.1. Every function f ∈ AFcusp
n,d has finite support and the space AFcusp

n,d is finite
dimensional.

This result for an arbitrary curve X is a consequence of Harder’s reduction theory. See for
example [Har69, Har74]. However, in our case, X an elliptic curve, the proof is not difficult and
we can sketch it here. It is easy to see that the cusp forms are supported on the semistable
sheaves (because the Harder–Narasimhan filtration splits and this in turn because the canonical
sheaf of X is trivial) and from Atiyah’s theorem we have a classification of these. In particular,
for integers n> 1, d ∈ Z we know that there are only a finite number of semistable sheaves of
rank n and degree d. This forces the vector space AFcusp

n,d to be finite dimensional and any cusp
form to have finite support.

2 Strictly speaking they are also required to verify a central character property but this will be automatic in our
case.
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4.2 Let τ ∈ TorX be a torsion sheaf and n> 1. The Hecke operator Hτ : AFn→ AFn associated
to τ is defined by

Hτ (f)(V) =
∑
V ′⊆V
V/V ′'τ

f(V ′),

where f ∈ AFn.
Observe that this is the same definition as in the Hall algebra context.
We have an action of the (commutative) Hecke algebra Htor

X on the vector space AFn. It is
not difficult to see that the Hecke operators in fact preserve the space of cusp forms AFcusp

n .
Moreover the multiplicity 1 theorem of Shalika [Sha74] and Piatetski-Shapiro [Pia79] tells us
how this action decomposes into irreducibles.

Theorem 4.2 [Pia79, Sha74]. The action of the Hecke algebra Htor
X on the space AFcusp

n is
diagonalizable and every eigenspace appears with multiplicity 1.

Definition 4.3. An automorphic form f ∈ AFcusp
n is called a cusp eigenform if f is an eigenvector

for all the Hecke operators.

The multiplicity 1 theorem says that the cusp eigenforms span the space of cusp forms and
that they have different eigenvalues under the Hecke operators.

4.3 Let f ∈ AFcusp
n be a cusp eigenform. For x ∈X a closed point and i= 1, . . . , n we denote by

zi,x(f) the unique (up to permutation) complex numbers that verify for every l = 1, . . . , n

HO⊕lx (f) = ql(n−l)/2x el(z1,x(f), . . . , zn,x(f))f

where el is the lth elementary symmetric function. The numbers zi,x(f), i= 1, . . . , n, x ∈X are
called the Hecke eigenvalues of f .

If f and g are two cusp eigenforms of rank n and m respectively then their Rankin–Selberg
L-function is defined by the formula

L(f, g, t) :=
∏
x∈X

n∏
i=1

m∏
j=1

(1− zi,x(f)−1zj,x(g)t|x|)−1.

We summarize their most important properties in the following theorem.

Theorem 4.4 (See [JPS83]). Let f and g be cusp eigenforms. If f 6= g then L(f, g, t) = 1, and
if f = g then L(f, f, t) converges (for |t|< q−1) to a rational function.

Remark 4.5. The analogue result for an arbitrary curve X is that if f 6= g then L(f, g, t)
converges to a polynomial and if f = g then L(f, f, t) converges to a rational function.

We will need a more precise statement about the function L(f, f, t), namely the following.

Proposition 4.6. If f is a cusp eigenform of rank n, then

L(f, f, t) = ζXn(tn)

where the equality should be understood in the sense that the L-function converges in some
region to the rational function defined on the right-hand side.

This result is probably well known but we couldn’t find a reference for it and hence we
included an ad hoc proof that uses the precise determination of the Hecke eigenvalues. We defer
the proof to § 6.3.
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4.4 Let f be a cusp eigenform of rank n. Define its associated generating series with coefficients
in Hvec

X to be

Ef (z) :=
∑
V∈Bunn

f(V)[V]zdegV .

If χf : Htor
X → C is the eigenvalue of f , then Kapranov [Kap97] considered the following

generating series:

ψf (z) :=
∑

τ∈TorX

χf ([τ ])aτz|τ |[τ ] ∈Htor
X [[z]]

where for a torsion sheaf τ ∈ TorX he wrote aτ = # Aut(τ) and denoted by |τ | the degree of τ .
Observe that we cannot multiply Ef (z) by Eg(z) or by ψg(z) for two cusp eigenforms because

of the infinite summands in the coefficients. However, we can multiply Ef (z1) by Eg(z2) or by
ψg(z2).

Theorem 4.7 [Kap97, Theorem 3.3]. Let f and g be two cusp eigenforms of rank n
respectively m. Then we have the following commutation relations.

(i) For any coherent sheaf F ∈ Coh(X) the coefficient of [F ] in the products Ef (z1) · Eg(z2),
Ef (z1) · ψg(z2) and ψf (z1) · Eg(z2) is a power series in z1, z2 which converges for |z1| � |z2| to a
rational function.

(ii) The following rational functions satisfy the following functional equations:

Ef (z1) · Eg(z2) =
L(f, g, z2/qz1)
L(f, g, z2/z1)

Eg(z2) · Ef (z1) (4.1)

Ef (z1) · ψg(z2) =
L(f, g, qm/2−1z2/z1)
L(f, g, qm/2z2/z1)

ψg(z2) · Ef (z1). (4.2)

(iii) For the coproduct we have the following formulas:

∆(ψf (z)) = ψf (z)⊗ ψf (z)

∆(Ef (z)) = Ef (z)⊗ 1 + ψf (q−n/2z)⊗ Ef (z).

Remark 4.8. The above equalities should not be understood as equalities of formal power series.
Their meaning is that whenever we evaluate the terms at some coherent sheaf F ∈ Coh(X) the
resulting power series will be convergent (in different regions!) to the same rational function.

Remark 4.9. A word of warning: we use the (co)product opposite to the one used by Kapranov
in [Kap97] and we do not need to consider the extended Hall algebra because the symmetric
Euler form is trivial. This is why, at the first sight, the above formulas might look different from
the ones in [Kap97].

Let us write Ef (z) =
∑

d∈Z Ef,dz
d. Using the fact that the Rankin–Selberg L-functions

converge to rational functions, we can clear out the denominators in the formula (4.1) by
multiplying with appropriate polynomials. Kapranov proved (see [Kap97, Theorem 3.5.6]) that
in fact this new formula can be interpreted as an equality of formal power series and comparing
the coefficients of zi1z

j
2 for i, j ∈ Z gives valid relations between the elements Ef,d, Eg,e ∈HX for

d, e ∈ Z.

4.5 In [Kap97], for a cusp eigenform f of rank n, the following power series was considered:

af (z) =
∑
d>1

af,dz
d = log(ψf (z)).
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In a similar way we obtain from the formula (4.2) valid relations between the elements
Ef,d, ag,d ∈HX .

Let us consider the subalgebra H◦X of HX generated by Ef,d and af,e where f runs over the
cusp eigenforms and d ∈ Z, e ∈ Z+.

Kapranov asked in [Kap97] if the above relations suffice to give a presentation of H◦X .
More precisely, let H̃ be an algebra generated by the symbols Ẽf,d, ãf,e where f runs over
the cusp eigenforms and d ∈ Z, e ∈ Z+ subject to the relations obtained from Theorem 4.7 as
described above. We have an obvious surjective algebra morphism πX : H̃→H◦X . The problem
is to determine its kernel. The presumably new relations satisfied by Ef,d are also called in the
literature higher rank relations between the residues of the Eisenstein series.

If X is the projective line, in [Kap97] it is proved that πX is an isomorphism and moreover
that this presentation of H◦X gives an isomorphism of H◦X with a certain positive part of the
quantum loop group Uν(ŝl2).

For X an elliptic curve, Schiffmann [Sch12a] has addressed the similar problem for the
spherical Hall algebra. Namely, for the cusp eigenform

f =
∑
d∈Z

∑
L∈Picd(X)

[L]

he considered the subalgebra U+
X of HX generated by Ef,d, af,e, d ∈ Z, e ∈ Z+ and the (abstract)

algebra Ẽ generated by the symbols Ẽf,d, ãf,e subject to the relations deduced from the functional
equations (4.1) and (4.2). He proved that the kernel of the map πX : Ẽ →U+

X is generated by
the cubic relations

[[Ef,l+1, Ef,l−1], Ef,l] = 0, ∀l ∈ Z.

As a corollary of our main results combined with [Sch12a], we obtain the same description
of the higher rank relations satisfied by the residues of the Eisenstein series for all the cusp
eigenforms.

4.6 In [Kap97, § 3.8] it is conjectured that the elements af,d, where f is a cusp eigenform
and d ∈ Z+, are algebraically independent over C. This conjecture can be viewed as a certain
strengthening of the multiplicity 1 theorem.

We can give a positive answer to this question using the description of the cusp eigenforms
and of their coproduct.

5. The main results

5.1 In order to state our main results we need to introduce another family of automorphic forms.

Namely, for n> 1 and for ρ̃ ∈ ˜Pic0(Xn) we define

T ρ̃n :=
∑
d∈Z

T ρ̃(n,nd).

The following theorem gives the structure of the space of cusp forms on X.

Theorem 5.1. For any integer n> 1 we have the following.

(i) The space AFcusp
n,d is zero unless n|d.
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(ii) A basis for AFcusp
n,dn is given by {T ρ̃n,dn, ρ̃ ∈ Pn}.

(iii) For any primitive character ρ̃ ∈ Pn the automorphic form T ρ̃n is a cusp eigenform.

For the structure of the twisted spherical Hall algebras and for the whole Hall algebra we
have the following result.

Theorem 5.2. For any integers n, m> 1 and any two different primitive characters ρ̃ ∈ Pn and

σ̃ ∈ Pm we have the following.

(i) The twisted spherical Hall algebra Uρ̃
X is isomorphic to Enσ,σ.

(ii) The algebras Uρ̃
X and Uσ̃

X commute with each other.

(iii) The Hall algebra HX decomposes into a commutative (restricted) tensor product:

HX '
⊗′

ρ̃∈P
Uρ̃,+
X

(isomorphism of bialgebras). In particular we have that

DHX '
⊗′

ρ̃∈P
Uρ̃
X

(isomorphism of algebras).

The proofs (see § 8) will be by induction on n and we will deal with both theorems at the
same time: using the result of Theorem 5.2 for r < n we prove Theorem 5.1 for r = n and then
we proceed to prove the case r = n of Theorem 5.2, etc.

As an easy corollary of the proof of these theorems (see Step 3n in § 8) we get the following
corollary (see § 4.6 and [Kap97, Conjecture 3.8.5]).

Corollary 5.3. The (nonzero) elements af,d, where f runs over the set of cusp eigenforms3

and d> 1, are algebraically independent.

Remark 5.4. A proof of a reformulation of this result (see [Kap97, Reformulation (3.8.6)]) can
be given using Proposition 4.6.

5.2 The statement about the higher functional equations for the Eisenstein series requires a few
more preparations.

Put χn(z, w) = (z − σnw)(z − σnw)(z − (σσ)−nw) and χ−n(z, w) =−χn(w, z).
Following [Sch12a] we consider the formal power series

T1(z) =
∑
d∈Z

u(1,d)z
d

T+
0 (z) = 1 +

∑
l>1

θ(0,l)z
l.

For a formal power series A=
∑

d∈Z adz
d the residue operator is defined by Resz(A) = a−1. We

define Resz,y,w to be a successive application of residue operators with respect to the variables
w, y, z.

3 As usual we only consider the cusp eigenforms up to the C× action.
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Definition 5.5. Let Ẽ
n

σ,σ be the algebra generated by the Fourier coefficients of T1(z) and T+
0 (z)

subject to the relations

T+
0 (z)T+

0 (w) = T+
0 (w)T+

0 (z),
χn(z, w)T+

0 (z)T1(w) = χ−n(z, w)T1(w)T+
0 (z),

χn(z, w)T1(z)T1(w) = χ−n(z, w)T1(w)T1(z),
Resz,y,w[(zyw)m(z + w)(y2 − zw)T1(z)T1(y)T1(w)] = 0, ∀m ∈ Z.

Put αi := (1− σi)(1− σi)(1− (σσ)−i)/i. Introduce the elements u(0,i), i> 1, via the following
formula:

log(T+
0 (z)) =

∑
i>1

nαniu(0,i)z
i.

Theorem 5.6. Let ρ̃ ∈ Pn. The map Ψ : Ẽ
n

σ,σ→Uρ̃,+ defined by

u(1,i) 7→ (v−1 − v)α−1
n T ρ̃(n,ni),

u(0,i) 7→ (v−1 − v)α−1
ni T

ρ̃
(0,ni)

is an isomorphism of algebras.

Proof. The theorem follows by unwinding the definitions and by using Theorem 5.2(1),
Theorem 4.7(2), Proposition 4.6 and [Sch12a, Theorem 4]. 2

6. Frobenius eigenvalues and actions of Hecke operators

In this section we compute the Frobenius eigenvalues for an irreducible l-adic representation
of the fundamental group of X and the action of the Hecke operators on the corresponding
cusp eigenforms. These results together with the computations from the next section form the
technical core of the paper.

6.1 Frobenius eigenvalues
We will work out in this subsection the l-adic representations involved in the unramified
Langlands correspondence for an elliptic curve. We will determine the Frobenius eigenvalues
in terms of some character of a Picard group.

Let us first outline the big lines that we will follow below to determine de Frobenius
eigenvalues.

So let V be an irreducible l-adic representation of π1(X) of dimension n> 1. Since X is an
elliptic curve, its geometric fundamental group π1(X) is abelian and hence the restriction of V
to π1(X) is a sum of n characters. Now the Galois group Gal(Fq/Fq) permutes transitively these
characters. It follows that the Galois group Gal(Fq/Fqn) acts trivially on them and hence the
restriction of V to π1(Xn) is also a sum of characters, and, moreover, the representation V is
an induced representation from a character, say ρ, of π1(Xn). From abelian class field theory we
know that the characters of π1(Xn) are the same as the characters of Pic(Xn), and hence the
irreducible representations of π1(X) of dimension n are classified by (some) characters of the
Picard group Pic(Xn). Denote by ρ′ the character of Pic(Xn) that corresponds to ρ by class field
theory. Using the above description of V as an induced representation from ρ, we can determine
the eigenvalues of Frobx (the Frobenius conjugacy class associated to x) in terms of ρ′ and the
points of Xn that sit over x.

Recall that we denoted by Xk the extension of X to Fqk and by X the extension of X to Fq.
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For every positive integer k > 1 denote by Gk = π1(Xk) the algebraic étale fundamental group
and by G= π1(X) = πgeom

1 (X) the geometric étale fundamental group. We also set G :=G1. We
have exact sequences of groups

1→G→G→ π1(Fq) = Ẑ→ 1,
1→Gk→G→Gal(Fqk/Fq) = Z/kZ→ 1

where we view the abelian groups Ẑ and Z/kZ multiplicatively. The group Ẑ is generated
(topologically) by the absolute Frobenius automorphism of the field Fq : t 7→ tq.

Remark 6.1. A crucial remark is that for an elliptic curve the geometric fundamental group
π1(X) is abelian.

Let (V, ρ) be an irreducible l-adic representation of G of dimension n. By this we mean that V
is a finite-dimensional vector space over Ql and ρ :G→GL(V ) is a continuous morphism where
V is given the l-adic topology. Moreover we require the morphism ρ to be actually defined over
some finite extension of Ql.

Since G is an abelian group, the restriction of the representation V to G is a sum of characters,
say V |G = ρ(1) ⊕ · · · ⊕ ρ(n) (see Lemma A.9). The (Galois) group Ẑ permutes these characters
and since V is irreducible it permutes them transitively. This means that the action of Ẑ factorizes
through the finite quotient Z/nZ and therefore the representation V restricted to Gn will also
be a sum of characters. For convenience we will also denote them by ρ(1), . . . , ρ(n).

It follows from the above that V ' IndGGn(ρ(1)) (see for example [Ser77, Ch. 7, Proposition 19]).
Let x ∈X be a closed point. Attached to this point we have a well-defined conjugacy class

Frobx in G. We are interested in knowing the eigenvalues of this conjugacy class acting on the
representation V .

Denote by f = |x| the degree of x and put d= gcd(n, f) and m= lcm(n, f).
Choose a point x′ ∈Xd that sits above x ∈X and a point x′′ ∈Xn that sits above x′ ∈Xd.

We have that k(x) = Fqf (by the definition of the degree), k(x′) = Fqf and k(x′′) = Fqm .
Associated to these three points we have three Frobenius conjugacy classes: Frobx ∈G,

Frobx′ ∈Gd, Frobx′′ ∈Gn.
We know from [CF76, p. 166, Proposition 3.2] that Frobx = Frobx′ and that Frobn/dx′ =

Frobm/fx′ = Frobx′′ where the equalities are understood as equalities of conjugacy classes.
Let us give names to the maps we are going to work with:

1→Gn→G
p→ Z/nZ = {1, f, . . . , fn−1}→ 1,

1→Gd→G
p1→ Z/dZ = {1, f, f2

, . . . , f
d−1}→ 1,

1→Gn→Gd
p2→ Z/(n/d)Z = {1, fd, f2d, . . . , fn−d}→ 1.

Lemma 6.2. Let x ∈X be a point of degree d′. Then Frobx 6∈Gn for any n > 1 such that
gcd(n, d′) = 1.

Proof. Let Y be a finite, étale cover of Xn. We will prove that Frobx 6∈ AutXn(Y ). Let x′ ∈Xn

be a point above x and let y ∈ Y be a point above x′. By definition Frobx ∈ AutX(Y ) and is the
(canonical) generator of Gal(k(y)/k(x)). We have that Gal(k(x′)/k(x)) has degree n > 1 because
gcd(n, d′) = 1. Therefore Frobx ∈Gal(k(y)/k(x)) will not fix the field k(x′), so it cannot be in
the group AutXn(Y ). By passing to the limit we see that Frobx 6∈ π1(Xn). 2

Remark 6.3. In the above proof we used that the cover was not ramified in order to pass back
and forth from AutX(Y ) to Gal(k(y)/k(x)).
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Lemma 6.4. Let x ∈X be a point of degree f and let n be a positive integer. Write d= gcd(f, n).
Then the image of Frobx by the map π1(X)→ Z/nZ = Gal(Fqn/Fq) is the dth power of a
generator.

Proof. We will need to use the following commutative diagram.

Z/dZ = // Z/dZ = // {1, f, f2
, . . . , f

d−1}

Gn // G //

OO

Z/nZ

OO

= // {1, f, f2, . . . , fn−1}

Gn

=

OO

// Gd

OO

// Z/(n/d)Z

OO

= // {1, fd, . . . , f(n−1)d}

We know that Frobx ∈ π1(Xd). Now, since gcd(f/d, n/d) = 1, we are in the situation of the
previous lemma and it follows that Frobx 6∈Gdh for any h such that gcd(h, n/d) = 1. This implies
that the image of Frobx by the map Gd

p2→ Z/(n/d)Z is a generator, and hence the image of Frobx
by the map G

p→ Z/nZ is the dth power of a generator. 2

Now let us continue with the determination of the Frobenius eigenvalues. As Frobx = Frob′x ∈
Gd we see that p1(Frobx) = 1. Moreover, since p(Frobx) ∈ Z/nZ is the dth power of a generator
(Lemma 6.4), we can suppose that p(Frobx) = fd. Therefore p2(Frobx) = fd. The groups Gn, Gd
fit in a short exact sequence of the form

1→Gn→Gd
p2→ Z/(n/d) = {1, fd, . . . , fn−d}→ 1,

and it is clear that Gn together with Frobx generate the group Gd.
By the transitivity of the induction we can write V = IndGGd(IndGdGn(ρ1)). Let us write

Vd := IndGdGn(ρ1). We will first describe the action of Frobx = Frobx′ on this representation.
Since p2(Frobx) = fd, we can write down explicitly the module Vd. As a vector space it is

given by Qlv ⊕QlFrobxv ⊕QlFrob2
xv ⊕ · · · ⊕QlFrobn/d−1

x v where the vectors Frobixv, i= 0, . . . ,
n/d− 1 are a basis of Vd and v is a basis for the one-dimensional representation ρ(1). The module
structure is given as follows: if h ∈Gn, then hFrobjx · Frobixv = ρ1(Frob−i−jx hFrobi+jx )Frobi+jx v

and Frobn/dx v = ρ(1)(Frobx′′)v.
From the above description we obtain that the element Frobx acts on Vd by the following

n/d× n/d matrix (in the chosen basis):

D1 :=


0 1 0 0 · · · 0
0 0 1 0 · · · 0
...
0 0 0 0 · · · 1

ρ1(Frobx′′) 0 0 0 · · · 0

 .

Let us now proceed to the determination of the action of Frobx on V .
Remember that we chose a rational point x0 on the curve X. The Frobenius endomorphism

Frobx0 ∈G is sent (see Lemma 6.4) by the map p to f ∈ Z/nZ. It is clear from Galois theory
that Frobx0 permutes transitively the points of Xn that sit above x and hence it permutes (by
conjugation) the Frobenius elements associated to these points. Namely, let x′1, . . . , x

′
d ∈Xd be

the points of Xd that sit above x and let x′′1, . . . , x
′′
d ∈Xn be the points that sit over x′1, . . . , x

′
d

(observe here that there is only one point of Xn that sits over each x′i ∈Xd).
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The Frobenius Frobx0 permutes transitively the sets {x′i, i= 1, . . . , d}, {x′′i , i= 1, . . . , d}, and
hence by conjugation it also permutes transitively the set {Frobx′′i , i= 1, . . . , d}. By relabeling
if necessary, we can suppose that Frobx0 permutes the set {Frobx′′i , i= 1, . . . , d} in the order
Frobx′′1 → Frobx′′2 → · · · → Frobx′′d → Frobx′′1 .

Now we are ready to describe explicitly the representation V . As a vector space we
can write it as V = Vd ⊕ Frobx0V ⊕ · · · ⊕ Frobd−1

x0
V . The action of G is given as follows: if

hFrobjx0
is a general element of G, where h ∈Gd, and if w ∈ Vd is an arbitrary vector, then

hFrobjx0
· Frobix0

w = Frobi+jx0
(Frob−i−jx0

hFrobi+jx0
) · w where the last · means the action of Gd on

Vd. Observe that Frobdx0
∈Gd and therefore it acts on Vd.

In particular, the action of Frobx on V is given by the following block matrix (in the above
chosen basis): 

D1 0 0 · · · 0
0 D2 0 · · · 0
...
0 0 0 · · · Dd


where each block-matrix Di is of the form

Di =


0 1 0 0 · · · 0
0 0 1 0 · · · 0
...
0 0 0 0 · · · 1

ρ(1)(Frobx′′i ) 0 0 0 · · · 0

 .

It is easy to see now that the characteristic polynomial of Frobx acting on V is given by∏d
i=1(Tn/d − ρ(1)(Frobx′′i )).
Class field theory tells us that there is an injective group homomorphism

Pic(Xn) ↪→ π1(Xn)ab

with dense image (see [AT90, p. 59] or [CF76, Ch. VII, § 5.5]). Moreover, this homomorphism
is normalized such that the line bundle OXn(−y) is sent to Froby ∈ π1(Xn) for any y ∈Xn. By
construction this morphism commutes with the action of Gal(Fqn/Fq) on each side.

Therefore we deduce that a continuous character of π1(Xn) over Ql is the same as a continuous
character of Pic(Xn) over Ql and moreover that the isotropy groups of the corresponding
characters are the same under the action of Gal(Fqn/Fq). The continuous characters of Pic(Xn)
(or π1(Xn)) which have trivial isotropy group are called primitive (of degree n). We denote the
set of primitive characters of Pic(Xn) modulo the action of the Galois group Gal(Fqn/Fq) by P̃n.

Remark here that our previous notion of primitive character was just for the group ̂Pic0(Xn) but
actually a character of Pic(Xn) is primitive if and only if its restriction to Pic0(Xn) is primitive.

It is clear from the above that if we start with a primitive character of Pic(Xn) we can
associate to it an irreducible l-adic representation of π1(X) of dimension n and moreover this
application becomes a bijection modulo the group Gal(Fqn/Fq) that acts on the characters.

The Langlands correspondence (see [Laf02] or [Fr05, § 2.4, Theorem 1]) asserts that for each
n> 1 there exists a bijection between the unramified cusp eigenforms of rank n on X and
the irreducible l-adic representations of the fundamental group π1(X). Moreover, this bijection
satisfies the crucial rigidity property that the Hecke eigenvalues are equal to the Frobenius
eigenvalues.
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Putting all together we thus obtain the following theorem.

Theorem 6.5. (a) There exists a bijection

{rank n cusp eigenforms on X} ' P̃n.

(b) Let f be a cusp eigenform on X of rank n. Let x ∈X be a point of degree d′ and let
d := (n, d′). Denote by x′′1, . . . , x

′′
d the points of Xn that sit above x. Then the Hecke eigenvalues

at the point x are given by the roots of the polynomial

char(Frobx|V )(T ) =
d∏
i=1

(Tn/d − ρ(OXn(−x′′i )))

where ρ is the unique (up to the Galois action) primitive character of Pic(Xn) determined by
the bijection from (a).

Corollary 6.6. Keeping the notation of (b) above, we have, for every l = 1, . . . , n,

HO⊕lx (f) = ql(n−l)/2x el(z1,x(f), . . . , zn,x(f))f

=

0 if
n

d
6 | l,

(−1)l+l
′
q
l(n−l)/2
x el′(ρ(OXn(−x′′1)), . . . , ρ(OXn(−x′′d)))f if l = l′

n

d

where ek is the kth elementary symmetric polynomial.

6.2 In this subsection we compute the action of the Hecke operators associated to the elements
T σ̃(0,r), where σ̃ ∈ X̃ is an arbitrary character, on the cusp eigenforms. See § 3.2 for the definition
of T(0,r),x and T σ̃(0,r).

Recall that for any x ∈X we have an isomorphism Ψkx : HTorx → Λt|t=v2|x| which sends [O⊕lx ]
to q−l(l−1)/2

x el where el is the lth elementary symmetric function.
Fix ρ̃ ∈ P̃n a primitive character and let f = fρ̃ be the corresponding cusp eigenform (see

Theorem 6.5).
Consider the map Φx,f : Λt|t=v2|x| → C that sends xi to q(n−1)/2

x zi,x(f) if i= 1, . . . , n and to
0 if i > n. Then we have that

HO⊕lx (f) = Φx,f (Ψkx([O⊕lx ]))f.

Since the elements T(0,r|x|),x ∈HTorx correspond to [r|x|]/rpr ∈ Λt|t=v2|x| we obtain

HT(0,r|x|),x(f) =
[r|x|]Φx,f (pr)

r
f.

Using Theorem 6.5 and the elementary formula
k−1∑
l=0

εli =
{

0 if k 6 | i,
k if k|i,

where ε is a primitive kth root of unity, we obtain

Φx,f (pr) =

q
r(n−1)/2
x

n

dx

dx∑
i=1

ρ(OXn(−x′i))rdx/n if rdx/n ∈ Z,

0 otherwise,

where dx = gcd(n, |x|).
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We need the following easy lemma.

Lemma 6.7. Let N > 1 be an integer and x be a point of X such that n and |x| divide N . Let
also x′ be a point of Xn that sits above x and x′′ be a point of XN that sits above x′. Then we
have

NormN
n (OXN (x′′)) =OXn(x′)(N/n)/(|x|/dx).

Writing N := r|x| and using the above lemma we have

Φx,f (pr) =

q
N(n−1)/2 n

dx

dx∑
i=1

dx
|x|

∑
XN3x′′→x′i

ρ(NormN
n (OXN (−x′′))) if rdx/n ∈ Z,

0 otherwise

=

q
N(n−1)/2 n

|x|
∑

XN3x′′→x
ρ(NormN

n (OXN (−x′′))) if rdx/n ∈ Z,

0 otherwise.

Observe now that, for a positive integer N , the condition |x| and n divide N is equivalent to
(N/|x|)/(n/dx) ∈ Z.

Fix a positive integer N such that n divides N and let x ∈X be such that |x| also divides N .
From the above we have

HT(0,N),x(f) =
[N ]
N
qN(n−1)/2n

∑
XN3x′′→x

NormN
n (ρ)(OXN (−x′′))f.

Let σ̃ ∈ X̃ be a character of order N . We have

HT σ̃(0,N)
(f) =

[N ]n
N

qN(n−1)/2
∑
x∈X
|x||N

( ∑
XN3x′′→x

NormN
n (ρ)(OXN (−x′′))

)

×
(

1
|x|

∑
XN3y′′→x

σ(OXN (y′′))
)
f

=
[N ]n
N2

qN(n−1)/2
N−1∑
i=0

∑
x′′∈X(FqN )

NormN
n (ρ)(OXN (−x′′))

× FriX,N (σ)(OXN (x′′))f

=
[N ]n
N2

qN(n−1)/2|X(FqN )|
N−1∑
i=0

〈FriX,N (σ), NormN
n (ρ)〉f (∗)

where for two characters χ1, χ2 of a group A we denoted by

〈χ1, χ2〉 :=
1
|A|

∑
x∈A

χ1(x)χ2(−x)

their scalar product as characters.
Recall that ρ was a primitive character and so, by Lemma A.6, we deduce that

FriX,N (NormN
n (ρ)) = NormN

n (ρ) if an only if n|i.

Applying this to formula (∗) we obtain the following proposition.
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Proposition 6.8. Under the assumptions of this subsection we have

HT σ̃(0,N)
(f) =

0 if σ̃ 6= NormN
n (ρ̃),

[N ]
N
qN(n−1)/2|X(FqN )|f if σ̃ = NormN

n (ρ̃).

Remark 6.9. Observe that the constant appearing in the above formula does not depend on
the cusp-eigenform f . We will exploit this later on to prove that all the twisted spherical Hall
algebras associated to primitive characters of degree n are isomorphic to a specialization of the
universal spherical algebra Enσ,σ.

6.3 Computations of the Rankin–Selberg L-functions
Using the above results we are able now to give a proof of Proposition 4.6.

We begin with a lemma.

Lemma 6.10. Let Y be an elliptic curve over the field Fq with y0 a rational point (the origin)
and let ρ be a character of Pic(Y ) whose restriction to Pic0(Y ) is nontrivial. Then the L-function

L(ρ, t) :=
∏
y∈Y

(1− ρ(OY (y))t|y|)

is identically equal to 1.

Proof. Recall that on Y we have the Frobenius action FrobY which satisfies Y (Fqn) = Y
FrobnY .

By Lemma A.6 we know that the map Normn : Pic0(Yn)→ Pic0(Y ) is surjective. Therefore
we have

log L(ρ, t) = −
∑
y∈Y

log(1− ρ(OY (y))t|y|)

=
∑
y∈Y

∑
k>1

ρ(OY (y))ktk|y|/k

=
∑
n>1

tn

n

∑
d|n

∑
y∈Y,|y|=d

dρ(OY (y))n/d

=
∑
n>1

tn

n

∑
y′∈Y (Fqn )

ρ(Normn(OYn(y′)))

=
∑
n>1

tn

n
ρ(OY (y0))n

∑
y′∈Y (Fqn )

ρ(Normn(OYn(y′ − y0)))

=
∑
n>1

tn

n
ρ(OY (y0))n

∑
L∈Pic0(Yn)

ρ(Normn(L))

=
∑
n>1

tn

n
ρ(OY (y0))n

#Yn(Fqn)
#Y (Fq)

∑
L∈Pic0(Y )

ρ(L)

=
( ∑
L∈Pic0(Y )

ρ(L)
)

︸ ︷︷ ︸
=0

(∑
n>1

tn

n
ρ(OY (y0))n

#Yn(Fqn)
#Y (Fq)

)

= 0

where the last equality holds because ρ|Pic0(Y ) is a nontrivial character. 2
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Proof of Proposition 4.6. Let f be a cusp eigenform of rank n. Denote by ρ ∈ Pic0(Xn) the
corresponding primitive character (see Theorem 6.5). Let x ∈X be a closed point of degree |x|.
Write dx := gcd(n, |x|).

The Hecke eigenvalues are given by the following (see Theorem 6.5):

z(i−1)n/dx+l,x(f) = εlxρ(OXn(xi))dx/n

for i= 1, . . . , dx and l = 0, . . . , n/dx − 1 where εx is a n/dxth primitive root of 1.
Therefore the Rankin–Selberg L-function associated to the pair (f, f) (see § 4.3 for the

definition) is

L(f, f, t) :=
∏
x∈X

∏
i,l

j,k

(1− εl−kx ρ(xi − xj)dx/nt|x|)−1

=
∏
x∈X

dx∏
i,j=1

(1− ρ(xi − xj)t|x|n/dx)−n/dx

=
∏
x∈X

dx∏
i=1

n−1∏
j=0

(1− ρ(xi − FrobjX(xi))t|x|n/dx)−1

=
∏
x∈Xn

n−1∏
j=0

(1− ρ(x− FrobjX(x))t|x|n)−1

= ζXn(tn) ·
n−1∏
j=1

∏
x∈Xn

(1− ρ(x− FrobjX(x))t|x|n)−1

where for a closed point x ∈X we denoted by x1, . . . , xdx the closed points of Xn lying over x.
We can apply Lemma 6.10 to the curve Y =Xn and to the characters ρj := ρ ◦ (Id−

FrobjX), j = 1, . . . , n− 1. Note that since ρ is primitive we have that each ρj is a nontrivial
character on Pic0(Y ).

It follows that L(f, f, t) = ζXn(tn). 2

7. Some computations

We grouped together in this section several technical lemmas that we will need for the proofs of
the main results.

7.1 Recall that for a torsion sheaf τ we denote by V(τ) the universal extension of τ and O. By
definition, this means that V(τ) fits into an exact sequence,

0→O⊗ Ext(τ,O)∗→V(τ)→ τ → 0,

and the class of the extension corresponds to Id ∈ End(Ext(τ,O)). We know from Atiyah’s
theorem that V(τ) is semistable and moreover that we can obtain all the semistable sheaves of
slope 1 by this process.

Lemma 7.1. Let τ be a torsion sheaf of degree n. If V is a semistable sheaf that fits in an exact
sequence

0→V →O⊕n→ τ → 0,

then V is isomorphic to V(τ)∨.
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Proof. If 0→V →O⊕n f→ τ → 0 is an exact sequence then, by applying the functor Hom(O,−),
we have a surjective linear map f# : kn→Hom(O, τ)' kn. If f# had a nonzero kernel, then
O ⊆ ker(f) = V, which is a contradiction since V is semistable of negative slope. It follows that f#

is an isomorphism, and therefore we can conjugate f by a suitable automorphism ofO⊕n such that

V ' ker(ev :O ⊗Hom(O, τ)→ τ).

If we look at the sequence 0→O⊕n→V(τ)→ τ → 0 and apply Hom(−,O) we obtain

0→ 0→V(τ)∨→O⊕n ψ→Ext(τ,O) = τ → 0.

By the above we get that V(τ)∨ ' V. 2

As a corollary of the proof we get the following Hall numbers.

Corollary 7.2. If x is a closed point and λ a partition such that |x||λ|= n then

PO
⊕n

O(λ)
x ,V(O(λ)

x )∨
= |GLr(q)| · aV(O(λ)

x ).

Corollary 7.3. Let τ be a torsion sheaf on X of degree n. Then

(Hτ ([O⊕n]))ss = P
V(τ)
O⊕n,τV(τ)

where by the exponent ( )ss we indicate the semistable part.

Lemma 7.4. Let τ be a torsion sheaf on X. If we denote by 	τ the (point by point) opposite
of τ in the group law, then we have an isomorphism

V(τ)∨ ⊗O(2x0)' V(	τ).

Proof. It is enough to prove this result when τ =O(r)
x for some point x ∈X and some integer

r > 1. Denote by d the degree of x and by x1, . . . , xd the points of X that lie over x.
If we have now two sheaves F , G on X such that their pullback to X are isomorphic, then

by [BS05, Proposition A.1] we see that the sheaves F and G are actually isomorphic over X. So
in order to prove the needed result we can pull everything back to X and work there.

We obviously have that Ox ⊗Fq Fq =Ox1 ⊕ · · · ⊕ Oxd . Therefore V(O(r)
x )⊗Fq Fq = V(O(r)

x1 )⊕
· · · ⊕ V(O(r)

xd ).
Hence it is enough to prove that for any closed point y of X we have the following isomorphism

of sheaves on X: V(O(r)
y )∨ ⊗O(2x0)' V(O(r)

	y).

For this we will need to use the fact that V(O(r)
y )∨ is the only indecomposable sheaf that fits

in an exact sequence of the form

0→V(O(r−1)
y )∨→V(O(r)

y )∨→V(Oy)∨→ 0. (∗)

This in turn can be proved by observing that the functor

R(−) := ker(Hom(O,−)⊗O ev→−)

is exact on the category of torsion sheaves and that R(τ) = V(τ)∨.
It is immediate that V(Oy) =O(y) and that V(Oy)∨ ⊗O(2x0)'O(	y) = V(O	y).
By induction and using the short exact sequence (∗) we can easily see that the vector bundle

V(O(r)
x )∨ ⊗O(2x0) is isomorphic to V(O(r)

	y). 2

Let n> 1 be an integer, x be a closed point of degree d on X and λ a partition such that
|x||λ|= n. Let ρ̃ ∈ X̂ be a character.
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Lemma 7.5. With the above hypothesis we have

([O(λ)
x ] • T ρ̃(n,n), [O

⊕n(2x0)]) = vn
2 [n]
n

|x|nux(l(λ)− 1)
aO(λ)

x

ρ̃(	x)

where ux = q
−1/2
x and nu(l) :=

∏l
i=1(1− u−2i).

Proof. By Corollary 7.2, Lemma 7.4 and by the definition of the coproduct we know that

∆([O(2x0)⊕n]) = vn
2 aO(λ)

x
aV(O(λ)

x )∨

aO⊕n

|GLn(q)|
aO(λ)

x

[O(λ)
x ]⊗ [V(O(λ)

	x)] + · · ·

where the dots mean that all the other semistable terms that appear in the coproduct contain
on the first position sheaves which are orthogonal (with respect to Green’s form) to O(λ)

x .
Therefore, by the Hopf property of Green’s form, we get

([O(λ)
x ] • T ρ(n,n), [O(2x0)⊕n]) = ([O(λ)

x ]⊗ T ρ(n,n),∆([O(2x0)⊕n]))

= vn
2 [n]
n

|x|nux(l(λ)− 1)
aO(λ)

x

ρ̃(	x). 2

8. Proofs of the main results

8.1 In this section we will prove the main results of this paper, namely Theorems 5.1 and 5.2.
As we said before, the proof will be by induction and the argument will be quite round about.
For this reason we summarize the main steps that we will follow.

Step 1n. Prove that {T ρ̃n : ρ̃ ∈ Pn} are the cusp eigenforms corresponding to the characters ρ̃ ∈ Pn
(see Theorem 6.5).

Step 2n. For a primitive character ρ̃ ∈ Pn and for a character σ̃ ∈ X̂ of degree N such that n|N
we have the formula

[T σ̃(0,N), T
ρ̃
(n,0)] =

vN [N ]
N
|X(FqN )|T ρ̃(n,N) if σ̃ = NormN

n (ρ̃),

0 otherwise.

Step 3n. Prove the formula for the coproduct

∆(T ρ̃(n,0)) = T ρ̃(n,0) ⊗ 1 +
∑
d>0

θρ̃d ⊗ T
ρ̃
(n,−nd)

where the coefficients θρ̃d are given by equating (formally) the following two series:∑
d>0

θρ̃ds
d = exp

(
n(v−1 − v)

∑
l>1

T
Normnl

n (ρ̃)
(0,nl) sl

)
.

For x ∈ Z define the elements θρ̃x by putting θρ̃(0,d) := θρ̃d for d> 0 and in general using the
SL2(Z) action.

Step 4n. Describe the structure of Uρ̃
X . More precisely we prove that there exists a

natural isomorphism of algebras Uρ̃
X ' Enσ,σ where σ, σ are the eigenvalues of the Frobenius

endomorphism on H1
et(X,Ql).

Step 5n. Prove that AFcusp
n+1,d = 0 if n+ 1 - d.

Step 6n. A basis for AFcusp
(n+1,0) is given by {T σ̃(n+1,0) : σ̃ ∈ Pn+1}.
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The crucial step in the proof is Step 1n, n> 1. The proof of this uses the Langlands
correspondence and the computation of the Hecke eigenvalues for the cusp form associated to ρ̃
in terms of the character ρ̃.

8.2 Case n= 0. Observe that in this case only the statement from Step 6 is not vacuous. The
proof is obvious. See also Corollary 3.6.

8.3 We can proceed to prove the steps 1n, . . . , 6n for general n> 1. So let us suppose that we
have proved Steps 1m, . . . , 6m for all integers 06m< n.

Proof of Step 1n. From Step 6n−1, a basis of AFcusp
(n,0) is given by {T ρ̃(n,0) : ρ̃ ∈ Pn}. 2

For each ρ̃ ∈ Pn consider fρ̃ the associated cusp eigenform (see Theorem 6.5). From Step 5n−1

we can write fρ̃ =
∑

d ∈ Zfρ̃,d where fρ̃,d is of degree nd. Therefore, using Lemma A.4, we can
normalize fρ̃ such that fρ̃(O⊕n) = 1.

Recall that because we only consider characters on the zeroth component of the Picard group
the associated cusp eigenforms verify the property fρ̃ = fρ̃ ⊗O OX(dx0), ∀d ∈ Z, and therefore
fρ̃,d = fρ̃,0 ⊗O OX(dx0).

From Step 6n−1 we know that a basis for the space AFcusp
(n,nd) is given by the elements T ρ̃(n,nd),

ρ̃ ∈ Pn for any integer d ∈ Z. Thus there exist constants cρ̃,σ̃ such that fρ̃,d =
∑

σ̃ cρ̃,σ̃T
σ̃
(n,nd),

∀d ∈ Z.
Let x ∈X be a closed point of degree |x| such that |x| divides n. We set l = n/|x|.
Consider the Hecke operator HO⊕lx that acts on the cusp form fρ̃,1 and on the elements T σ̃(n,n).

From the eigenform property of fρ̃ and from the Corollary 6.6 we have

(HO⊕lx (fρ̃,1), [OX(2x0)⊕n]) = (−1)l+1 1
|GLn(q)|

qn(n−l)/2|x|ρ̃(	x).

On the other hand, by Lemma 7.5, we have

(HO⊕lx (fρ̃,1), [OX(2x0)⊕n]) =
∑
σ̃

cρ̃,σ̃(HO⊕lx (T σ̃(n,n)), [OX(2x0)⊕n])

=
[n]
n
|x|nux(l − 1)
|GLl(qx)|

∑
σ̃

cρ̃,σ̃σ̃(	x)

=
[n]
n
|x|(−1)l−1 q

−n(l−1)/2

qn − 1

∑
σ̃

cρ̃,σ̃σ̃(	x).

Equating the two expressions gives

ρ̃(	x) =
[n]
n

q−n(l−1)/2q−n(n−l)/2

qn − 1
|GLn(q)|

∑
σ̃

cρ̃,σ̃σ̃(	x)

=
[n]
n
q−n(n−1)/2

n−1∏
i=1

(qn − qi)
∑
σ̃

cρ̃,σ̃σ̃(	x)

= (−1)n−1 [n]
n
nv(n− 1)

∑
σ̃

cρ̃,σ̃σ̃(	x).

Write α := (−1)n−1([n]/n)nv(n− 1), and denote by C the matrix (cρ̃,σ̃)ρ̃,σ̃∈Pn and by A the
matrix (ρ̃(x))ρ̃,x where ρ̃ runs over the primitive characters in Pn and x runs over the closed
points of X such that |x| divides n.
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What we have proved above can be rewritten in the following matrix form:

CA= α−1A.

Let us make the following simple but crucial observation: the matrix A has maximal rank.
Indeed, this is equivalent to the fact that the lines of the matrix, i.e. (ρ̃(x))x, ρ̃ ∈ Pn, are linearly
independent. However, this is easily seen to be true from the definition of ρ̃(x) and from the fact
that ρ̃ are primitive.

As C is a square matrix we have therefore that C = α−1I, where I is the identity matrix.
This implies that fρ̃,0 = α−1T ρ̃(r,0), or in other words that T ρ̃r is, up to multiplication by a nonzero
constant, the cusp eigenform associated to the character ρ̃.

8.4 Proof of Step 2n

This follows from the fact that T ρ̃n is the cusp eigenform associated to ρ̃ combined with
Proposition 6.8. 2

8.5 Proof of Step 3n

Fix a character ρ̃ ∈ Pn. From Lemma 2.7 and Step 1n we can write

∆(T ρ̃(n,0)) = T ρ̃(n,0) ⊗ 1 +
∑
d>0

∑
σ̃∈Pn

θσ̃d ⊗ T σ̃(n,−nd)

where θσ̃d ∈HX [0, nd].
Let us first prove that θσ̃d = 0 for σ̃ 6= ρ̃. Using the Hopf property of the Green form we have

‖θσ̃d‖2‖T σ̃(n,−nd)‖
2 = (∆(T ρ̃(n,0)), θ

σ̃
d ⊗ T σ̃(n,−nd))

= (T ρ̃(n,0), θ
σ̃
d · T σ̃(n,−nd))

= α(T ρ̃(n,0), T
σ̃
(n,0))

= 0

for some α ∈ C and where the last equality follows from Lemma A.3. Since T σ̃(n,−nd) is nonzero,
we deduce that θσ̃d = 0 for all characters σ̃ 6= ρ̃ and all integers d > 0.

Let us consider the generating series

T ρ̃n(s) :=
∑
d∈Z

T ρ̃(n,nd)s
d

and

θρ̃(s) =
∑
d>0

θρ̃ds
d.

We easily deduce the following formula:

∆(T ρ̃n(s)) = T ρ̃n(s)⊗ 1 + θρ̃(s)⊗ T ρ̃n(s).

From the associativity of ∆ we get that ∆(θρ̃(s)) = θρ̃(s)⊗ θρ̃(s).
Consider the generating series aρ̃(s) := log(θρ̃(s)). By the above formula for the coproduct

of θρ̃(s) we have that ∆(aρ̃(s)) = aρ̃(s)⊗ 1 + 1⊗ aρ̃(s). In other words, if we write aρ̃(s) =∑
d>1 a

ρ̃
ds
d, the elements aρ̃d ∈HX [0, nd] are primitive for the coalgebra structure.
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Using Corollary 3.6 we can write every element aρ̃d as a linear combination of T ξ̃(0,nd), say

aρ̃d =
∑

ξ̃∈ ˜Pic0(Xnd)

αξ̃dT
ξ̃
(0,nd).

We would like to prove that only the element TNormnd
n (ρ̃)

(0,nd) appears in aρ̃d with a nonzero coefficient.
Suppose that it is not the case. Choose the minimal d > 0 such that there exists a character

σ̃ ∈ ˜Pic0(Xnd), σ̃ 6= Normnd
n (ρ̃) with ασ̃d 6= 0.

Then we have (θρ̃d, T
σ̃
(0,nd)) = (aρ̃d, T

σ̃
(0,nd)) 6= 0 where the inequality follows from the minimality

of d and the orthogonality of the T ξ̃(0,nd′) for different ξ̃ ∈ X̃, d′ > 0 (see Lemma A.3).
Hence we have the following equalities:

0 6= (θρ̃d, T
σ̃
(0,nd))‖T

ρ̃
(n,−nd)‖

2 = (∆(T ρ̃(n,0)), T
σ̃
(0,nd) ⊗ T

ρ̃
(n,−nd))

= (T ρ̃(n,0), T
σ̃
(0,nd) · T

ρ̃
(n,−nd))

= 0,

where the last equality follows by Proposition 6.8. Thus we have a contradiction.
Therefore aρ̃d = αρ̃dT

Normnd
n (ρ̃)

(0,nd) . We now need to identify the coefficient αρ̃d.
To this end fix d and let x ∈X be a closed point of degree nd. The torsion sheaf [Ox] appears

in θρ̃d only through aρ̃d because any monomial in the elements aρ̃d′ , d
′ < d, is orthogonal to [Ox].

We then have the following equality:

(θρ̃d, [Ox]) = (aρ̃d, [Ox]) =
αρ̃d

qx − 1
[nd]
nd
|x|Normnd

n (ρ̃)(x). (∗)

On the other hand we have

(θρ̃d, [Ox])‖T ρ̃(n,−nd)‖
2 = (∆(T ρ̃(n,0)), [Ox]⊗ T ρ̃(n,−nd))

= (T ρ̃(n,0), [Ox] · T ρ̃(n,−nd))
Cor. 6.6= vn

2dq(n−1)/2
x nρ̃(	x) ‖T ρ̃(n,0)‖

2

= nvndρ̃(x) ‖T ρ̃(n,0)‖
2.

Putting this together with equation (∗) and using Lemma A.2 we obtain

αρ̃d = n(v−1 − v).

All in all we have that the elements θρ̃d are given by equating the formal coefficients of the
following two series:

1 +
∑
d>1

θρ̃ds
d = exp

(
n(v−1 − v)

∑
d>1

T
Normnd

n (ρ̃)
(0,nd) sd

)
.

This is exactly what we wanted to prove. 2

8.6 Proof of Step 4n

We want to prove that there is a natural isomorphism of algebras

Enσ,σ 'Uρ̃
X
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given by

tx 7→ T
Normnδ(x)

n (ρ̃)
nx .

The proof is identical to the proof of Theorem 5.4 in [BS05] once we show that the algebra
Uρ̃,+
X has a PBW-type decomposition. More precisely we want to prove the following proposition.

Proposition 8.1. The multiplication maps,

m :
−→⊗
′

µ∈Q∪{∞}

Uρ̃,±,(ν)
X →Uρ̃,±

X ,

m :
−→⊗
′

µ∈Q∪{∞}

Uρ̃,+,(ν)
X ⊗

−→⊗
′

µ∈Q∪{∞}

Uρ̃,−,(ν)
X →Uρ̃

X ,

induce isomorphisms of vector spaces.

Proof. For the proof we will use the following lemma.

Lemma 8.2. Let ρ̃ ∈ Pn be a primitive character. Then the algebra Uρ̃
X is generated by the

following set of elements:

{T ρ̃(±n,0), T
Normn|d|

n (ρ̃)
(0,nd) | d ∈ Z}.

Similarly, the algebra Uρ̃,+
X is generated by

{T ρ̃(n,−nd), T
Normnd

n (ρ̃)
(0,nd) | d> 0}.

Proof. We only prove the first statement, the second one being completely analogous.
For the moment, denote by A the subalgebra of Uρ̃

X generated by the set from the
statement. The goal is to prove that A= Uρ̃

X . As the algebra Uρ̃
X is generated by the elements

T
Normnδ(x)

n (ρ̃)
nx , x ∈ Z, it is enough to prove that these generators belong to A.

First observe that all the elements of the form T ρ̃(±n,nd), d ∈ Z, are in A. Indeed, this follows
from Step 2 and from Drinfel’d’s relations in the double together with the coproduct formula of
Step 3.

We now argue by induction. Fix an integer k and suppose that we have proved that
T

Normnδ(r,d)
n (ρ̃)

(rn,dn) ∈A for all (r, d) ∈ Z with |r|< |k|.

Let us consider the element TNormnδ(z)
n (ρ̃)

z for some point z = (k, l) ∈ Z. Take x = (r, d) ∈ Z to
be the closest point to the segment [(0, 0), (k, l)] in Z which is not proportional to (k, l) and such
that the triangle ∆x,z−x is positively oriented.

From the choice of x we have that δ(x) = 1 and δ(z− x) = 1. We can find a matrix γ in
SL2(Z) such that γ · x = (1, e) and γ · (z− x) = (−1, f) where e, f are some integers verifying
e+ f = δ(z)> 0.4 We have γ · z = (0, e+ f).

Now γ induces an automorphism of Uρ
X (which, a priori , might not leave A stable!) that

sends T ρ̃nx to T ρ̃(n,en), T
ρ̃
n(z−x) to T ρ̃(−n,fn) and T

Normnδ(z)
n (ρ̃)

nz to TNormnδ(z)
n

(0,nδ(z)) .
From the Drinfel’d’s relations in the double and from the computation of the coproduct of

T ρ̃(n,0) we deduce that the commutator of T ρ̃(n,en) and T ρ̃(−n,fn) is a linear combination of monomials

in the elements TNormtn
n (ρ̃)

(0,tn) where 0< t6 e+ f , and moreover that TNormn(e+f)
n (ρ̃)

(0,n(e+f)) appears with
nonzero coefficient.

4 Here we use the fact that triangle ∆x,z−x is positively oriented.
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Now pulling everything back with the automorphism induced by γ−1 we obtain that the
commutator of T ρ̃x and T ρ̃z−x is a linear combination of monomials in the elements TNormnt

n (ρ̃)
ntz0

for

0< t6 δ(z), where z0 = z/δ(z), and moreover that TNormnδ(z)
n (ρ̃)

nz appears with nonzero coefficient.
Using the induction hypothesis we deduce therefore that TNormnδ(z)

n (ρ̃)
nz belongs to A and this

finishes the proof of the lemma. 2

As immediate corollaries of this lemma combined with the formula in Step 3 we obtain the
following.

Corollary 8.3. The algebras Uρ̃,+
X ,Uρ̃

X are stable by the coproduct.

Corollary 8.4 (cf. [BS05, Corollary 4.7]). The algebra Uρ̃
X is isomorphic to the Drinfel’d

double of Uρ̃,+
X and the multiplication map m : Uρ̃,+

X ⊗Uρ̃,−
X →Uρ̃

X induces an isomorphism
of vector spaces.

Let us get back to the proof of Proposition 8.1. We first want to prove that the multiplication
map

m : Hvec
X ⊗Uρ̃,+,(∞)

X →HX

contains Uρ̃,+
X in its image. The proof of this statement is identical to the proof of [BS05, Lemma

4.9] and so we skip it. We finish, as in [BS05, Theorem 4.8], using the SL2(Z) symmetry. 2

Recall from [BS05, § 5] the definition of convex paths in Z. We denote by Conv+ the
set of positive paths. For a primitive character ρ̃ ∈ Pn we define for every convex path p =
(x1, . . . , xr) ∈Conv the element

T ρ̃np := T
Normnδ(x1)

n (ρ̃)
nx1 · · · · · TNormnδ(xr)

n (ρ̃)
nxr .

The following is an immediate corollary of Proposition 8.1.

Corollary 8.5. A C-basis of Uρ̃
X , where ρ̃ ∈ Pn, is given by:

{T ρ̃np, p ∈Conv+}.

8.7 Proof of Step 5n

The goal is to prove that AFcusp
n+1,d = 0 if n+ 1 - d. We know from Proposition 2.6 that AFcusp

n+1,d =
Hvec
X [n+ 1, d] ∩ (H6nX )⊥. We will prove that Hvec

X [n+ 1, d]⊂H6nX if n+ 1 - d. It is enough to
treat only the case 0< d < n+ 1 because H6nX is stable by tensor product with OX(x0).

Write ν = d/(n+ 1) ∈Q. As the Harder–Narasimhan filtration splits, it is clear that all the
nonsemistable sheaves in Hvec[n+ 1, d] are already in H6nX . Therefore we only need to deal with
the semistable part Hvec

X [n+ 1, d] ∩H(ν)
X .

Recall that the Hall algebra H(ν)
X of semistable sheaves of slope ν is isomorphic to Htor

X

(by Atiyah’s theorem) and a set of generators is given by Tlx0,x, x ∈X, l > 1, |x| | l, where
x0 = (r′, d′), r′ > 1 such that µ(x0) = ν and δ(x0) = 1.

Therefore a basis for the space HX [n+ 1, d] ∩H(ν)
X is given by{

Tl1x0,x1 · · · Tlkx0,xk | k > 1, li > 1, r′
k∑
i=1

li = n+ 1, xi ∈X, |xi| | li
}
.

If lx0 6= (n+ 1, d), lr′ 6 n, then obviously the elements Tlx0,x, x ∈X, are already in H6nX , and
hence so is any product of them. We are left then to prove that the elements T(n+1,d),x, x ∈X,
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are also in H6nX . For this, observe that any such element can be written as a linear combination

of elements of the form T σ̃(n+1,d), σ̃ ∈
˜Pic0(Xk) where we wrote k := gcd(n+ 1, d).

So let σ̃ ∈ ˜Pic0(Xk) be a character. By Corollary 3.9, there exists a primitive character

ρ̃ ∈ ˜Pic0(Xk′), where k = k′e, e> 1, such that σ̃ = Normk
k′(ρ̃). By the definition of the algebra

Uρ̃,+
X we have that T σ̃(n+1,d) = T

Normk
k′ (ρ̃)

k′(ex0) ∈Uρ̃,+
X , and from Lemma 8.2 we have that Uρ̃,+

X ⊂H6k
′

X .

Now, as n+ 1 - d, we have that k′ 6 k < n+ 1, and hence Uρ̃,+
X ⊂H6nX . We conclude that

T σ̃(n+1,d) ∈H6nX for any σ̃ ∈ ˜Pic0(Xk) and therefore that AFcusp
(n+1,d) = 0. 2

8.8 Proof of Step 6n

We have arrived at the final step of the proof. We want to prove the following statement.

Theorem 8.6. A basis for AFcusp
n+1,0 is given by {T ρ̃(n+1,0), ρ̃ ∈ Pn+1}.

Proof. As in the proof of the previous step we write the space AFcusp
n+1,0 = HX [n+ 1, 0] ∩ (H6nX )⊥.

Moreover we can restrict our attention to the semistable part

Hss
X [n+ 1, 0] = HX [n+ 1, 0] ∩H(0)

X

of HX [n+ 1, 0] since the cuspidals are supported on semistable vector bundles.
Now from Atiyah’s theorem we know that H(0)

X is isomorphic to H(∞)
X , and hence that

it is a polynomial algebra in the elements T(l,0),x, x ∈X, |x| | l. Therefore we can write any
element of Hss

X [n+ 1, 0] as a linear combination of monomials of the form T σ̃1

(l1,0) . . . T
σ̃r
(lr,0) with

li > 1,
∑

i li = n+ 1 and σ̃i = Normli
ni(ρ̃i) for some ρ̃i ∈ Pni .

From the above description it is clear that only the linear combinations of T σ̃(n+1,0), where
σ̃ = Normn

k(ρ̃) for some ρ̃ ∈ Pk, could be cuspidals since all the other monomials are already
in H6nX . If σ̃ = Normn+1

k (ρ̃) for some ρ̃ ∈ Pk, k 6 n then, from Lemma 8.2 it follows that
T σ̃(n+1,0) ∈ U

ρ̃
X ⊂H6nX .

We are left to check that indeed the elements T ρ̃(n+1,0), ρ̃ ∈ Pn+1 are cuspidal. For this it is

enough to check that they are orthogonal to (H6nX )ss[n+ 1, 0]. From the above discussion the
elements of this last vector space are linear combination of monomials of the form T σ̃1

(l1,0) . . . T
σ̃r
(lr,0)

with li > 1,
∑

i li = n+ 1 and σ̃i = Normli
ni(ρ̃i) for some ρ̃i ∈ Pni such that ni 6 n.

Let ρ̃ ∈ Pn+1 and consider a monomial T σ̃1

(l1,0) . . . T
σ̃r
(lr,0) as above. We have, by the SL2(Z)

symmetry and the Hopf property of the Green form,

(T ρ̃(n+1,0), T
σ̃1

(l1,0) . . . T
σ̃r
(lr,0)) = (T ρ̃(0,n+1), T

σ̃1

(0,l1) . . . T
σ̃r
(0,lr)

)

= (∆(r)(T ρ̃(0,n+1)), T
σ̃1

(0,l1) ⊗ · · · ⊗ T
σ̃r
(0,lr)

)

=

{
0 if r > 1 because T ρ̃(0,n+1) is primitive,
0 if r = 1 because σ̃1 6= ρ̃.

This proves that the T ρ̃(n+1,0), where ρ̃ ∈ Pn+1, are cuspidal, and hence the theorem follows. 2

All the steps outlined at the beginning of the section are now proved.

8.9 End of the proofs
We are ready now to finish the proofs of the main results Theorems 5.1, 5.2 and 5.6.
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Proof of Theorem 5.1. Steps 1, 5, 6 provide the proofs of the statements of the theorem. 2

For the proof of the Theorem 5.2 we need another few lemmas.

Lemma 8.7. The subalgebras Uσ̃
X for σ̃ ∈ Pk, k 6 n, centralize each other. Moreover, there exists

an isomorphism of algebras: ⊗
σ̃∈Pk

16k6n

Uσ̃,+
X →H6nX .

Proof. Let ρ̃1 ∈ Pn1 , ρ̃2 ∈ Pn2 be two different primitive characters with n1, n2 6 n. We will prove
that the algebras Uρ̃1

X and Uρ̃2

X commute and this will imply the commutativity of their positive
parts.

Using Lemma 8.2, it is enough to prove that the following two sets of generators commute:

{T ρ̃1

(±n1,0), T
Normn1|d|

n1
(ρ̃1)

(0,n1d) | d ∈ Z},

{T ρ̃2

(±n2,0), T
Normn2|d|

n2
(ρ̃2)

(0,n2d) | d ∈ Z}.

What is immediate is that the torsion (respectively vector bundle) generators from one set
commute with the torsion (respectively vector bundle) generators from the other set since the
algebra H(∞)

X = Htor
X (respectively H(0)

X ) is commutative.

The commutation of T ρ̃1

(n1,0) and T
Normn2d

n2
(ρ̃2)

(0,n2d) for d ∈ Z>0 follows from Proposition 6.8 (cf.
Step 2n). The other commutations follow from this and Drinfel’d’s relations in the double.

It is clear that the subalgebras Uσ̃,+
X , σ̃ ∈ Pk, k 6 n, generate H6nX (cf. Proposition 2.5). So

we have a surjective homomorphism of algebras,

m :
⊗
σ̃∈Pk

16k6n

Uσ̃,+
X →H6nX ,

given by the multiplication. We need to prove that the morphism m is injective. For this we will
use Proposition 8.1. We have an isomorphism of vector spaces induced by the multiplication,⊗

σ̃∈Pk
16k6n

−→⊗
′

µ∈Q∪{∞}

Uσ̃,+,(ν)
X →

⊗
σ̃∈Pk

16k6n

Uσ̃,+
X ,

so, by using the fact that the subalgebras Uσ̃,+
X commute one with each other, we get

−→⊗
′

µ∈Q∪{∞}

( ⊗
σ̃∈Pk

16k6n

Uσ̃,+,(ν)
X

)
→

−→⊗
′

µ∈Q∪{∞}

H6n,(ν)
X ↪→

−→⊗
′

µ∈Q∪{∞}

H(ν)
X .

So the injectivity of the morphism m is implied by the injectivity of the multiplication maps

m(ν) :
⊗
σ̃∈Pk

16k6n

Uσ̃,+,(ν)
X →H(ν)

X

for every ν ∈Q ∪ {∞}.
Using the SL2(Z) invariance, it is enough to prove that m(∞) is injective. Observe here

that each factor Uσ̃,+,(∞)
X is in fact a commutative bialgebra and moreover that they mutually

commute. Therefore the morphism m(∞) is a homomorphism of algebras.
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Observe also that each of the algebras Uσ̃,+,(∞)
X , where σ ∈ Pk, has a set of generators (as an

algebra) consisting of primitive elements,

Σσ̃ := {TNormkd
k (σ̃)

(0,kd) : d> 1}.

Moreover the set

Σ =
∐

σ̃∈Pk,k6n
Σσ̃

is linearly independent in H(∞)
X because the characters, being different, are linearly independent.

Now let us recall the following result: in a commutative and cocommutative bialgebra (C, ·,∆)
over a field of characteristic 0, a set of primitive elements is algebraically independent if and only
if it is linearly independent.

It is easy to see that the injectivity of m(∞) is equivalent to the algebraic independence of Σ
inside H(∞)

X . Since Σ consists of primitive elements, from the above result we get that m(∞) is
injective if and only if Σ is a linearly independent set in H(∞)

X . However, this we have already
seen to be true, and hence the result follows. 2

Corollary 8.8. The multiplication maps⊗′

ρ̃∈P
Uρ̃,+
X →HX ,

⊗′

ρ̃∈P
Uρ̃
X →DHX

are isomorphisms of algebras.

Proof. The first isomorphism follows from the Lemma 8.7 and the second is a corollary of the
lemma plus the Corollary 8.4. 2

We are now ready to give the proof of Theorem 5.2.

Proof of Theorem 5.2. Theorem 5.2(i) follows from Step 4. Theorem 5.2(ii) and (iii) follow from
Lemma 8.7 and Corollary 8.8. 2
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Appendix A.

Lemma A.1. A character ρ ∈ ̂Pic0(Xn) is primitive if and only if there does not exist a character

χ ∈ ̂Pic0(Xd), d < n, d | n, such that ρ= Normn
d (χ).

Proof. One direction is obvious: namely, if ρ is primitive, then it cannot be equal to Normn
d (χ)

for any χ ∈ ̂Pic0(Xd) since the later has the orbit under Frobenius endomorphism of cardinal
d < n which contradicts the primitivity of ρ.
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Conversely, by an extension of scalars it is enough to prove that if ρ ∈ ̂Pic0(Xn) is fixed by

the Frobenius FrX,n then there exists a character χ ∈ P̂ic0(X) such that ρ= Normn
1 (χ).

In order to simplify the notation and to avoid confusion we will write (solely in this proof)

N := Normn
1 : Pic0(Xn)→ Pic0(X) and N̂ := Normn

1 : P̂ic0(X)→ ̂Pic0(Xn). The problem can be

restated as follows: the image of the map N̂ is exactly ̂Pic0(Xn)
FrX,n

. It is easy to see by the

definition that the image of N̂ is indeed contained in ̂Pic0(Xn)
FrX,n

. It is therefore enough to

prove that Im(N̂) and ̂Pic0(Xn)
FrX,n

have the same cardinal. We have that

| ̂Pic0(Xn)
FrX,n
|= |Pic0(Xn)|/|Im(Fr∗X,n − Id)|= | Pic0(X)|.

Let ξ ∈ ker N̂ . Now Lemma A.6 (applied for Y = Pic0(X)) says that N is surjective. Therefore
we have N̂(ξ) = 1 is equivalent to ξ(Pic0(X)) = 1, which means that ξ is the trivial character.
We deduce that N̂ is injective and hence Im(N̂) = | Pic0(X)|, which finishes the proof. 2

Lemma A.2. Let x ∈X be a point of degree N and let n|N be a positive integer. Let also

ρ̃ ∈ ˜Pic0(Xn) be a character. Then

ρ̃(x) = NormN
n (ρ̃)(x).

Proof. Let x1, . . . , xn ∈Xn be the points that sit over x and let xji , j = 1, . . . , N/n be the points
of XN that sit over xi for i= 1, . . . , n. By definition we have

NormN
n (ρ̃)(x) =

1
N

∑
i,j

NormN
n (ρ)(OXN (xji ))

=
1
N

∑
i,j

ρ

(N/n−1⊗
k=0

(Frob∗X,N )knOXN (xji )
)

=
1
N

n∑
i=1

N/n∑
j=1

ρ

(N/n−1⊗
k=0

OXN (xj+ki )
)

=
1
N

n∑
i=1

N/n∑
j=1

ρ(OXn(xi))

=
1
N

N

n

n∑
i=1

ρ(OXn(xi))

= ρ̃(x). 2

Lemma A.3. Let ρ̃ ∈ Pn and σ̃ ∈ ˜Pic0(Xn) be two characters. Then we have

(T ρ̃(n,nd), T
σ̃
(n,nd)) =

0 if σ̃ 6= ρ̃,
vn[n]

(v−1 − v)n2
|X(Fqn)| ifσ̃ = ρ̃.

Proof. By the SL2(Z) invariance, the computation of the scalar product reduces to the
computation of the scalar product of T ρ̃(0,n) and T σ̃(0,n) in Htor

X .
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For a point x ∈X of degree d such that d | n, we have, from Proposition 3.1 and from the
definition of T(0,n),x, x ∈X,

(T(0,n),x, T(0,n),x) =
vn[n]d

(v−1 − v)n
.

Now taking a sum over all points x we have

(T ρ̃(0,n), T
σ̃
(0,n)) =

vn[n]
(v−1 − v)n

∑
d|n

d
∑

x∈X,|x|=d

ρ̃(x)σ̃(x).

Let us compute the sum which appears on the right-hand side. For this we will use the
following notation: for a point x ∈X and x′ ∈Xn we write x′→ x if x′ sits above x.∑

d|n

d
∑
x∈X
|x|=d

ρ̃(x)σ̃(x) =
1
n2

∑
d|n

∑
x∈X
|x|=d

∑
x′→x
x′∈Xn

n−1∑
i=0

FriX,n(ρ)(OXn(x′))

×
n−1∑
j=0

FrjX,n(σ)(OXn(x′))

=
1
n2

∑
x′∈X(Fqn )

n−1∑
i=0

FriX,n(ρ)(OXn(x′))

×
n−1∑
j=0

FrjX,n(σ)(OXn(x′))

=
|X(Fqn)|

n2

n−1∑
i,j=0

〈FriX,n(ρ), FrjX,n(σ)〉

=

 |X(Fqn)|
n

if ρ̃= σ̃,

0 otherwise.

Putting all together we get the announced formula. 2

Lemma A.4. Let f be a (nonzero) cusp eigenform of rank n. Suppose we can write f =
∑

d∈Z fdn
where each fdn is supported on vector bundles of degree nd. Then f(O⊕n) 6= 0, and therefore we
can renormalize f such that f(O⊕n) = 1.

Proof. Let us first make a small remark. By the eigenform property it follows that fdn =
ζdf0 ⊗O OX(dx0), where ζ is the value by which HO⊕nx0 acts on f , and therefore all the terms fdn
are completely determined by f0 and ζ. In particular, if fn = 0, then f = 0.

Let τ be a torsion sheaf of degree n such that f(V(τ)) 6= 0. Such a sheaf must exist since
all the semistables of slope 1 and rank n are of the form V(τ) for some τ , and fn is supported
on the semistables and is nonzero.

We have the following equalities:

χ(τ)(f,O⊕n) = (H∨τ (f),O⊕n)
= (f,Hτ (O⊕n))
= (f, (Hτ (O⊕n))ss)

Cor. 7.3= P
V(τ)
τ,O⊕n(f, V(τ))

6= 0,
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where we denoted by χ(τ) the constant by which Hτ acts on f . Therefore f(O⊕n) 6= 0, and this
is what we wanted to prove. 2

Remark A.5. We have used here the dual Hecke operators H∨τ which are just adjoints with
respect to the Green product of the Hecke operators. For more details see [Kap97, § 2.6].

Lemma A.6. If Y is an elliptic curve over Fq, then the norm map

Normn : Y (Fqn)→ Y (Fq)

is surjective for every n.

Proof. It is enough to prove that the map Normn : Y → Y is surjective (on the closed points).
Indeed, if we prove this, it follows that there is some N such that Normn(Y (FqN ))⊇ Y (Fq). For
a point y ∈ Y (FqN ) we have that Normn(y) = y ⊕ FrobY (y)⊕ · · · ⊕ Frobn−1

Y (y) and therefore,
if Normn(y) ∈ Y (Fq), it follows that FrobY ◦ Normn(y) = Normn(y), or, in other words, y =
FrobnY (y). This is equivalent to y being in Y (Fqn).

Now the map Normn : Y → Y is a homomorphism of elliptic curves. It follows that its image is
either a point or the entire curve. Obviously it cannot be a point because the kernel of Normn

is contained in Y (Fqn) and therefore it is finite. Hence the map Normn : Y → Y is surjective. 2

Remark A.7. The same result with the same proof holds for any abelian variety over Fq.

Lemma A.8. Let ai ∈H(νi)
X , i= 1, . . . , r and bj ∈H

(ν′j)

X , j = 1, . . . , s be homogeneous elements,
where νi, ν

′
j ∈Q ∪ {∞} are such that ν1 < · · ·< νr and ν ′1 < · · ·< ν ′s. Then we have

(a1 . . . ar, b1...bs) =
{

0 if (ν1, . . . , νr) 6= (ν ′1, . . . , ν
′
s),

(a1, b1)(a2, b2) . . . (ar, br) otherwise.

Proof. Let us denote temporarily by α the value of the scalar product we want to compute. By
the SL2(Z) symmetry we can suppose that νr =∞. It is clear that if ν ′s <∞ then α= 0. Hence
we can suppose that ν ′s =∞. In this case it is easy to see, using the ordering of the slopes and
the Hopf property of the Green form, that

α= (ar, bs)(a1 · · · ar−1, b1 · · · bs−1).

By induction we obtain that α is 0 if (ν1, . . . , νr) 6= (ν ′1, . . . , ν
′
s) and α equals (a1, b1) · · · (ar, br)

otherwise. 2

Lemma A.9. Let G := π1(X) where X/Fq is an elliptic curve and let G := π1(X). Let also V be
an irreducible continuous representation of G over Ql. Then the restriction of V to G is a direct
sum of characters.

Proof. Since X is an elliptic curve we have that G is an abelian group. By Schur’s lemma, it
follows that all the irreducible representations of G appearing in V are of dimension 1. Denote
by V ◦ ⊆ V the socle of V as a G module. On V we have also an action of the Galois group
Gal(Fq/Fq) and this action permutes the irreducible representations of G appearing in V . It
follows that Gal(Fq/Fq) must leave V ◦ stable by the definition of the socle (the sum of all the
simple submodules). Therefore V ◦ is a G-submodule of V . From the irreducibility of V as a
G-module we conclude that V ◦ = V and therefore that V , as a G module, is a direct sum of
one-dimensional representations. 2
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