HOMOLOGY OF DELETED PRODUCTS OF
CONTRACTIBLE 2-DIMENSIONAL POLYHEDRA. I

C. W. PATTY

1. Introduction. If X is a space and & > 1, the kth deleted product space
X* of X is the topological product X X X X ... X X of k copies of X
minus the set of all points of the form (x, x, . . ., x), where x € X. In (4), the
author shows that the homology groups of X;*, where X is a tree, produce as
much information about trees as counting the orders of vertices.

The space Xo* is called the deleted product space and is denoted by X*. The
homology groups of the deleted product of a finitely triangulable, 1-dimensional
space have been described by Copeland (1) and the author (5). Cones are the
simplest examples of contractible spaces, and in (2), Copeland describes the
homology groups of the deleted product of a 2-dimensional cone. The present
paper extends the results of Copeland (2). In particular, we compute the
homology groups of the deleted product of an arbitrary, finite, contractible,
2-dimensional polyhedron. Knowing these groups is a step towards distinguish-
ing between the contractible spaces by means of algebraic invariants.

The homology groups used throughout this paper will be the reduced
homology groups with integral coefficients, and the customary ‘‘tilde’” over
the H has been omitted. If ¢ is a simplex of a polyhedron X, we let St(e, X)
denote the open star of o in X, and if vy, vs, . . ., v, are the vertices of a simplex
o, we denote ¢ by (v1, 93, . . ., v,). If X is a space and  is a point not in X,
then a cone over X is the join X = X  p of X with p. Note that if v is a vertex
of a locally finite polyhedron X, then 8(St(v, X)) * v = St(v, X). We also let Z
denote the group of integers.

If X is a finite polyhedron, let P(X*) = U{s X 7| ¢ and 7 are simplexes
of X and ¢\ 7 = @}. Hu (3) has proved that X* and P(X*) are homotopically
equivalent. If X is a 2-simplex and X! denotes the 1-skeleton of X, then
P(X*) = P((X"Y)*), and the author (5) has shown that P((X1)*) is a simple
closed curve.

If X is a finite, contractible, 2-dimensional polyhedron and 4 is a 2-simplex,
then a homeomorph of X can be constructed out of 4 by appending #-simplexes
(n = 1, 2). The construction may be factored

A=X-Xs—...2X, =X

so that X; is obtained from X,_; by
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(a) adding a 1-simplex which meets X, in just one of its vertices,

(b) adding a 2-simplex which meets X,_; in just one of its vertices,

(c) adding a 2-simplex which meets X;_; in just one of its 1-faces,
or

(d) adding a 2-simplex which meets X;_; in exactly two of its 1-faces.

In constructing the homeomorph of X from A, we may choose the order
in which we add simplexes so that if 7 is a 2-simplex such that X; = X,_; U r
and X;.1 N\ 7 =5 \Us,, where s; and s; are l-simplexes of X,_; and 7,
s1M se = {us}, and u, is the vertex of s; different from u;, then there is a
sequence 71, 7y, ..., *, of l-simplexes in 9(St(us, X, ;)) such that u, is a
vertex of 7y, s is a vertex of 7,, r; M 7,41 is a vertex, and 7, N7, = @ if
|7 — k| > 1; and if, in addition, S is a simple closed curve in d(St(us, X 1))
such that#; and u, are not in S, then the sequence 74, 72, . . . , 7, can be chosen so
that ;N\ S = @ for each j.

Since X;* is connected, in order to show that X* is connected, it is sufficient
to assume that X, ;* is connected and show that H,(X *) is isomorphic to
Hy(X;_1*). Also, since H,(X1*) is isomorphic to Z and H»(X*) = 0, in order to
show that H;(X*), j = 1, 2, is a free abelian group, it is sufficient to assume
that H;(X,—1*) is free abelian and show that H;(X;*) is free abelian.

In a forthcoming paper, we describe the finite, contractible, 2-dimensional
polyhedra whose deleted products have the homotopy type of the 2-sphere, and
we examine the relation between the number of isotopy classes of embeddings
of one of these polyhedra in an arbitrary, finite, contractible 2-dimensional
polyhedron X (see 6) and the 2-dimensional Betti number of the deleted
product of X.

2. Some preliminary results.

THEOREM 1. Let X be a polyhedron such that X is the union of two subpolyhedra
A and B, where A M B is an n-dimensional polyhedron. If there is an (n + 1)-
cycle z such that (2] € Hoi(X) but [2] is not an element of the direct sum
H,1(A) + H,1(B), then there is an n-cycle ¢ in A (N B which bounds in A
and in B.

Proof. Since [2] is in Hy41 (X) but not in Hyy1 (4) + Hyvr (B), 2 = 21 + 29,
where z; is a non-trivial (z 4 1)-chain in 4 and 2, is a non-trivial (n + 1)-
chain in B. Now 0 = 9z = (21 + 22). Therefore 92, = — 22, and hence 92;
is an n-cycle in 4 M B. Also 2; is an (r + 1)-chain in 4 whose boundary is
9z; and —32, is an (# 4+ 1)-chain in B whose boundary is 92;.

Let X be a finite, contractible, 2-dimensional polyhedron. If .S; and S, are
simple closed curves in the 1-skeleton of X, the simplexes of X may be oriented
so that if 7, 74, . . ., 7i,; are the 1-simplexes of S, then 7,3 4 7,2 + . . . + 74y,
is a 1-cycle for each ¢ = 1, 2. In this paper, we assume that this has been done
whenever we want to talk about two simple closed curves in the 1-skeleton of
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X. We also let 25, denote the l-cycle 7 + 74 + ... = 74, associated with
S;. Moreover, if z is a 1-cycle in X, then

4
Z = Z Zi,
i=1

where each z; is a l-cycle and the union of the 1-simplexes with non-zero
coefficients in 2; is a simple closed curve. Thus if each z; bounds, then 2z bounds.
Therefore in order to show that z bounds, we may assume that there is a
simple closed curve .S associated with z such that if 7y, 7y, . . . , 7, are the 1-

simplexes of S, then

z=a2 75

i=1
If X is a polyhedron and p is a point, then X X {p} is just a copy of X.

Thus, for convenience, we do not make any distinction between chains in
X X {p} and chains in X. The meaning will be clear from the context.

TaEOREM 2. If X is a finite, contractible, 2-dimensional polyhedron and v is a
vertex of X, then each 1-cycle in {v} X d(St(v, X)) is homologous in P(X*) to a
1-cycle in 9(St(v, X)) X {v}.

Proof. Let 2z be a 1-cycle in {v} X d(St(v, X)). It is suthcient to prove the
theorem under the assumption that the union of the 1-simplexes with non-zero
coefficients in z is a simple closed curve S. Furthermore, withoutloss of general-
ity, we may assume that S is the union of three 1-simplexes, 7y, 72, 73, of X
and that

3
Z = Z 7.
i=1

Let v; denote the vertex r; M 7y, vy the vertex 7, M 73, and v3 the vertex 73 M 7.
Let 712 denote the 1-simplex with vertices v and v;, 723 the 1-simplex with
vertices v and v, and 73; the 1-simplex with verticesvand v3. For eachs = 1,2, 3,
let o; denote the 2-simplex which has 7; as a face and v as a vertex. Then

(r1ia X 73) \J (ras X r1) \J (31 X r9) U (01 X {92}) U (02 X {v3})
U (o3 X {v1}) U (r3 X 7r12) \J (r1 X 723) \J (2 X 731) U ({92} X 03)
U ({os} X 02) U ({01} X 035) C P(X¥),
and it is clear that there is a 2-chain associated with this subset of P(X*)
whose boundary is z — 2’, where 2’ is a 1-cycle in 9(St(z, X)) X {v}.

Definition 1. If X is a finite, contractible, 2-dimensional polyhedron and v is a
vertex of X, then X is pronged at v provided 9(St(v, X)) contains a simple
closed curve, and if d(St(v, X)) is a simple closed curve .S, then there is a
simple closed curve S’ in the 1-skeleton of X — St(v, X), a 2-chain

n
c=2 ;04
=1
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(a; #0 for each j=1,2,...,n) in X — St(v, X), and either a 1-simplex
r € X — St(v, X) such that dc = 2g — 2¢,7 NS =@,and7 N\ (1 U2 \U ...
U 7,) is a vertex, or a 2-simplex r € X — St(v, X) and a 1-face u of 7 such that if
L denotes the line segment in 7 from the barycentre of = to the barycentre of u,
then ¢ = 2s—2¢, LN S =@, and LN (61U 62U ... U 0,) is a vertex. If s is
a 1l-simplex of X, then X is pronged at s provided the first barycentric sub-
division of X is pronged at the barycentre of s.

THEOREM 3. Let X be a finite, contractible, 2-dimensional polyhedron and v a
vertex of X such that d(St(v, X)) contains a simple closed curve. If X is pronged at
v, then each 1-cycle in d(St(v, X)) X {v} bounds in P(X*). If there is a 1-cycle
in 0(St(v, X)) X {v} which bounds in P(X*), then X is pronged at v.

Proof. Suppose X is pronged at v, and let 2z be a 1-cycle in 9(St(z, X)) X {v}.
Let S be the simple closed curve in 9(St(v, X)) associated with z. If
S # 3(St(v, X)), let u € 9(St(v, X)) — S. Since we can subdivide X so that u
is a vertex of the subdivision, we may assume that u is a vertex of X. Then
(S X (u,v)) U ((S*v) X {fu}) C P(X*), and it is clear that there is a
2-chain associated with this subset of P(X*) whose boundary is z. If
S = 9(St(v, X)) and there is a simple closed curve S’, a 2-chain ¢, and a
1-simplex 7 satisfying Definition 1, let # be the vertex of » which is not in
o1\ Jao:\U...Ugy,, and let 7y, 75, . . ., 7, be a sequence of 1-simplexes such
thatvisavertexof 71,7 N\ (6, U 0 U ... U a,) isavertexof r,, 7y NS = @,

q n
UrnCU g -5,
i=2 j=1

r: M\ 7411 is a vertex for each 4, and 7; N 7, = @if |2 — k| > 1. (We may assume
that X is subdivided so that this is possible.) Then

(&) oo (§n07)

U (( ,-L:{ o3 U (S*v)) % {u}> c P(x™),

and it is clear that there is a 2-chain associated with this subset of P(X*)
whose boundary is 2. If S = d(St(v, X)) and there is a simple closed curve
S’, a 2-chain ¢, and a 2-simplex 7 with 1-face u satisfying Definition 1, we do
essentially the same thing in order to obtain a 2-chain in P(X*) whose boundary
is 2.

Suppose there is a non-trivial 1-cycle 2 in d(St(v, X)) X {v} which bounds in
P(X*). We may assume that

n
z=a2 7 iy
i=1

where S =r; U r, U ... Ur,isasimple closed curve. If there is a 1-simplex s
with vertex » such that S X s C P(X*), then d(St(v, X)) contains a simple
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closed curve but is not a simple closed curve. Suppose there is no such
1-simplex. Then S = 9(St(v, X)). Now P((S*v)*) is homeomorphic to a
cylinder with one end {v} X S and the other S X {v}. Hence z cannot bound
in P((S *v)*), and thus there is a 1-simplex s; in .S such that s, is a face of a
2-simplex ¢; which is not in .S * . Let S; be the simple closed curve consisting
of all the 1-simplexes in .S and all the 1-faces of o; except those in SN ;.
If SM o, consists of two 1-simplexes and the common vertex of these two
1-simplexes is a vertex of a 1-simplex 7 notin (S * ) \U o1, let ¢ be the elementary
2-chain which assigns to o¢; either =a depending upon the orientations.
Then Sy, ¢, and 7 satisfy Definition 1. If S M ¢; = s; and there is a 2-simplex 7
such that 7 ¢, 7 isnot in S * v, and s, is a face of 7, let ¢ be the elementary
2-chain which assigns to ¢, either =a depending upon the orientations. Then
Sy, ¢, 7 and the 1-face s; of 7 satisfy Definition 1. If neither 7 nor 7 exist, then
since z bounds in P(X*), there is a 1-simplex s in S} such that s, is a face of a
2-simplex ¢, where o2 # o1 and o3 is not in .S * v. Let .S, be the simple closed
curve consisting of all the 1-simplexes in S; and all the 1-faces of o, except those
in S1 M o5 Now we repeat the above argument and continue this process.
Since X is finite and contractible and z bounds in P(X*), after a finite number
of steps we shall obtain either an .S, ¢, and 7 satisfying Definition 1 or an .5, ¢,
and 2-simplex = with 1-face u satisfying Definition 1.

THEOREM 4. Let X be a finite, contractible, 2-dimensional polyhedron, and let
v be a vertex of X such that X is not pronged at v. If z is a 1-cycle in P(X*) which
does not bound and there is an integer p such that pz is homologous to a non-trivial
1-cycle in 3(St(v, X)) X {v}, then z is homologous to a 1-cycle in
d(St(v, X)) X {v}.
Proof. Suppose 2’ is a non-trivial 1-cycle in 9(St(v, X)) X {v} such that pz
is homologous to 2. Since X is not pronged at v,

m
g =a E 74
i=1

m

U 7: = a(St(, X))

=1

where

S

is a simple closed curve. Since P((St(v, X))*) is just a cyclinder with one end
S X {v} and the other {9} X S, it is sufficient to prove the theorem by working
in P(X*) — (St(v, X))* rather than in P(X*). Since X is not pronged at v,
each 7; in S is a face of at most one 2-simplex in X — St(y, X). If there is a
2-simplex o, not in St(v, X) such that some 1-simplex in S is a face of oy, let
S; be the simple closed curve consisting of all the 1-simplexes in S and all the
1-faces of o, except those in S M o;. If there is a 2-simplex s such that ¢y # 0,
osis not in St(v, X), but some 1-simplex in .S is a face of o5, let .S, be the simple
closed curve consisting of all the 1-simplexes in S; and the 1-faces of o, except
those in S; M o2 Continue this process until we run out of 2-simplexes. Let
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o1, 02, . . . , 0, denote the collection of 2-simplexes obtained in this manner, and
let .S, be the last simple closed curve that we obtain. Let 2, be the 1-cycle
associated with S, which has coefficient 4= (depending upon orientations) on
each 1-simplex in .S,. I{ the proper sign has been chosen for each coefficient of
2,, then 2’ is homologous to 2,. Since X is not pronged at v, any 1-cycle in
P(X*) — (St(v, X))* which is homologous in P(X*) — (St(v, X))* to &
must lie in 8’ X {u}, where

S’C U o
i=1

and u is “‘inside’” S’. Therefore, since X is contractible, each coefficient of any
such 1-cycle must be #=a, and hence 2 is homologous to a 1-cycle in

(St(», X)) X {v}.

3. Addition of a 1-simplex at one vertex.

THEOREM 5. If A is a finite, contractible, 2-dimensional polyhedron, B is a
1-simplex, A N B = {v}, where v is a vertex of A and B such that A is not
pronged at v, A* is connected, H,(A*) 1is the free abelian group on a generators,
H,(3(St(v, A))) is the free abelian group on B generators, Hy(d(St(v, A))) is the
free abelian group on v generators, and X = A \J B, then Hy(X*) is isomorphic
to Hy(A*) for k=0 and k > 3, Hy(X*) is tsomorphic to the direct sum
Hy(A*) 4+ H.(3(St(v, 4))), and H,(X*) is the free abelian group on o — B + 2y
generators. (Note that 8 is either 0 or 1 since 4 is not pronged at v.)

Proof. Let b denote the other vertex of B. Then
P(X*) = P(4*) U ([4 — St(v, 4)] X B) U (St(v, 4) X {b})
U (B X [4 — St(z, 4)]) U ({8} X St(v, 4)).
Now P(4*) N ([A — St(v, A)] X B) = [A4 — St(v, 4)] X {v}, and hence
H (P(A*) U ([4 — St(v, 4)] X B)) is isomorphic to H(P(A4¥*)) for all k.
Also
[P(4*) Y ([4 — St(v, 4)] X B)] N (St(v, 4) X {b})
=[d(St(v, 4)) X {b}.
Since A* is connected and dim (St(v, 4) X {b}) < 2,
H,(P(4*) U ([4 — St(v, 4)] X B) U (St(v, 4) X {b}))

is isomorphic to Hy(P(4*)) for & = 0 and k> 3. Suppose 2z is a 1l-cycle in
9(St(v, 4)) X {b}. Then 2z bounds in St(v, 4) X {b}, z does not bound in
[4 — St(v, 4)] X B, but 2 is homologous in [4 — St(v, 4)] X B to a 1-cycle
2’ in 9(St(v, 4)) X {v}. Since 4 is not pronged at v, no 1-cycle in 3(St(z, 4)) X
{v} bounds in P(4*) by Theorem 3. Therefore, by Theorem 1,

Hy(P(A*) U ([4 — St(v, 4)] X B) U (St(v, 4) X {b}))
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is isomorphic to Hs(P(A4%*)), and, by Theorem 4,
Hy(P(A*) U ([A — St(v, A)] X B) U (St(v, 4) X {b}))
is the free abelian group on @« — 8 + v generators. Now

[P(4%) VU ([4 — St(v, 4)] X B) U (St(v, 4) X {b})]
N (B X [4 — St(v, 4)]) = {v} X [4 — St(v, 4)],

and hence
H, (P(A*)\U ([4 —St(v, 4)] X B)\U (St(v, 4) X {b})U (B X [4 — St(v, 4)]))

is isomorphic to Hy(P(4*) U ([4 — St(v, 4)] X B) U (St(v, 4) X {b})) for
all k. Also

[P(4*) U ([4 — St(v, 4)] X B) U (St(v, 4) X {b}) U (B X [4 — St(v, 4)])]
N ({b} X St(v, 4)) = {b}[X 3(St(v, 4)).

Again, since A* is connected and dim({b} X St(v, 4)) < 2, H(P(X¥)) is
isomorphic to H(P(A*)) for k=0 and k2 > 3. Let 2z be a 1l-cycle in
{b} X 9(St(v, 4)). Then z bounds in {b} X St(v, 4), and 2 is homologous in
B X [A — St(v, 4)] to a 1-cycle 2; in {9} X 8(St(v, 4)). By Theorem 2, z,
is homologous in P(A4*) to a 1-cycle 2, in 9(St(v, 4)) X {v}. Now 2, is homo-
logous in [A — St(v, A)] X B to a l-cycle z; in 9(St(v, 4)) X {b}, and z;
bounds in St(v, 4) X {b}. Therefore H,(P(X*)) is isomorphic to the direct
sum Ho(P(A4*)) + H.(d(St(v, 4))), and H,(P(X*)) is the free abelian group
on a — f 4+ 2v generators.

THEOREM 6. If A is a finite, contractible, 2-dimensional polyhedron, B is a
1-simplex, A M B = {v}, where v is a vertex of A and B such that A 1s pronged
at v, A* is connected,and X = A \J B, then H(X*) is isomorphic to Hy(A*) for

= 0andk > 3, Hy(X*) is 1somorphic to the direct sum

H,y(A4%) + H1(0(St(v, 4))) + Hi(3(St(v, 4))),
and H(X*) is isomorphic to the direct sum
H\(A%) 4+ Ho(0(St(v, 4))) + Ho(3(St(v, 4))).

Proof. Again let b denote the other vertex of B, and express P(X*) as the
union of sets in the same way that it was expressed in the previous proof. The
previous proof applies to show that

Hy(P(4%) Y ([4 — St(v, 4)] X B))
is isomorphic to Hy(P(A4*)) for all k£ and
Hy(P(4%) Y ([4 — St(v, 4)] X B) \J (St(v, 4) X {b}))

is isomorphic to Hy(P(A*)) for k =0 and k% > 3. Let 2z be a 1l-cycle in
d(St(v, 4)) X {b}. Then 2z bounds in St(v, 4) X {b}, 2 is homologous in
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[A — St(v, A)] X B to a 1-cycle 2’ in d(St(v, 4)) X {v}, and, by Theorem 3,
2’ bounds in P(A4*). Therefore

Hy(P(A*) U ([A — St(v, 4)] X B) U (St(v, 4) X {b}))
is isomorphic to the direct sum H,(P(4%*)) + H,(d(St(v, 4))), and
H(P(A*) U ([4 — St(, A)] X B) U (St(v, 4) X {b}))

is isomorphic to the direct sum Hi(P(A*)) + Hy(d(St(v, 4))). Again the
previous proof applies to show that

Hy(P(A*)\U ([A —St(v, 4)] X B) U (St(v, 4) X {b}) U (B X [4 — St(v, A)]))

is isomorphic to Hy(P(4*) U ([4 — St(v, A)] X B) U (St(v, 4) X {b})) for
all & and H(P(X*)) is isomorphic to H,(P(A4A*)) for k = 0and 2 > 3. Let 2
be a 1-cycle in {b} X 9(St(v, 4)). Then 2z bounds in {b} X St(v, 4), z is
homologous in B X [4 — St(w, 4)] to a 1-cycle 2’ in {v} X d(St(v, 4)) and,
by Theorem 3, 2’ bounds in P(A4*). Therefore H,(P(X*)) is isomorphic to the
direct sum

Hy(P(A4%) + Hi(a(St(v, 4))) + Hi(3(St(v, 4))),
and H,(P(X*)) is isomorphic to the direct sum
H\(P(A4%)) + Ho(9(St(v, 4))) + Ho(9(St(v, 4))).

4. Addition of a 2-simplex at one vertex.

THEOREM 7. If A is a finite, coniractible, 2-dimensional polyhedron, B is a
2-simplex, A M B = {v}, where v is a vertex of A and B such that A is not
pronged at v, A* is connected, H1(A¥) is the free abelian group on a generators,
H,(d(St(v, 4))) is the free abelian group on B generators, Hy(d(St(v, 4))) s the
free abelian group on~y generators, and X = A \J B, then H,(X*) 1s isomorphic to
H(A*) for k = 0 and k > 3, Ho(X¥*) is isomorphic to the direct sum Hq(A*) +
H,(8(St(v, 4))), and H\(X*) is the free abelian group on o — B + 2v + 2
generators.

Proof. Let s denote the 1-face of B which does not have v as a vertex. Then
P(X*) = P(4*) U (14 = St(v, 4)] X B) U (St(v, 4) X 5)
U (B X [4 — St(y, 4)) U (s X St(v, 4)) U P(B*).
The proof of Theorem 5 applies to show that
Hy(P(4%) U ([4 — St(v, 4)] X B))
is isomorphic to H(P(A¥*)) for all k. Now
[P(4*%) U ([4 — St(v, 4)] X B)] N (St(, 4) X s) = (St(v, 4)) X s.
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Therefore Hy(P(A*) \J ([4 — St(v, 4)] X B) U (St(v, 4) X s)) is isomorphic
to Ho(P(A4%*)). Since H3(St(v, 4) X s) = 0 and 9(St(y, 4)) X s does not
contain a 2-cycle,

Hy(P(4*) Y ([4 — St(v, 4)] X B) U (St(, 4) X s))
is isomorphic to Hy(P(A*)) for all & > 3. Just as in the proof of Theorem 5,

if z is a 1-cycle in d(St(v, 4)) X s, then 2z bounds in St(v, 4) X s but not in
P(A4A*) U ([A — St(v, 4)] X B). Therefore, by Theorem 1,

Hy(P(4*) U ([4 — St(v, 4)] X B) U (St(v, 4) X s))
is isomorphic to H»(P(4%)), and, by Theorem 4,
H,(P(A*) U ([4 — St(v, 4)] X B) U (St(v, 4) X s))

is the free abelian group on @ — B -4 v generators. Again the proof of Theorem 5
applies to show that

Hy(P(A4*) U ([4 — St(v, A)] X B) U (St(v, 4) X s) U (B X [4 — St(v, 4)]))
is isomorphic to Hy(P(4*) U (4 — St(v, 4)] X B) U (St (1, 4) X 5)) for
all k. Also

[P(4*) Y ([4 — St(v, 4)] X B) \J (St(v, 4) X 5) U (B X [4 — St(v, 4)])]

N (s X St(v, 4)) = s X 3(St(v, 4)).
For the same reason as when we added m X s,
Hy(P(4*) U ([4 = St(v, )] X B) U (St(@, 4) X s)
U (B X [4 — St(y, 4)]) U (s X St(v, 4))

is isomorphic to Hy(P(A*)) for k = 0 and £ > 3. Again, just as in the proof of
Theorem 5, each 1l-cycle in s X d(St(v, 4)) bounds in s X St(v, 4) and in

P(4*) VU ([4 — St(v, 4)] X B) U (St(v, 4) X 5) U (B X [4 — St(v, 4)]).
Therefore

Hy(P(4*) U (4 — St(v, 4)] X B) U (St(v, 4) X )
U (B X [4 — St(v, 4)]) U (s X St(v, 4)))
is isomorphic to the direct sum H,(P(A4*)) 4+ H,(3(St(v, 4))), and
H\(P(4*) U ([4 — St(v, 4)] X B) U (St(, 4) X )
U (B X [4 — St(v, 4)]) U (s X St(, 4)))
is the free abelian group on @ — 8 + 2v generators. Now
[P(4%) U (4 — St(v, 4)] X B) U (St(v, 4) X 5) U (B X [4 — St(v, 4)])
U (s X St(v, )] N P(B¥) = (fo} X 5) U (s X {o}).

Therefore, since P(B*) is a simple closed curve, Hy(P(X*)) is isomorphic
to Hy(P(A*)) for k = 0 and k > 3, Hy(P(X*)) is isomorphic to the direct
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sum Hy(P(4%*)) + H1,(3(St(v, 4))), and H,(P(X*)) is the free abelian group
on a — B + 2y 4 2 generators.

THEOREM 8. If A is a finite, contractible, 2-dimensional polyhedron, B is a
2-simplex, A M B = {v}, where v is a vertex of A and B such that A is pronged
at v, A* is connected, and X = A \J B, then H,(X*) is isomorphic to H,(A*)
for k= 0and k > 3, Ho(X*) is isomorphic to the direct sum

Hy(A4*) + Hi(9(St(v, 4))) + Hi(3(St(v, 4))),
and H,(X*) is isomorphic to the direct sum

Hi(A4%) + Ho(d(St(v, 4))) + Ho(d(St(v, 4))) + Z + Z.

Proof. Again let s denote the 1-face of B which does not have v as a vertex
and express P(X*) as the union of sets in the same way that it was expressed
in the preceding proof. The preceding proof applies to show that

Hy(P(4*) Y ([4 — St(v, 4)] X B))
is isomorphic to Hy(P(A4%*)) for all k& and
H,(P(4*) U ([A — St(v, 4)] X B) U (St(v, 4) X s))

is isomorphic to Hy(P(A*)) for k = 0 and & > 3. By Theorem 3, each 1-cycle
in 8(St(y, 4)) X s bounds in St(v, 4) X sand in P(4*) U ([4 — St(v, 4)] X
B). Therefore

H,(P(A*) U ([4 — St(v, 4)] X B) U (St(v, 4) X s))
is isomorphic to the direct sum H»(P(A*)) 4+ H1(d(St(v, 4))), and
H,(P(4*) U ([A — St(v, 4)] X B) U (St(v, 4) X s))

is isomorphic to the direct sum H;(P(4*)) + Ho(3(St(v, 4))). Now the
remainder of the proof of Theorem 7 applies to complete the proof of this
theorem.

5. Addition of a 2-simplex at one 1-simplex.

THEOREM 9. If A s a finite, contractible, 2-dimensional polyhedron, B is a
2-simplex, A M B = s, where s 1s a 1-simplex of A and B such that A is not
pronged at s, A* is connected, H1(A*) is the free abelian group on o generators,
Hi(d(St(v, A))) 1s the free abelian group on B gemerators, and X = A \U B,
then Hy(X*) is isomorphic to Hy(A*) for k = 0and k > 3, Ho(X*) is isomorphic
to the direct sum Hy(A*) + H1(9(St(s, 4))), and H,(X*) 1s the free abelian group
on a — [ generators.
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Proof. Let b denote the vertex of B which is not a vertex of s, let #; and u,
denote the vertices of s, and for each 7 = 1, 2, let s; denote the 1-face of B not
in A which has u; as a vertex. Then

PX*) =P4*) U ([A - tkijl St(u,,A):| X B)
U ([St(us, 4) — St(uy, A)] X s1) U ([St(u1, A) — St(us, A)] X s2)
U (St(s, 4) X {6}) U (B X I:A - 1L=J1 St(ui,A)]>

U (s1 X [St(uz, 4) — St(ur, A)]) U (s2 X [St(u1, 4) — St(us, 4)])
U ({b} X St(s, 4)).
Now

PA*) N ([A - 191 St(ui,A):I X B> = [A - 191 St(ui,A):] Xs,

and hence
Hk<P(A*) U <|:A - kj)l St(u,,A):l X B))

is isomorphic to Hy(P(A*)) for all k. Also

[P(A*) U ([A - }:{ St (us, A):l X B)] N ([St(uz, A) — St(u1, A)] X s1)
= ([St(us, 4) = St(us, 4)] X {ua}) U ([9(St(us, 4)) — St(ws, 4)] X 51),

and hence

Hk<P<A*> U ([A - g St (us, A)] X B) U ([Stuz, 4) — St(ws, 4)] X sl))

is isomorphic to Hy(P(4*)) for all k. Similarly

[P(A*) ) ([A - g St<u1,A>] X B) U ([St(us, 4) — St(u, 4)] X so]

N ([St(uy, A) — St(us, A)] X s2)
= ([St(u1, A) — St(uq, A)] X {us}) U ([8(St(u1, 4)) — St(us, A)] X s2).

Therefore

Hk<P(A*) U (l:A - iLijl St(ui,A):\ X B)

U ([St(uz,A) — St(u1, 4)] X s1) U ([St(ul,A) — St(uz,A)] X Sz))
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is isomorphic to Hy(P(A4*)) for all k. Now
[P(A*) U <[A — ¢U1 St(u,,A)] X B) U ([St(us, A) — St(uy, 4)] X s1)

U ([St(u1, 4) — St(us, 4)] X 82)] N (St(s, 4) X {b}) = a(St(s, 4)) X {b}.

Since A* is connected and dim(St(s, 4) X {b}) < 2,

H,C(P(A*) U ([A— ik:)} St(u,,A)] ><B> U ([St(uz, 4) — St(us, 4)] X s1)

U ([St(us, 4) — St(us, 4)] X s5) U (St(s, 4) X {b}))

is isomorphic to Hy(P(A*)) for & = 0 and & > 3. Suppose z is a 1-cycle in

d(St(s, 4)) X {b}. Clearly Theorem 3 applies, and hence z bounds in St(s, 4)
X {b} but not in

P(A*) U <[A — 1=U1 St(u,,A)] X B) U ([St(us, A) — St(uy, A)] X s1)

U ([St(u1, 4) — St(us, 4)] X s2).
Therefore, by Theorem 1,

m(Pun U ([ 4= O st t) | X B) U (85 2) - Sttun 401 x

U ([St(uy, A) — St(us, 4)] X s2) U (St(s, 4) X {b})>
is isomorphic to Hy(P(A*)). Clearly Theorem 4 applies, and hence

HI(P(A*) U <[A - iL:JI St (u,, A)] X B> U ([St(us, A) — St(us, 4)] X s1)

U ((St(us, 4) — St(ue, 4)] X 1) U (Stls, 4) X {b}))

is the free abelian group on o — B generators because 9(St(s, 4)) is connected.
Now

[P(A*) U ([A -y St(ui,A)j| X B> U ([St(us, 4) — St(u1, 4)] X 51)
U ([St(u1, A) — St(us, 4)] X s2) U (St(s, 4) X {b}):l

2 2
N (B X [A - U St(u,-,A):D =5 X [A - U St(ui,A):l ,
i=1 i=1
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and therefore
H,,(P(A*) U ([A — t&)l St(u,,A):] X B) U ([St(ug, A) — St(us, 4)] X s1)

U ([St(u1, 4) — St(us, A)] X 52) U (St(s, 4) X {b})

U(Bx[4- s ]))

is isomorphic to
Hk<P(A*) U ([A -y St(u,,A):| xB) U ([St(usz, 4) — St(u, 4)] X s51)

U ([St(u1, 4) — St(us, A)] X s2) U (St(s, 4) X {b})>
for all k. Also

[P(A*) U (l:A - 1@1 St (uy, A)] X B) U ([St(us, 4) — St(u1, A)] X s1)
U ([St(u1, A) — St(uz, A)] X 52) U (St(s, 4) X {b})
U <B X [A — 1L=)1 St(u,,A)]):l N (s1 X [St(us, 4) — St(u1, 4)])

= ({ul} X [St(uﬁvA) - St(ul)A)]) U (Sl X [a(St(u21A)) - St(uly A)])v
and hence

Hk<P(A*) U ([A -y St<ut,A)] X B) U ([St(us, 4) — St(us, 4)] X 1)
U (St 4) — St(us, 4)] X 2) U GtGs, 4) X (8})
0 (B[4 = G st ) |) U 2 x 55am ) = St )
is isomorphic to
Hk<P<A*> U ([A - u St<m,A)] X B) U ([Stuz 4) — St(us, 4)] X 51)

for all k. Similarly

[P(A*) U ([A — 181 St(ui,A)] X B) U ([St(uq, 4) — St(uy, 4)] X s1)
U ([St(u1, 4) — St(us, 4)] X s2) U (St(s, 4) X {b})
U (B X [A — i_L_-jl St(ui,A):D U (s1 X [St(us, 4) — St(ul,A)])]

N (s2 X [St(u1, A) — St(us, 4)1)
= ({us} X [St(u1, A) — St(us, 4)]) U (s2 X [8(St(u1, A)) — St(us, 4)]),
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and hence
Hk<P(A*) U ([A - g St(u,,A)] X B) U ([St(us, 4) — St(u1, 4)] X s1)
U ([St(us, 4) — St(us, 4)] X s3) U (St(s, 4) X {b})

U <B X [A - l_Lle St(unA)]) U (s1 X [St(uz, 4) — St(us, 4)])

U (s2 X [St(us, 4) — St(us, A)]))
is isomorphic to
H,,(P(A*) U ([A - g St (w, A)] X B) U ([St(uz, 4) — St(u1, 4)] X s1)
U ([Stlus, 4) — St(us, 4)] X 52) U (St(s, 4) X {b}))
for all k. Now
[P(A*) V] ([A - u St<u1,A>] X B) U ([St(uz, 4) — St(us, 4)] X s1)
U ([St(us, 4) — St(us, 4)] X 52) U (St(s, 4) X {b})

U (B X [A - g 5t<u,,,4)]> U (51 X [St(us, 4) — St(us, 4)])

U (s2 X [St(u1, 4) — St(uz,A)])] N ({d} X St(s, 4))

= {b} X 9(St(s, 4)).

Again, since A* is connected and dim({d}.X St(s, 4)) < 2, H(P(X*))
is isomorphic to Hy(P(A*)) for & = 0 and k& > 3. Suppose z is a 1-cycle in
{b} X 3(St(s, 4)). Then 2z bounds in {b} X St(s, 4) and in

P U ([A -y St<u¢,A>] x B) U (Bt A) — St 4)] X 51)
U (Bt A) — St 4)] X 5) U GEG,A) X {5)) o
U <B X l:A - L:)l St(ut;A):D U (Sl X [St(ﬁz,A) - St(ul,A)])

U (52 X [St(us, 4) — St(us, 4)]).
Therefore Ho(P(X*)) is isomorphic to the direct sum
| Ha(P(4%) + Hy(3(St(s, 4))),
and HI(P(X*)) is the free abelian group on a — 8 generators.
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TureoREM 10. If A is a finite, contractible, 2-dimensional polyhedron, B is a
2-simplex, A M B = s, where s is a 1-simplex of A and B such that A is pronged
at s, A* is connected, and X = A \J B, then Hy(X*) is isomorphic to Hy(A*)
for k # 2 and Hy(X*) is isomorphic to the direct sum

H,(A%) + H1(8(St(s, 4))) + Hi(a(St(s, 4))).

Proof. Again let b denote the vertex of B which is not a vertex of s, let u;
and u, denote the vertices of s, and for each 7 = 1, 2, let 5; denote the 1-face of
B not in 4 which has %; as a vertex. Express P(X*) as the union of sets in the
same way that it was expressed in the preceding proof. The preceding proof
applies to show that

H,‘<P(A*) U ([A - }:Jl St(us, A):l X B) U ([St(uz, A) — St(u, A)] X s1)

U ([St(u1, A) — St(usz, A)] X S2)>

is isomorphic to Hy(P(A*)) for all k and
2 —_—

Hk<P(A*) U <|:A — U1 St(u,,A)] X B) U ([St(uz, A) — St(u1, 4)] X s1)
i=

U ([St(u, 4) — St(uz, 4)] X 52) U Gts, 4) X {b;))

is isomorphic to Hy(P(A*)) for k = 0 and k£ > 3. But now, since 4 is pronged
at s, each 1-cycle in d(St(s, 4)) X {b} bounds in St(s, 4) X {b} and in

ra 0 ([ - ) si ] x2)
U ([St(us, A) — St(u1, 4)] X s51)

U ([St(ul, A) — St(u2, A)] X Sz).

Therefore

H2<P(A*) U ([A - g St<u,,A)] X B) U ([St(uz, 4) — St(us, 4)] X 51)
U ([Stu, 4) — St(us, 4)] X 52) U St (s, 4) X {b}))

is isomorphic to the direct sum Ha(P(4*)) + H1(3(St(s, 4))), and

HI(P(A*) U ([A - g St(ui,A>] X B) U ([St(us, A) — St(u1, 4)] X s1)

U ([St(uy, 4) — St(us, 4)] X 52) U (St(s, 4) X {b}))
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is isomorphic to Hi1(P(A4*)). Again the preceding proof applies to show that
H,(P(X*)) is isomorphic to Hy(P(4*)) for k # 2 and H,(P(X*)) is isomorphic
to the direct sum

Hy(P(A%)) + Ha(0(St(s, 4))) + Hi(9(St(s, 4))).

6. Addition of a 2-simplex at two 1-simplexes. Throughout this section,
we assume that

(1) A is a finite, contractible, 2-dimensional polyhedron;

(2) B is a 2-simplex;

8) 4 N\ B = 5;\U s, where s; and s, are 1-simplexes of 4 and B;

(4) s1 M sy = {u3}, where u; is a vertex;

(5) if u; is the vertex of s; different from u;, then there is a sequence r;,
s, ..., ", of 1-simplexes in d(St(us, A)) such that u; is a vertex of r;, uy is a
vertex of 7, r; N\ r;1isa vertex,and r; N ry, = @ if [ — k| > 1;

(6) if S is a simple closed curve in d(St(us, 4)) and %, and u, are not in S,
then there is a sequence of 1-simplexes satisfying (5) such thatr; NS = @ for
each j;

(7) A* is connected;

(8) H:(A*) is the free abelian group on « generators;

(9) Hi(A*) is the free abelian group on 8 generators;

(10) Ho(8(St(us, A)) — \Ui_1 St(u;, A)) is the free abelian group on y gener-
ators; and

(11) X = A U B.

Let s denote the 1-face of B which is not in 4. Then

P(X*) =PA*) U ([A — ;)1 St(u,,A):l X B)

V) ([m> - 91 St(uuA)] X s) U (B X [A - C) St(ut,A)])

) ( [St(ug, 4) — U St(u;, A):I)
TuEOREM 11. If 2 is a 2-cycle in

([St(ua, A) — k_) St(u,,A)] X {u }>

<[St(u3, 4) — U St(u,,A)] X {u2}>
U ([a(St(us,A)) - 191 St(ui,A):l X s>,

then z bounds in

PA* U ([A - £.J1 St(u,,A)] X B) .
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Proof. If there is a 2-cycle 2 in
<[St(u3,A) - gl St(ui,A)] X {%1})
U ([St(us,A) - 1K=J1 St(ui,A):l X {”2}>

U <[a(St(u3,A)) — g)l St(u,,A):I X s>,

then there is a simple closed curve S in

2
[G(St(ug,A)) - U St(u,,A):l X s.
1=1
Let D = S« u;. It is sufficient to prove the theorem under the assumption
that 2z is a 2-chain which assigns to each 2-cell in
(D X {ur}) I (S X s) U (D X {us})

either #£1. It is then clear that z is homologous in

PA*) U <|:A - g)l St(u,,A):l X B)

toa 2-cycle z; in (D X {ui1} U (S X (51U 82)) U (D X {u2}). Since #; and u,
are not in S, there is a sequence 74, 73, . . ., 7, of 1-simplexes in d(St(us, 4))
satisfying (5) and (6). Thus 2; is homologous in P(A4*) to a 2-cycle 2, in

@ x ) U (s (0 n)) U@ x fwh,

and it is clear that there is a 3-chain associated with

n
D X U (2]
j=1
whose boundary is 2.

Notation. Suppose v, and v, are vertices in different components of

d(St(us, 4)) — kjjl St(ug, A).

Let C, denote the component of 4 — {3} which contains #; and us, and for
each 7, let C; be the component of 4 — {u3;} which contains v;. Also let
K = \U{¢| o is a 2-simplex and there is a sequence 71, 03, . . . , 0, of 2-simplexes
in A with the property that ¢ = o1, #; is a vertex of ¢,, and ¢; M 0,4 is a
1-simplex for each j}.

The author (6) defined a c-point as follows: A point x € A is called a
c-point of A if there exist 2-simplexes, 71, 72, . . ., 7,, of 4 and a simplex 7 of
A such that:
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(a) tis not a face of r; for any 7,

(b) x is a vertex of 7 and of r; for each 1,

(c) 7o M 71 is a 1-simplex,

(d) foreachz=1,2,...,n — 1, 7, 7441 is a 1-simplex, and

(e) 7N\ 1; = {x} unless 7 and j satisfy the conditions of either (c) or (d).

THEOREM 12. Suppose v, and v, are vertices in different components of

2
(St (us, 4)) — iL_)l St(uy A4).

For each 1 = 1, 2, let 7; be the 1-simplex with vertices uz and v;, and let z be a
1-cycle which assigns to each 1-simplex in

(1Y a) X {ur}) Y (foa} X 5) U (1Y m2) X {ua}) Y ({0} X 5)
either 1.
(@) If C; # C, for any 1, then 2z bounds in
3
PA*) U <[A - U St(u,,A)] X B) .
i=1
MYIfC,=Cubut C; # C, (3, = 1, 2,1 5 j), then 2 bounds in

P(4*) U ([A - }:{ St(u,,A)] X B)

if and only if either there is a vertex w in K such that d(St(w, K)) contains a
simple closed curve and w is a c-point of A or there is a 1-simplex in K which is
a face of at least three 2-simplexes.

(c) If C; = Cy = C,, then z bounds in

PA*) U <[A - g)l St(ui,A):l X B)

if and only if either there is a vertex w in K such that d(St(w, K)) contains a
stmple closed curve and w is a c-point of A, thereis a 1-simplex in K which is a face
of at least three 2-simplexes, or, for each 1, v, and v, are in different components
of 9(St(us, 4)) — St(u, A).

Proof. 1t is clear that z is homologous in
3
P(4*) U <[A - U St(u,,A):I X B>

to a 1-cycle z; which assigns to each 1-simplex in

(11 72) X {ua}) U ({22} X (51U 59))
U (1Y 72) X {ua}) U (for} X (51 52))

either ==1. Also it is clear that 2z bounds in

PA*) U ([A - g)l St(ui,A)} X B)
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if and only if 2; bounds in P(4%*). Letry, 7, . . . , 7, be a sequence of 1-simplexes
satisfying (5), and foreachj = 1, 2, ..., m, let o; be the 2-simplex which has
7; as a face and u; as a vertex.

(a) Itis clear that there is a 2-chain associated with

2 m 2 m
(U e X U 7’1)U< U {vid X U 0'j>
i=1 j=1 i=1 j=1
whose boundary is 2;.
(b) We may assume without loss of generality that C; = C, but Cy % C,. It
is clear that there is a 2-chain associated with

(7'2 X U 7‘1) U ({vz} X U Uj)
j=1 J=1

whose boundary is 3, — 2, where 2z is a 1-cycle which assigns to each 1-simplex
in

(ra X {ua}) U <{%3} X jg 7'1> U (r1 X {ue}) U (foa} X (51U s2))

either 1. Now 2, is a 1-cycle in P(K*).

If there is a 1-simplex in K which is a face of at least three 2-simplexes,
then there is a subpolyhedron L of K such that L = D \U u, where D and u are
homeomorphic to 2-simplexesand D M uisa 1-simplex which is in the boundary
of u but not in the boundary of D, and

(r1 X {ua}) U ({m} X ;;Jl r,-) U (11 X {u2}) U ({o1} X (51U s2)) C P(L*).

Since D* has the homotopy type of a circle, H,(L*) = 0 by Theorem 9.
Therefore z; bounds in P(L*) and hence in P(4*). Suppose there is no 1-simplex
in K which is a face of more than two 2-simplexes, but there is a vertex w
in K such that d(St(w, K)) contains a simple closed curve and w is a ¢-point
of A. Choose a 1-simplex uin 4 — Ksuch that wisa vertexof u. If L = K \U p,
then H;(L*) = 0 by Theorem 5. Therefore 2z; bounds in P(L*) and hence in
P(A%*).

Since K M A — K is a collection of vertices, if 2; bounds in P(4%*), then
there is a 1-simplex p in 4 such that if L = K \U u, then 2, bounds in P(L*).
If there is no vertex w in K such that d(St(w, K)) contains a simple closed
curve and w is a c-point of 4 and there is a 1-simplex u in A4 such that if
L = K \U g, then 2; bounds in P(L*), then 2, bounds in P(K*) by Theorem 5.
If, in addition, there is no 1-simplex in K which is a face of more than two
2-simplexes, then K is homeomorphic to a disk. Thus in order to complete the
proof of (b), it is sufficient to assume that K is the polyhedron
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Ul Vl U2

Uz

and show that 2. jdoes not bound in P(K*). But this is a routine verification.

(c) Since 2 is a 1-cycle in P(K*), the proof of (b) applies to give us part
of (c). For essentially the same reason as given in (b), in order to complete
the proof of (c), it is sufficient to assume that K is the polyhedron

where each a; and each b; is either «; or v;, and show that 2, bounds if and only
if each b, is a u; and each a, is a v;. But again this is a routine verification.

COROLLARY 1. Suppose vy, vs, and v; are vertices in different components of

(St(us, 4)) — }2)1 St(us, 4).

For each © = 1, 2, 3, let 7; be the 1-simplex with vertices us and v;, let 2, be a
1-cycle which assigns to each 1-simplex in

((r1\J 72) X {u}) Y (oo} X 5) U (11U 79) X {u2}) U ({11} X 5)
either 1, and let 25 be a 1-cycle which assigns to each 1-simplex in
((r1\Yrs) X {wa}) Y ({5} X 5) U ((11 Y 73) X {us}) U (foi} X 5)

either 1. If neither 2, nor 2, bounds in

P4*) U <[A - 1L:)1 St(u,,A)] X B) ,
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then 2, is homologous in

PA*) U ([A - }:Jl St(u,,A):l X B)

to either 4=2,.

THEOREM 13. Suppose v, and v, are vertices in different components of

9(St(us, 4)) — 61 St(u,, A4).

For each © = 1, 2, let 7; be the 1-simplex with vertices us and v;, and let z be a
1-cycle which assigns to each 1-simplex in

(11U r9) X {ua}) Y ({22} X (51U 59))

U (11U 719) X {u2}) U (fo1} X (51U s59))
either &=1. Then 2 is homologous in P(A*) to a 1-cycle in
({ua} X (11U 72)) Y (51 Y s2) X {v2})

U ({ue} X (11U 72)) U ((51 Y 52) X {w1}).

Proof. If 2 bounds in P(A4*), then the theorem is obviously true. If 2z does
not bound, then K is homeomorphic to a disk. Since v; and v, are in different
components of )

a(St(us, A)) — CJI St(uq A4),

we may assume that there is a sequence 7y, 79, . . . , 7 of 1-simplexes satisfying
(5) such that v, is not a vertex of 7, for any j. Then, as observed in the proof
of Theorem 12, z is homologous in P(4*) to a 1-cycle 2’ which assigns to each
1-simplex in

(11 X {ua}) U ({us} X ]Q 7:‘) U (71 X {ua}) U (foi} X (51U s2))

either #=1. Thus it is sufficient to assume that 4 is the polyhedron
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and show that each 1-cycle in
(r1 X {u1}) U ({us} X (r1\U r2)) U (11 X {u2}) U ({va} X (51U 59))
is homologous in P(A4%*) to a 1-cycle in
(fur} X 11) U ((r1\J 72) X {us}) U ({us} X 71) U ((51U 52) X {v1}).
But this is a routine verification.

Definition 2. We define a number § called the simple 2-dimensional deleted
product number of A at u; with respect to #; and u, as follows: If y = 0, there
is a vertex w in K such that d(St(w, K)) contains a simple closed curve, and
w is a c-point of 4, or there is a 1-simplex in K which is a face of at least three
2-simplexes, then § = 0. Otherwise § = 1.

THEOREM 14. If & is the simple 2-dimensional deleted product number of A
at us with respect to u, and us, then Hy(X*) is isomorphic to Hy(A*) for k = 0
and k > 4, Hy(X¥*) is isomorphic to the direct sum

H3(A*) +H1<3(St(’l«t3, A)) —_ ;}1 St(’lt;, A))

+H1<8(St(%3,A)) - 1L2J1 St(ub A)) ’

Hy(X*) is the free abelian group on o + 2y — & generators, and H,(X*) is the
free abelian group on B — & generators.

Proof. Since

PA*) N <[A — 1L:)1 St(ut,A):\ X B) = [A — 191 St(ui,A)] X (51U s2),

H,,(P(A*) U (I:A - 191 St(ui,A):I X B))

is isomorphic to Hy(P(A4*)) for all K. Now

o[- O stonn]x5)]

N ([m> - }_2)1 St(ut,A):I X s>
- ([m> - Q St(ui,A):' X {u1}>
U (|5 D ~ st a) | x )

U ([6(St(u3,A)) - 1L:J1 St(ui,A)] X s) .
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Since A* is connected and
dim <[St(u3, A4) — ikijl St (%4, A):I X s) <3,
Hk<P(A*) U ([A - gjl St(u,-,A):| X B)
U <[St(u3,A) — }:}1 St(ui,A)] X s>)
is isomorphic to Hy(P(A*)) for £ = 0 and k& > 4. Now
(5D - O st ) | x )
O (|5 = 0 st ) | x 1)

U ([G(St(ua,A)) - Q St(ui,A)] X s>>
is isomorphic to )
H1<6(St(u3,A)) — 191 St(u,-,A)) )
and each 2-cycle in
(s EETIE)
U ([WTU - y St<u,»,A)] X {m})

U <[6(St(u3,A)) - ik=_)l St(ui,A)] X s)
bounds in

o 2
[St(u3,A) — iL_Jl St(ui)A)] Xs

and in

3
PA*) U <[:A - U St(uf,A)] X B)
i=1
by Theorem 11. Therefore

H3<P(A*) U <[A - Ql St(ui,A):l X B)

o 50— § s ])
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is isomorphic to the direct sum

Hy(P(4%) + H1<6(St(u3, 4)) = U St(us A)) .

Since
St(us, 4) — g St(us, 4)
is contractible and
Hl«[m) - Q St(ui,A)] X {u1}>
U ([m> - g St(u,,A)] X {m})

V) ([6(St(u3,A)) - ,=.L2)1 St(u,,A)] X s))

is isomorphic to
2
Ho<6(St(u3,A)) - U St(ui,A)> ,
i=1

it follows {rom Theorem 12 and Corollary 1 that

H2<P(A*) U <[A - }:Jl St(ui,A)] X B>

o & ste] )

is the free abelian group on « + v — & generators. Since, in addition,

([S'tm) — g St<u,,A>] X {un)

U (m> - g St(ui,A>] X {m})
U (:a(St(ug,A)) - {ijl St(ui,A):I X s)
is connected, i
HI(P(A*) U <LA — g St(u,,A)] X B)
U (:'St—(M) - Q St(u,.,A)] X s>>
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is the free abelian group on 3 — & generators. Since

is isomorphic to

Hk<P(A*) U <[A - 1=C)1 St(ui,A):l X B>
(

for all k. Now

Lo ([ O sct ] 2

o ([5G setwa )] ) |

N (B X l:A - zL:JI St(u,,A):D

= (51U s2) X [A - iLijl St(%i,A)],

H,,(P(A*) U ([A - }i{ St(ui,A)] X B>

U ([s_t(ﬂ) - u St<u,-,A)] X s)

U (B X [A — iLiJI St(us, A):D)

U [5263743 — g St<ui,A>] xs>)

[P(A*) U ([A - ikijl St(u,,A)] X B)

U ([St(ug,A) — }:)1 St(ui,A)] X s)

u(ex|4- 0 swn])]

A (s x| St - st ))
= (gul} X [W@ - g St<u,.A)])
U ({m} X [m> - g_) St<u1,A)])

U (s X [G(St(ua,A)) — ,Ql St(ui,A)]> .
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Therefore, for the same reason as before, H,(P(X*)) is isomorphic to H (P (4%))
for k. = 0 and k > 4, and H;(P(X*)) is isomorphic to the direct sum

H;(P(4%*)) +H1<6(St(u3,A)) — ik;)l St(u,,A))

-|-H1<6(St(u3,A)) — ikj:}l St(ui,A)>.

By Theorem 13, each 1-cycle in
({ul} X [St(ug, ) — }_}1 St(ui,A):D
2
U ({u2} X I:St(us,A) — iUl St(ui,A)}>

U <s X [a(St(ug,A)) - Ql St(u"A)])
is homologous in
PA*) U ([A - 191 St(ui,A):l X B) U (B X [A - g)l St(u,,A)])

to a 1-cycle in
<[§t_<u:7m — g St<u¢,A>] X {m})
U (|5 - O sttw ) | x 1))

V) <|:6(St(u3,A)) — iL; St(u,,A)] X s) .

Therefore Ho(P(X*)) is the free abelian group on « + 2y — § generators,
and H;(P(X¥*)) is the free abelian group on 8 — § generators.

REFERENCES

1. A. H. Copeland, Jr., Homology of deleted products in dimension one, Proc. Amer. Math. Soc.,
16 (1965), 1005-1007.
Isotopy of 2-dimensional cones, Can. J. Math., 18 (1966), 201-210.
. S. T. Hu, Isotopy invariants of topological spaces, Proc. Roy. Soc. London, Ser. A, 255 (1960),
331-366.

» N
H

4. C. W. Patty, The homology of deleted products of trees, Duke Math. J., 29 (1962), 413-428.

5. The fundamental group of certain deleted product spaces, Trans. Amer. Math. Soc.,
106 (1962), 314-321.

6. Isotopy classes of imbeddings, Trans. Amer. Math. Soc., 128 (1967), 232-247.

The University of North Carolina at Chapel Hill

https://doi.org/10.4153/CJM-1968-039-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1968-039-3

