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TWO TYPES OF DUALITY IN
MULTIOBJECTIVE FRACTIONAL PROGRAMMING

L. COLADAS, Z. Li AND S. WANG

In this paper, we tire concerned with duality of a multiobjective fractional program.
Two different dual problems are introduced with respect to the primal multiob-
jective fractional program. Under a mild assumption, we prove a weak duality
theorem and a strong duality theorem for each type of duality. Finally, we explore
some relations between these two types of duality.

1. INTRODUCTION

Multiobjective fractional programming duality has been of much interest in the
last decade. Quite a number of publications appeared, such as references [2, 3, 4, 6,
7, 8, 10, 12]. Among them, Bector, Chandra and Husain introduced a dual problem
of a certain quasidifferentiable multiobjective fractional programming problem based
on the Kuhn-Tucker type optimality conditions in [2]. Bector, Chandra and Singh, in
[3], used their linearisation technique to study the Schonfeld duality of a multiobjective
fractional programming problem in which the objective functions are pseudo-convex
and the constraints are linear. Egudo [6] studied both the Mond-Weir extension of the
Bector dual analogy and the Schaible type vector dual of a multiobjective fractional
programming problem where the components of the objective function vector have
non-negative and convex numerators while the denominators are concave and positive.
Weir in [12] gave a few results on the Mond-Weir type duality of a multiobjective
fractional optimisation problem and also showed that for a properly efficient primal
solution the dual solution is also properly efficient. Weir and Jeyakumar studied in
[13] the Lagrange duality of a multiobjective fractional programming problem under
an assumption of pre-invexity.

In this paper, we introduce two types of duality to a more general multiobjective
fractional programming problem. Under a pre-invexity assumption, we prove a weak
duality theorem and a strong duality theorem for each type of duality. Also we explore
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some relations between these two types of duality in multiobjective fractional program-
ming. Finally, we indicate two possible extensions in the conclusions. It should be
mentioned that the two types of duality introduced in this paper are different from
those mentioned above.

2. PRELIMINARIES

Let x,y G R m . We denote

R™ = {x G R m | xi > 0, i = 1 , . . . ,m} ,

x £ y iiy-xeR+,

x^y iiy-xe R+ \{0},

x<y iiy-xe int(R™).

The multiobjective fractional programming problem considered in this paper can be
formulated as

V-minimise F(x) -

(VFP) < / \
v I Subject to g(x)=[g1(z),...,gp(z))^0

xeX'

where X' is a nonempty open set in R n , each fi,lj and gk are defined on R™, and
each lj{x) ^ 0 for any x G X = {x G X' | g{x) ^ 0}.

Let 5 C Mm • y G S is called a weakly minimal efficient point in S if there is no
y e S such that y < y; y° G S is called a weakly maximal efficient point in 5 if there
is no y 6 5 such that y > y°. We denote by W-Min S and W-Max S the set of all
the weakly minimal efficient point in S and the set of all the weakly maximal efficient
points in S respectively. Put F(X) = {F(x) \ x G X}.

DEFINITION 2.1: x e X is called a weakly efficient solution of the multiobjective
fractional programming problem (VFP) if F(x) G W-Min F(X).

In order to derive duality theorems, first we quote the concept of a pre-invex vector

valued function and three lemmas about their properties.

Suppose that h : X' -> R m .

DEFINITION 2.2: h is called an RlfMnvex vector-valued function on X' if h is
differentiable on X' and if there is an 7/: X' x X' —> R n such that for any x, y G X',

h(x)-h(y)]T^[r,(x,y)]TVh(y)
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where V/i(y) = f Vhi(y), V/i2(y),- • • 5 V / i m ( i / ) j ; h is called an R^-pre-invex vector-

valued function on X' if there is an r\ : X' x X' —• R™ such that for any x, y £ X' and

any A 6 ( 0 , 1 ) ,

y + \ri(x,y) e X' and Afe(x) + (1 - A ) % ) ^ % + A^x.i / ) ) .

REMARK 2.1 . Invexity and pre-invexity are two extensions of convexity. In [13], Weir
and Jeyakumar gave an example to illustrate that an invex function is not necessarily
convex. For a detailed discussion, see [5] and [13].

The following lemma explores a relationship between invexity and pre-invexity.

LEMMA 2 . 1 . [13] If h is differentiable on X' and is an R™-pre-invex vector-
va/ued function on X' (with respect to r\), then h is an Kip-invex vector-valued function
on X' (with respect to rj).

With a proof similar to the one of [13, Theorem 1.2], we can prove the following
lemma.

LEMMA 2 . 2 . Suppose that f : X' -> R m and g : X' -> R m are an R™-pre-invex
vector-valued function and an R+-pre-invex vector-valued function on X' with respect

to the same rj, respectively. Then Af + Bg is an R^-pre-invex vector-valued function
on X' with respect to 77 for any A £ R**m and any B £ R*x p.

For a pre-invex function, Weir and Jeyakumar proven the following interesting
alternative theorem in [13].

LEMMA 2 . 3 . If h is an R!p-pre-invex vector-valued function on X', then one
and only one of the following two systems

(i) h{x) < 0, x £ X';
(ii) \Th(x) Js 0 for any x E X', A £ A+ has solutions, where A+ =

P u t f ( x ) = ( h ( x ) , - - - , f m ( x ) ) a n d l(x) = ( / i ( x ) , ••• , l m ( x ) ) f o r a n y x 6 R n .
In the rest of this paper, we assume that the vector-valued functions / and g are
an R^-pre-invex vector-valued function and an R^.-pre-invex vector-valued function
respectively, and / and —/ are both Rip-pre-invex vector-valued functions, with respect
to the same 77.

3. DUALITY I

Define the vector-valued Lagrange function L : X' x R^ X p -> R m of (VFP) by

L(x, U) = F(x) + [diag (h{x), •••, Uix^
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where diag (h(x), • • • , / m ( x ) ) is the diagonal matr ix consisting of Zi (z ) , ••• ,lm(x),and
R™X p is the set of all the nonnegative matrices in R m X p . For simplicity of notation,
we put

U o g(x) = [diag (h(x)), • • • , lm{x)]-'Ug{x).

We introduce the concept of a weak saddle point as follows.

DEFINITION 3.1: (x,U) G X' x R™ x p is called a weak saddle point of the vector-

valued Lagrange function L if

L(x,U) eW-Min (L(X,U) \x 6 X'j n W-Max IL{X,U) | U £ R?x p}.

The following is a necessary and sufficient condition for a weak saddle point.

PROPOSITION 3 . 1 . (x,U) e X' x K^X p is a weak saddle point of L if and

only if

(1) L(x,U) G W-Mm{L(x,U) \x£X'},

(2) g{x)^0,
(3) Uog{x)itQ.

PROOF: First we suppose that (x, W) is a weak saddle point of L. By the definition

of a weak saddle point of L, we know that (1) is satisfied and

L(x,U) £ W-Max{I(x,tf) | U G R™xp}.

The above expression implies

(3.1) F(x) + Vog(x)iZF{x) + Uog(x), WeR+Xp.

Let

D1={Uo g(x) - U o g(x) | U E R™xp}.

It is easy to verify that Di is a nonempty convex set and, by (3.1),

£>! n int (R£) = 0.

By the separation theorem of two convex sets (see Corollary 1 of Theorem 2.3.8 in [1]),

there exists u 6 Rm\{0} such that

(3.2) jLT~/>JlT(Uog(x-)-Uog(x)), V 7 6 l ^ W £ R?xp.

If we take U — U in the above inequality,
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Hence, /Z G R + \ { 0 } . Taking 7 = 0 in (3.2), we have

(3.3) ]ZT(U o g(x) - U o g{x)) < 0, VU G R ? x p .

If (2) was not satisfied, that is, g(x) ^ 0, then there would exist A G R+ such that
—T

X g(x) > 0. Without loss of any generality, we can assume

(3.4) XTg(x)>iIT(Uog(x)).

Let e G R+ sati

U G R+ X p and

Let e G R™ satisfy fiTe = 1. Set U = [diag(Zi(z),- • • ,lm(x))]e\* . We can easily show

JLT(Uog(x)) =

= JL eX g(x) = A g(x).

From (3.4), we have ]lT (u o g(x)\ >JLT(UO g(x)) , which contradicts (3.3). Therefore,

(2) is satisfied. Letting U = 0 G R+XJ> in (3.1), we get

Uog{x)-£0.

That is, (3) is satisfied.

Next, we show that (S',^F) is a weak saddle point of L if (1) - (3) are satisfied.
Suppose that (1) - (3) are satisfied. Since g(x) ^ 0,

V o g{x) ^ 0, VU G R+ Xp.

Because U o ^(x) •£ 0,

F(a) + P o g(x) > J"(x) + F o y(x), Vt7 G K7 X p .

That is,

L(x,U) G W-Min{L(K,U) \ U G R+ X p } .

The above expression together with (1) implies that (x,lJ) is a weak saddle point of

L. The proof is completed. U

The next result indicates a relation between a weak saddle point of L and a weakly

efficient solution of (VFP).
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PROPOSITION 3 . 2 . If (x,U) is a weak saddle point of L and U o g(x) = 0,
then x is a weak efficient solution of (VFP).

PROOF: Suppose that (x, W) is a weak saddle point L and that U o g(x) = 0.
By Proposition 3.1, x £ X. If x was not a weakly efficient solution of (VFP), there
would exist an x° G X such that F(x°) < F(x). Since g(x°) ^ 0 and U G R+ X p ,
Uog{x°) = [diagCMx")),--- M*')]'1^*") ^ 0. Because U o g{x) = 0,

F(x°) + U o g(x°) < F(x) + U o g(x).

This contradicts the fact L(x,U) £ W-Min{£(x,f7) | x G X ' } . Therefore, a is a

weakly efficient solution of (VFP). This completes the proof. D

) TLet u = («!,••• ,u>m)T e R m and put F(x,w) = (/i(x) - wj/^x), • • • , / m (x )
)

We say that the Slater constraint qualification is satisfied in (VFP) if there exists an
x G X' such that g(x') < 0. Under the assumption of the Slater constraint qualification,
we show another relation between a weak saddle point and a weakly efficient solution.

THEOREM 3 . 1 . Suppose that the Slater constraint qualification is satisfied. If
x is a weakly efficient solution of (VFP), then there exists U G M^ x p such that (x,U)
is a weai saddle point of L and U o g(x) = 0.

PROOF: Let uJ = F(x). Thus, H(x,u>) = 0. Since x is a weakly efficient solution
of (VFP), it is easy to show that

(3.5) H(X,w) it H{x,w) = 0, Vx G X.

In fact, if (3.5) was not satisfied, then there would exist an x° G X such that 17(a;o,aJ) <
0, that is,

So

Hence, .F(x°) < w = ^ ( x ) . This contradicts the assumption that x is a weakly efficient
solution to (VFP). From (3.5), the system

(H(x,w),g(x)) < 0, xGX'

has no solution. Because / , g and ±i are an R™-pre-invex vector-valued function, an
E^-pre-invex vector-valued function and R!p-pre-invex vector-valued functions on X'
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with respect to the same 7/, by Lemma 2.2, (H(-,cJ),g(-)) is R+ x R+-pre-invex on X'.

According to Lemma 2.3, there exists (/I, A) 6 R+ x R ^ , (/I, A) ^ 0 such that

(3.6) JITH(x,u>) + \Tg(x) > 0, \/x E X'.

Since g(x) ^ 0 and A e E ^ w e have A g{x) < 0. From (3.6), ~\Tg(x) ^ 0. Hence,

(3.7) ~>?g(x) = 0.

If Ji = 0, then A E R+\{0}. By the assumption that the Slater constraint qualification
—T

is satisfied, there is an x' E X' such that g(x') < 0. So A g(x') < 0. But if we let

x = x' in (3.6), we get ATp(x') > 0, a contradiction. Therefore, /Z £ R£\{0}. Let

e e R™ satisfy /xTe = 1. Set ^ = ef. Obviously, U E R+ x p , and /ZT^ = ^"T- By
(3.7),

tr o «,(x) = o.

By Proposition 3.1, if (x,u) was not a weak saddle point of L, then

L(x,U) & W-Um{L(x,U) \ x E X'}.

There would exist an x E X' such that L(x,TT) < L(x,TF), that is,

fijx) + ufg(x) fi(x) _ .
< = V i i = l ,m

where (TIJ , • • • ,wm) = t/'- Hence,

/ i ( s ) - oJiZi(J) + ufg{x) < 0, i = 1, • • • ,

that is,

Therefore,

JLTH(X,W) + XTg(x) = JLT'(H{x,u) + Ug{x)) < 0.

This contradicts (3.6). Hence, (x, f/j is a weak saddle point of L. The proof is

completed. U

To derive the duality for (VFP), we are required to show the following proposition.
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PROPOSITION 3 . 3 . Suppose that f, g and I are continuously differentiable

on X'. It (x,J7) £ X ' X R™Xp is a weak saddle point of L, then there exists a A £ A+

such that

PROOF: Suppose that (x,TT) is a weak saddle point of L. Since L{x,W) £

W-Mm{L(x,U) \xGX'},

(3.8) [»?(*,*)] V z i (z ,F ) ^ 0, Vz G X'.

In fact, if it was not the case, there would exist an x° £ X' such that

(3.9) L',((xM*o,*)),u) = [v(x°,x)]TVxL(x,U) < 0,

where Z .̂ ({x, r)(x°,x)), Uj is the directional derivative of Z(-,J7) at x along the di-

rection T / ( I ° , I ) . Since X ' is open, from (3.9), there exists a sufficiently small A > 0

s u c h t h a t x~ + \r](xo,X) 6 X' a n d

L(x + \r!(x°,x),u} <L(x,U).

This contradicts the fact L(x,W) G W-Min{i(a;,U) | a: G X ' } . Hence, (3.8) holds. By

(3.8) and the Gordan Theorem (see [1]), there exists a A £ A+ such that

This completes the proof. u

Let

T = Ux,U) 6 X ' x R + X p | there exists A G A+ such that VxL(x,U)X = o} .

In the sequel, we always assume that T is not empty.

REMARK 3.1. We only need to assume that {L(x,U) | x £ X'} is R!p-compact for

each fixed U £ R+ Xp. By Proposition 3.3, T ^ 0. Refer to [9] and [11] for a discussion

on R™-compactness.

Now we can define our first dual problem of the multiobjective fractional program-

ming problem (VFP) as follows:

{ V-maximise L(x,U)

subject to (x, U) £ T.

DEFINITION 3.1: (x,W) £ T is called a weakly efficient solution of the dual prob-

lem (VFD1) if

L(x,U) 6 W-Max{L(x,U) \ (as,CT) £ T}.

The following result is a weak duality theorem.
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THEOREM 3 . 2 . If x is a feasible solution of (VFP) and (x,U) is a feasible

solution of (VFD1), then

F{x)itL(x,U).

PROOF: Since (x,W) 6 T, there exists a A 6 A+ such that

So

fo(x, x)fVF(x)\ = -[r,(x,x)]TVx(U o 5(x

, , _ , i r v ^ T li{x)\7g(x)ui-ufg(x)Vli(x)
--[ri(x,x)\ 2^,*i 727=^ •

Because g (respectively, ±Z) is differentiable and R^-pre-invex (respectively, R™-pre-
invex) on X' with respect to r\, by Lemma 2.1,

On the other hand,

t = i

Since / and ±Z are differentiable and R!J*-pre-invex on X' with respect to the same

•q, by Lemma 2.1,

^ f (s)"'(" - '̂ "f j.w
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Hence,

that is,

Therefore,
F(x)itL(x,U).

The proof is completed. D

From the above theorem, we have immediately

COROLLARY 3 . 1 . Suppose that x is feasible for (VFP) and (x,U) is feasible

for (VFD1). If F(x) = L(x,U), then x and (x,U) are weakly efficient solutions of

(VFP) and (VFD1) respectively.

With this corollary and Theorem 3.1, we can prove the following strong duality
theorem.

THEOREM 3 . 3 . Suppose that the Slater constraint qualification is satisfied. If

x is a weakly efficient solution of (VFP), then there exists U G K+ X p such that (x,U)

is a weakly efficient solution of (VFD1) and F(x) = L(x,TT) .

PROOF: Suppose that x is a weakly efficient solution of (VFP). By Theorem 3.1,
there exists U £ R™xp such that (x, W) is a weak saddle point of L and U og(x) — 0.
Hence, F(x) = L(x,U). By Proposition 3.3, (x,TP) is a feasible solution of (VFD1).
From Corollary 3.1, (x, W) is a weakly efficient solution of (VFD1). This completes the
proof. D

4. DUALITY II

In this section, we present two duality theorems in the sense of another type of du-
ality for the multiobjective fractional programming problem (VFP). First, we introduce
our second type of dual problem of (VFP). Let

and

T' = {(x,w,U) G X' x R£ x R+ x p | there exists A £ A+ such that VxG(x,u>,U) = 0}.
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Define a vector optimisation problem as follows

rp

{ V-maximise w = (u>i, • • • , w m )

subject to {x,u,U)£T'

The problem (VFD2) can be viewed as a dual problem of (VFP) since we can prove
the following weak duality theorem and strong duality theorem for them.

THEOREM 4 . 1 . Suppose that x is feasible for (VFP) and that (x,ui,U) is fea-

sible for (VFD2). We have

F(x) it u.

PROOF: Since x is a feasible solution for (VFP) and (X,LJ,W) is a feasible solution

for (VFD2), there exists A 6 A+ such that

(4.1) VxG(x,cJ,U)\ = 0

and g(x) ^ 0. Because / and ±Z are differentiable and R™-pre-invex on X' with

respect to the same 77, by Lemma 2.2, A H(-,u>) is differentiable and R^_-pre-invex on

X' with respect to the same 77. From Lemma 2.1 and (4.1),

\TH{x,u) - XTH(x,ZJ) > [r,{x,x)]TVx(j
TH{x,Zjfj

= [V{x,x)}TVxH(x,w)\

= -[V(x,x)]TVx(Ug(x))\

= -{r,(x,x)}TVx(x
rUg(xj).

Since g is differentiable and R^.-pre-invex on X' with respect to the same 77, by Lemmas

2.1 and 2.2, A Ug is differentiable and R]j_-pre-invex on X' with respect to the same
77. So

XTH(x,u)) - ~\TH(x,u>) ^ -C\TUg(x) - \TUg{x)) ^ \TUg(x).

,u) ^ ~\TG(x,w,U).

Hence,

J

Since G(x,<v,U) ^ 0 ,
H(x,u>) ^ 0 .

Therefore, F(x) •£ u. The proof is completed. D

An immediate corollary of this weak duality theorem is as follows.
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COROLLARY 4 . 1 . Suppose that x is feasible for(VFP) and (x,w,W) is feasible

for (VFD2). If F(x) = UJ, then x and (x,u,U) are weakly efficient solutions of (VFP)

and (VFD2), respectively.

THEOREM 4 . 2 . Suppose that the Slater constraint qualification is satisfied. If
x is a weakly efficient solution of(VFP), then there exist w £ R m and U £ R + x p such
that (x,w,TF) is a weakly efficient solution of (VFD2) and F(x) = W.

PROOF: Define two multiobjective programming problems as follows:

{ V-minimise H(x,u)

subject to x £ X

and

{ V-maximise G(x,u,U)

subject to (x,U)€T(w),

where

T(w) = {(x,U) e J f ' x R+* p | there exists A G A+ such that VxG{x,u>,U)\ = 0} .

Suppose that i is a weakly efficient solution of (VFP). Let w = F[x). Obviously,
H(x, w) = 0. With the same technique as in the first part of the proof of Theorem
3.1, we can prove that x is a weakly efficient solution of (PZJ)- Since / and ±1 are
differentiate and R^-pre-inevx on X' with respect to the same rj, by Lemma 2.2,
for any fixed u> 6 R1™, H(-,u) is differentiable and R![*-pre-mvex on X'. Applying
Theorem 3.3 to the special multiobjective fractional programming problem (PZJ) (where
each denominator function is 1), we know that there exists U 6 R™xp such that (x, W)
is a weakly efficient solution of (-D -̂) and G(x,ZiJ,Tj) — H(x,u>) = 0. It is obvious
that (x,W,TJ) is feasible for (VFD2). If (x,u>,TT) was not a weakly efficient solution
of (VFD2), then there would exist a feasible solution (x',u>',U') of (VFD2) such that
w < U3. Hence,

H(x,w') <H(x,u>) =0.

Obviously, x is also a feasible solution of (PZJ) and (x',U') is a feasible solution of
(£>„/). By applying Theorem 3.2 to (-Pw<) and {Dwi), we have

Hence, G(x'w',U') £. 0 which contradicts the fact that (x',w',U') is feasible for

(VFD2). Therefore, (x,u,U) is a weakly efficient solution of (VFD2) and F(x) = u>.

The proof is completed. U
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5. RELATIONS BETWEEN DUALITY I AND DUALITY II

In the previous two sections, we introduced two types of duality for the multi-
objective fractional programming problem (VFP) and proved a weak duality theorem
and a strong duality theorem for each type of duality. In this section, we discuss some
relations between these two types of duality.

First we prove a lemma.

PROPOSITION 5 . 1 . (i) If {x,U) G T andw = F(x)+Uog(x), then (x,u,U) G
V;

(ii) it (x,u,U) G V and G(x,w,U) = 0, then (x,U) G T.

PROOF: (i) Suppose that (x,U) G T and u = F(x) + Uog(x). Since (x,U) G T,
there exists A G A+ such that

t=l li\X)

A [V/»(a) + Vg{x)ui}li(x) - Ifjjx) + ufg(x)]Vli(

t= 1

m

Hence, (a;,a;,^) G T'.
(ii) Suppose that (x,u,U) G V and G(x,u>,U) = 0. Because {x,w,U) G T',

there exists A G A+ such that

VxG(x,u,U)\ = 0.

Since G(x,w,I7) = 0 ,
w = F(x) + U og{x).

So,

0 = ViGfowj
m

Vg(x)Ui}

m
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Therefore, (x,U) G T. The proof is completed. D

With the above proposition, we can prove

THEOREM 5 . 1 . (i) If (x,cJ,U) is a weakly efficient solution of (VFD2) and

G(x,w,U) = 0 , then (x,U) is a weakly efficient solution of (VFD1);

(ii) if (x,U) is a weakly efficient solution and u> = F(x) + U o g(x) 6 F(X),

then (x, uj, W) is a weakly efficient solution of (VFD2).

PROOF: (i) Suppose that (x,w,(7) is a weakly efficient solution of (VFD2) and
G(x,w,U) = 0. By Proposition 5.1 (ii), (x,U) is feasible for (VFD1). If (x,W) was
not a weakly efficient solution of (VFD1), there would exist (x',U') G T such that

L(x,U) <L(x',U').

Let u' = L(x',U'). By Proposition 5.1(i), (x',u>',U') is feasible for (VFD2).
Because G(x,cJ, W) = 0, w = L(x, W) . So w < w'. This contradicts that (x,U, W) is
a weakly efficient solution of (VFD2). Hence, (x, 2)) is a weakly efficient solution of
(VFD1).

(ii) Suppose that (x, W) is a weakly efficient solution and w = F(x) + U o g(x) G
F(X). By Proposition 5.1(i), (x,u,TT) is feasible for (VFD2). If (x,w,U) was not a
weakly efficient solution of (VFD2), there would exist a feasible solution (x',a>',U') of
(VFD2) such that

SJ < u>'.

Because w G F(X), there would exist an x° G X such that tv = F(x°). So

F(x°) < u>'.

This contradicts Theorem 4.1. Therefore, (x,Z5,W) is a weakly efficient solution of

(VFD2). The proof is completed. D

REMARK 5.1. We do not assume that w G .F(x) + Uog(x) G W-MmF(x) in the above
theorem. The requirement is quite mild. The dimensions of the decision variables in
the two dual problems are different. But Proposition 5.1 gives a sufficient condition for
the two components (x,U) of a feasible solution (x,u>,U) of the second dual problem
(VFD2) to be feasible for the first dual problem (VFD1). One can find a similar
condition to guarantee that the vector (x,w,Z7) made by a feasible solution (x,U) of
the first dual problem (VFD1) with LJ = F(x) + U o ̂ (x) is also feasible to (VFD2).

6. CONCLUSION

Two problems might be interesting for further investigation. The first one is
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Can one establish such a theory for the multiobjective fractional programming
problem (VFP) in the sense of an efficient solution instead of a weakly efficient solution?

The second problem is related to a possible extension of the results in this paper.
In (VFP), the domination structure is determined by R™. If the domination structure
is determined by a convex cone (see [9]), how to extend the results to a more general
case? It seems possible and not very difficult.
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