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ON THE MACKEY BOREL STRUCTURE

L. TERRELL GARDNER

Let A bea C*-algebra and 9 a Hilbert space which is infinite dimensional and
of Hilbert dimension = dim = for all # € 4. Suppose that the set Irr (4, ) of
all non-null *-representations = of 4 on §, irreducible on the essential space
9 (), is given the relative strong topology as a subspace of Rep(4, $)
[2; 4; 6]. That is, the topology is that of simple convergence in.% (§) with the
strong topology. Finally, let ~ denote equivalence of representations in
Irr (4, §) implemented by partial isometries in & (9): 71 ~ 5 if and only if
there exists a partial isometry v € £ () with vo* D H(m;) and v*v D H ()
satisfying m2(a) = v*mi(a)v for all ¢ € A.

In [6], we showed that the quotient topology on A = Irr(4, $)/~ agrees
with the hull-kernel topology. In this note, we prove that if 4 and § are
separable, the quotient Borel structure and the Mackey Borel structure agree
on A.

1. We use the terminology and some results of [5].

Let %1 (9) be the closed unit ball in % ($), let ,Z be the semigroup of all
isometries on the separable Hilbert space © and let % be the full unitary sub-
group of Z. Give to each the *-strong topology. Then .£1($) and # are
topological semigroups and % is a topological subgroup of f .

Make (%, /) a transformation group by

%X/——»/

U, Jw— JU*.

(We will use juxtaposition for operator products only.)

LeMMA 1. (%, F) is a polonais transformation group; F /U has a Borel
transversal.

Proof. That % is a polonais topological group is shown in [3, Lemma 4]. The
proof adapts immediately to 7, as well. In fact, the equations:

Fy = {Tégl(sf)):sup [(Txs 20| > 1 — Ila}’ k=12 ...
j
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where (x;) is a dense sequence in the unit sphere of §;
/ =N Fa;
ik

and
U= N7

show that each is a G; in the polonais space.? 1 () with its weak topology. But
Z1(9) is polonais in the *-strong topology, as well, and the F; (respectively
Fu*) are *-strongly open. Thus each of %, _# is a polonais space. Of course,
on % the weak, strong, and *-strong topologies coincide.

The continuity of the mapping U, J + J U* follows from that of * on % and
from the strong joint continuity of multiplication on bounded subsets of &£ ().
Thus (%, / ) is a polonais transformation group.

We note that the isotropy subgroup of J

%J'__-{UE%:]U*:]}

is trivial for each J € _# and that the map U — JU* carries % = ¥ /¥,
homeomorphically onto the orbit J%.

We next prove that (% ,f ) satisfies [5, Condition D]; i.e. that, given a
neighborhood A of I in % and a decreasing basis Q,, of open sets about
Jo € 7, there exists a neighborhood 4 of I in % such that

N Cl[QnA*] C JoN*.
Clearly, we may take._# to be of the form A =N . =% N ¥*, with
YV ={UcZ: |I(U- D&l < ¢l =i=nj,

where the £, € ,1 =7 < n,and ¢ > 0.
Let 0 < § < ¢, and take -# to be #; ;. Then Cl.# C .V, so it suffices to
prove that

Q Cl[QnA*] C Jo Cl M*.
Let J € Ny Cl[Qn#*], and choose sequences R,, € Q,, and S,, € .# so that
R, S,* *-strongly converges to J:
RuSy* %, J.
Then
RySp¥SnRy* = RaRy* *, JJ*,
while since R, € Qn,
RuRy* ¥, JoJo¥,
so J and J, have the same final space. Especially, J = JoJ¢*J.
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Now
Sm* = (Rm*Rm)Sm* = Rm* (RmSm*) -—*9 JO*J,

yielding Jo*J € Cl.#*, whence J = JoJo*J € J, Cl A*, as desiredf.

We have shown that (%, / ) satisfies [5, Theorem 2.1, condition (1), and
also condition D]. By [5, Theorem 2.9], f /% has a Borel transversal. The
Lemma is proved.

In the commutative diagram, Irr,(4, $.) = {r € Irr(4, 9): H(r) = 9},
Irr, (4, ) = {r € Irr(4, §): dim 7 = o0}, j is the natural injection and ¢
and 7 are quotient maps.

Irr, (4, $.) = X—~J——+ Y =Irr (4, )

|

X/~ = Q=T R = ¥/~

If X and Y are given their strong topological Borel structures and Q and R
the corresponding quotient Borel structures, then all the maps are Borel.
(j is continuous.) Q carries by definition the Mackey Borel structure.

If EC Irr(4, ), E~ denotes the saturation of E by ~.
LEMMA 2. 7 ¢s @ Borel isomorphism.

Proof. Since 7 is a Borel bijection, it remains only to show that if B C Q is
Borel, 7(B) is Borel.

Now ¢~!(B) = D is Borel and unitarily saturated in X, hence in Y. Since
7(B) = r(D~), our task is to prove that D~ is Borel. Let r be a Borel transversal
of #/% (Lemma 1). We note that the strong and the *-strong topologies on
(D) define the same simple-convergence topologies on Irr(4, $) (and, for
that matter, the same Borel structures on ). In this connection, see also [2].

Now it is easy to see that the mapping f: D X v — Y is a Borel bijection of
the standard Borel space D X 7 onto D=, if f(wx, J) = JxJ*, where JxJ*(a) =
Jr(a)J* fora € A.

In fact it is shown in [4, 3.7.4] that X is standard, so its Borel subspace D is
standard. The same argument, with Lemma 1, shows that 7 is standard. So
D X 7 is standard.

Let us show that f is injective. If # = JymiJ1* = JomwaJo*, 7, € D, J; € 7, then
H(r) = JJ* = JoJ*,s0 U = Ji*Jyisunitaryand J1 U = J1J ¥y = JoJ ¥ T, =
Js.Since 7 is a transversal and J; = J1U, J1 = Je and 71 = J ¥ JameJo*J1 = 7o,

f is continuous, so it is Borel. Finally, if # € D~, let # = JmJ*, 71 € D,
J € / Then J = JoU* for some Jo € 7, U € %, and © = Jo(U*nr, U)J¢*. But
U*m U = m € D, since D is unitarily saturated, so # = f (o, Jy), showing that
f is surjective.

11 am grateful to the referee for a remark which helped simplify this portion of the proof.
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Now an application of [1, Proposition 2.5] shows that f(D X 7) = D~ is
Borel.

2.Forn =1,2,..., Irr,(4, ) denotes the set of all irreducible representa-
tions of 4 on the standard #-dimensional Hilbert space §, = linear span
{el, ..., e}, where (e;)1ci<, is a fixed orthonormal basis for the infinite
dimensional, separable Hilbert space $. Irr,(4, §) denotes the set of all
irreducible representations of 4 on #-dimensional subspaces of §.

We have natural maps

Irr, (4, §,) = R—J———»P = Irr, (4, 9)

|,
Irr, (4, 9,)/~ = S—]——> Q = Irr,(4, 9)/~

in the categories of sets, topological spaces and Borel spaces, if the quotient sets
are equipped with the quotient structures. By [4, 3.5.8], 7 is a homeomorphism.
We claim that it is a Borel isomorphism.

In fact, if %, is the unitary group on §,, (., R) is a polonais transformation
group, in which the orbits are the equivalence classes modulo ~ in R. These
orbits are compact since %, is compact, and hence closed since R is Hausdorff.
In addition, the saturation of an open set is open in R. Hence by [3, Lemma 2],
there is a Borel transversal in R of the equivalence classes modulo ~. Let E be
such a transversal. If B is a Borel subset of S, let ¥ = s71(B) M E. Then Fis
Borel in R and j(F)~ = F~ = (j(s~'(B)))~ in P.

Since #n < ©, equivalence is unitary equivalence in P (via unitaries in
Z(9)). So F~ is the image of % X F under the mapping

f: U, o UnU*.

Since R is polonais and % is standard, % X F is standard, while f is con-
tinuous, hence Borel. But f is clearly injective, so as before, f has a Borel
image F~. Since ¢(F~) = 7(B), we have proved our claim.

Now the quotient Borel structure on .S = 4, is the Mackey Borel structure.

We have proved

LEMMA 3. Forn = o0, 1,2, ..., the quotient Borel structure on Irr,(4, )/~
agrees with the Mackey Borel structure.

3. Now consider the commutative diagram:

P = Irr, (4, @)—”——-» Irr(4, §) = L
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where once again the vertical mappings are quotients and j, is natural injection,
t is open [6] and P is saturated.

Now all we need, since P is saturated, is that for each#,n = 0,1, 2,...,
Irr, (4, 9) is a Borel subset of Irr(4, 9). [4, Proposition 3.6.3] says, in part,
that forn < o, ,4, thesetof all # € 4 with dim = < nis closed in 4, so by [6]
71, A) = Ujpea Irri(4, ©) is closed in Irr(4, ) for n < o, and it is clear

how to generate the Irr,(4, ), n =00,1,2,..., by elementary Borel
operations. So 7, is a Borel isomorphism. Especially, 7,(4,) = T, is a Borel
subset of the quotient structure 7 forn = 00, 1, 2, . ... But thisimplies that 7"

is the Borel direct sum of its subspaces T, and that 7, is Borel isomorphic to
A,forn=00,1,2,....
We have proved

THEOREM. Let A be a separable C*-algebra and 9 an infinite-dimensional
separable Hilbert space. Let Irr (A, D) be given the Borel structure generated by its
strong topology. Then the quotient Borel structure and the Mackey Borel structure
agree on A = Irr (4, §)/~.
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