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Following the seminal paper by Bourgain, Brezis, and Mironescu, we focus on the
asymptotic behaviour of some nonlocal functionals that, for each u ∈ L2(RN ), are
defined as the double integrals of weighted, squared difference quotients of u. Given
a family of weights {ρε}, ε ∈ (0, 1), we devise sufficient and necessary conditions on
{ρε} for the associated nonlocal functionals to converge as ε → 0 to a variant of the
Dirichlet integral. Finally, some comparison between our result and the existing
literature is provided.
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1. Introduction

Let J := (0, 1) and let u : RN → R be an L2 function. Given the family of kernels
{ρε}ε∈J , with ρε : RN → [0, +∞) measurable, we consider the energy functionals:

Fε[u] :=
1
2

∫
RN×RN

ρε(y − x)
|u(y) − u(x)|2

|y − x|2 dy dx. (1.1)

We aim to characterize the class of kernels such that for every u ∈ H1(RN ) the
family {Fε[u]} converges to (a variant of) ‖∇u‖2

L2(RN ) as ε→ 0, see theorem 1.1.
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Our study follows the line of research initiated in the renowned paper [5]. The
motivation advanced by the authors was the analysis of the Gagliardo seminorms:

[u]ps :=
∫

RN×RN

|u(y) − u(x)|p
|y − x|N+sp

dy dx, with p ∈ (1,+∞), s ∈ (0, 1)

as s→ 1. They studied the asymptotics as ε→ 0 of double integrals with the same
structure as the one in (1.1) for a family {ρε} ⊂ L1(RN ) of radial kernels and a gen-
eral exponent p ∈ (1, +∞), and they proved that the Sobolev seminorm ‖∇u‖p

Lp(RN )

is retrieved in the limit. The case of the Gagliardo seminorms may be treated anal-
ogously upon taking some extra care of the tails of the fractional kernel (see, e.g.
[13, Sec. 1]).

The literature on nonlocal-to-local formulas has become extremely vast, and a
detailed overview is beyond the scope of our contribution. Here, we restrict our-
selves to the research that is most close in spirit to [5]. The gap left open for the case
p = 1 was filled in [9], where a characterization of functions of bounded variation
was provided (see also [13, 19]). The case of vector fields of bounded deforma-
tions was later addressed in [15] by considering a suitable symmetrization of the
functionals in (1.1) (see also [16] for the asymptotics of nonlocal elastic energies of
peridynamic-type and [21] for a study of fractional Korn inequalities). The analy-
sis of the asymptotic behaviour in the sense of Γ-convergence [8] of the fractional
perimeter functionals introduced in [7] was undertaken in [2], and then extended in
multiple directions by several contributions, e.g. [4, 10, 14, 17]. Finally, we point
out that a general variational framework for the analysis of (static and dynamic)
multiscale problems that feature nonlocal interactions has been very recently con-
sidered in the monograph [1], again for kernels that, in our notation, are required
to form a definitively bounded sequence in L1.

A common trait of the works above is that they only concern sufficient conditions
for the nonlocal-to-local formulas to hold. In the specific case of the functionals
in (1.1) (see theorem 5.4 for a prototypical statement), this means that, given a
measurable map ρε : RN → [0, +∞) for every ε ∈ J , a set of conditions on the
family {ρε}ε∈J is prescribed, so that the following can be deduced: there exist an
infinitesimal sequence {εk} ⊂ J and a positive Radon measure λ on the unit sphere
SN−1 that depends only on {ρεk

}εk∈J , such that for every u ∈ H1(RN ):

lim
k→+∞

Fεk
[u] =

∫
RN

∫
SN−1

|∇u(x) · σ|2 dλ(σ) dx. (1.2)

We refer to such equality as the Bourgain–Brezis–Mironescu formula, in short BBM
formula. The novelty of our contribution is that we devise conditions that are both
necessary and sufficient for (1.2) to hold (see also § 5.3 for some remarks about
energies with non-quadratic growth). Precisely, we establish the following.

Theorem 1.1 (Necessary conditions for the BBM formula). For every ε ∈ J , let
ρε : RN → [0, +∞) be measurable and let Fε be as in (1.1). Let also λ be a fixed
positive Radon measure on the unit sphere SN−1.

Suppose that there exists an infinitesimal sequence {εk} ⊂ J such that for every
u ∈ H1(RN ) the BBM formula (1.2) holds for the given measure λ. Then, the
sequence {ρεk

} satisfies the following:
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Sharp conditions for the BBM formula 3

(i) there exists M � 0 with the property that for every R > 0:

lim sup
k→+∞

[∫
B(0,R)

ρεk
(z) dz +R2

∫
B(0,R)c

ρεk
(z)

|z|2 dz

]
� M ; (1.3)

(ii) the sequence {νk} of Radon measures on RN defined by

〈νk, f〉 :=
∫

RN

ρεk
(z)f(z) dz for all f ∈ Cc(RN ), (1.4)

locally weakly-∗ converges in the sense of Radon measures to αδ0, where α � 0
is a positive constant, and δ0 is the Dirac delta in 0.

Roughly speaking, condition (i) prescribes that for ε ∈ J small enough each ker-
nel ρε must have finite mass in any large ball around the origin, and that, at the
same time, the contributions accounting for long-range interactions must be asymp-
totically negligible. Indeed, as we show in § 5.1, (1.3) is equivalent to the following
uniform decay condition: there exists M � 0 such that for every R > 0:

lim sup
k→+∞

∫
RN

ρεk
(z)

R2 + |z|2 dz � M

R2
.

When R = 1, the previous inequality entails that for k large enough ρεk
∈ L1

loc(R
N ),

so that, in particular, position (1.4) actually defines a Radon measure on RN . A
useful way to regard the measures νk in (1.4) is to think of them as quantities
encoding medium-range interactions, although this is not immediately evident from
the definition. From this point of view, condition (ii) shows us that, in the limit,
such interactions must vanish outside of the origin. We will elaborate further on
this point in this introduction.

It turns out that conditions (i) and (ii) are also sufficient for the BBM formula
to hold, so that, in light of theorem 1.1, they are sharp. To establish the sufficiency,
we need the following compactness result, which is interesting on its own:

Theorem 1.2 (Asymptotic behaviour of nonlocal energies). For every ε ∈ J , let
ρε : RN → [0, +∞) be measurable and let Fε be as in (1.1).

Suppose that there exists M � 0 with the property that for every R > 0:

lim sup
ε→0

[∫
B(0,R)

ρε(z) dz +R2

∫
B(0,R)c

ρε(z)
|z|2 dz

]
� M. (1.5)

Then, there exist an infinitesimal sequence {εk} ⊂ J and two finite positive Radon
measures μ and ν, respectively on SN−1 and RN , that depend only on {ρεk

}, and
such that for every u ∈ H1(RN ) there holds:

lim
k→+∞

Fεk
[u] =

1
2

∫
RN

[ ∫
SN−1

|∇u(x) · σ|2 dμ(σ)

+
∫

RN\{0}

|u(x+ z) − u(x)|2
|z|2 dν(z)

]
dx. (1.6)

Moreover, the right-hand side of (1.6) is finite for every u ∈ H1(RN ).
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Theorem 1.2 shows that, while the integrability and decay conditions in (i) are
sufficient to establish the convergence of the functionals in (1.1), in the absence
of condition (ii) we cannot exclude the persistence of nonlocal terms in the limit.
Indeed, the measure ν is retrieved as the limit (in the sense of weak-∗ convergence)
of the medium-range interactions encoded by (1.4). The measure μ captures instead
the concentration of the sequence {ρεk

} around the origin, and it characterizes the
(possibly zero) local term in the limiting energy. Loosely speaking, for every Borel
subset E ⊆ SN−1, μ is given by

μ(E) := lim
δ→0

∫
Cδ(E)

ρεδ
(z) dz

where Cδ(E) is the intersection of the cone spanned by E with B(0, δ), {εδ} is a
suitable subfamily, and the limit is taken in the sense of the weak-∗ convergence
of measures. We refer to steps 3 and 4 in the proof of proposition 3.2 for the
precise definition. In particular, when the kernels ρεk

are radial (cf. [5]), then μ =
cH N−1�SN−1 for a constant c � 0.

We conclude our analysis by showing that, when (ii) is imposed as well, the
limiting nonlocal effects vanish.

Corollary 1.3 (Sharp sufficient conditions for the BBM formula). Let us suppose
that same hypotheses of theorem 1.2 hold, and let us suppose also that the family
{νε}ε∈J of Radon measures on RN defined by

〈νε, f〉 :=
∫

RN

ρε(z)f(z) dz for all f ∈ Cc(RN ), (1.7)

locally weakly-∗ converges in the sense of Radon measures to αδ0, where α � 0 is a
positive constant, and δ0 is the Dirac delta in 0. Then, there exist an infinitesimal
sequence {εk} ⊂ J and a finite positive Radon measure μ on SN−1 such that the
BBM formula holds, that is,

lim
k→+∞

Fεk
[u] =

1
2

∫
RN

∫
SN−1

|∇u(x) · σ|2 dμ(σ) dx. (1.8)

We refer to remark 4.3 for an alternative formulation of the right-hand side of
(1.8) in terms of the action of a quadratic form.

Our approach grounds on the use of the Fourier transform, which allows recasting
the family of nonlocal functionals in (1.1) into double integrals of the form:∫

RN

|ψ(ξ)|2
∫

RN

ρε(z)
1 − cos(z · ξ)

|z|2 dz dξ, (1.9)

with ψ in a suitable weighted L2 space (see (2.1) and (2.3)). The technical prelimi-
naries about the Fourier transform and those on Radon measures to be used later in
this work are collected in § 2. In particular, the functionals in (1.9) and equivalent
formulations of the BBM formula in Fourier variables are retrieved in lemma 2.1.

From § 3, we turn to the proof of our results. First, we establish theorem 1.2 by
observing that the condition in (1.5) grants not only that the integrals with respect
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to z in (1.9), as a function of ξ, grow at most as 1 + |ξ|2 (see lemma 3.1), but also
that they converge pointwise to the Fourier transform of the integrals within the
square brackets in (1.6) (see proposition 3.2). The dominated convergence theorem
then applies, and (1.6) is retrieved.

The pointwise convergence of the nonlocal energies provided by proposition 3.2
plays a central role in our analysis. It is obtained by studying separately the
behaviours of the family {ρε} at three distinct interaction ranges, respectively
short, medium and long, that we encode by means of an additional parameter
δ ∈ J . Short-range interactions arise from the contributions of shrinking balls of
radius δ centred in the origin, and, as δ → 0, they asymptotically approach the
gradient term in (1.6). Medium-range interactions originate from the contributions
to the energy stored in annuli that lie at a distance δ from the origin. In the limit,
their presence leads to the nonlocal term in (1.6), that is, the integral with respect
to the measure ν. Finally, long-range interactions occur outside of balls of radius
δ−1 centred in the origin, and their contributions are negligible when δ → 0.

The proofs of our two other results are provided in § 4. With theorem 1.2 on
hand, corollary 1.3, that is, the sufficiency of conditions (i) and (ii) in theorem 1.1
for the BBM formula, follows quickly: it is enough to observe that (ii) forces the
integral with respect to ν in (1.6) to vanish. In this sense, (ii) may be regarded
as a locality condition, since it requires that in the limit the kernels concentrate at
the origin. Conditions of this sort appear to be natural as far as sufficient criteria
for the convergence of the nonlocal energies to variants of the Dirichlet norm are
sought after (cf., e.g. (5.4) in theorem 5.4 or [1, Thm. 3.1]). The key novelty of our
contribution is that we prove item (ii) in theorem 1.1 to be the weakest locality
requirement for the BBM formula (1.2) to hold.

Proving theorem 1.1, that is, the necessity of (i) and (ii) for the validity of the
BBM formula, is a more delicate issue. The key step is established in proposition
4.1, where, by a suitable scaling of the functions in (1.9) (see remark 4.2), it is
proved that (5.5) implies (i). The weak-∗ convergence of the sequence {νk} in (ii)
to a multiple of the Dirac delta in 0 follows then from a homogeneity argument.
We conclude our contribution in § 5 by clarifying how it compares with the existing
literature and by pointing out possible future research directions.

As we briefly outlined above, there have been intense research efforts in the
asymptotic analysis of nonlocal energies of the form (1.1). It is to be noted that
such functionals also arise in applications, a case of interest being represented, for
instance, by nonlocal models in micromagnetics. Indeed, as pointed out in [20],
if the classical symmetric exchange energy given by the Dirichlet integral of the
magnetization is replaced by a nonlocal Heisenberg functional of the form (1.1),
then a model closer to atomistic theories is obtained, and, in addition, the class
of admissible magnetizations may be enlarged to include discontinuous and even
‘measure-valued’ fields. This observation is crucial in nonconvex problems such
as those of ferromagnetism, in which the highly oscillatory ‘domain structures’
observed in ferromagnetic materials cannot be captured by magnetizations with
Sobolev regularity. In such nonlocal micromagnetics models, knowing what classes
of kernels ρε lead to an approximation of the classical Dirichlet energies amounts
to a selection criterion to establish whether nonlocal descriptions can be replaced
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by local ones or, instead, such approximations are not mathematically correct. We
refer to [11] for further discussion on this topic.

2. Preliminaries

After fixing the notation, in this section, we provide a concise overview of some
facts from the theories of the Fourier transform and of Radon measures, which will
serve as the main tools for our study. In particular, in lemma 2.1 we derive an
equivalent form of the BBM formula (1.2) to be employed as the cornerstone of our
analysis.

For N ∈ N \ {0}, we work in the N -dimensional Euclidean space RN , endowed
with the corresponding inner product · and norm | |. We let {e1, . . . , eN} be its
canonical basis. For all z ∈ RN \ {0} we define ẑ := z/|z|. We denote by L N and
H N−1 the N -dimensional Lebesgue and the (N − 1)-dimensional Hausdorff mea-
sures, respectively. We let B(x, r) be the open ball in RN of centre x and radius r.
We write B(x, r)c for the complement of B(x, r), while the topological boundary
of B(0, 1) is denoted by SN−1.

2.1. Fourier transform

In this paper, we resort to results on the Fourier transform that are standard and
can be found in any textbook on Fourier analysis (see, e.g. [22]). Here, we briefly
recall the properties to be used below.

We will employ the unitary Fourier transform expressed in terms of angular
frequency, that is, for any rapidly decaying u ∈ C∞(RN ) and ξ ∈ RN :

Fu(ξ) :=
1

(2π)N/2

∫
RN

e−ix·ξu(x) dx.

As customary, we will adopt û as a shorthand for Fu. We recall that the following
identities hold:

τ̂zu(ξ) = e−iz·ξû(ξ), ∂̂αu(ξ) = (iξ)αû(ξ),

where (τzu)(x) := u(x− z), for x, z, ξ ∈ RN , and where α ∈ NN is a multi-index.
In particular, we observe that, by the Parseval identity, the Fourier transform is a
bijection between

H1(RN ) :=
{
u ∈ L2(RN ) : the distribution ∇u is in L2(RN )

}
and the weighted space

L2
w(RN ) :=

{
ψ ∈ L2(RN ) :

∫
RN

|ξ|2|ψ(ξ)|2 dξ < +∞
}
. (2.1)

By applying Fourier techniques to the functionals in (1.2), the following is readily
obtained.
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Lemma 2.1. Let λ be a positive Radon measure on SN−1. For every u ∈ H1(RN )
we define

F [u] :=
∫

RN

∫
SN−1

|∇u(x) · σ|2 dλ(σ) dx, (2.2)

while for every ψ ∈ L2
w(RN ) we set

F̂ε[ψ] :=
∫

RN

|ψ(ξ)|2
∫

RN

ρε(z)
1 − cos(z · ξ)

|z|2 dz dξ, (2.3)

F̂ [ψ] :=
∫

RN

|ψ(ξ)|2
∫

SN−1
|ξ · σ|2 dλ(σ) dξ. (2.4)

Then, recalling (1.1), for every u ∈ H1(RN ) it holds

Fε[u] = F̂ε[û], F [u] = F̂ [û],

and, in particular, there exist an infinitesimal sequence {εk} ⊂ J such that (1.2)
holds for every u ∈ H1(RN ) if and only if for every ψ ∈ L2

w(RN )

lim
k→+∞

F̂εk
[ψ] = F̂ [ψ]. (2.5)

Proof. Recall that (τzu)(x) := u(x− z) for every x, z ∈ RN . By the change of
variables z := y − x and the Parseval identity we obtain:

Fε[u] =
1
2

∫
RN×RN

ρε(z)
|z|2 |u(x+ z) − u(x)|2 dz dx

=
1
2

∫
RN

ρε(z)
|z|2

∫
RN

|τ−zu(x) − u(x)|2 dxdz

=
1
2

∫
RN

ρε(z)
|z|2

∫
RN

|F [u− τ−zu](ξ)|2 dξ dz.

The properties of the Fourier transform yield:

|F [u− τ−zu](ξ)|2 = |1 − eiz·ξ|2|û(ξ)|2 = 2 (1 − cos(z · ξ)) |û(ξ)|2,

whence we infer Fε[u] = F̂ε[û]. Similarly, we have

F [u] =
∫

SN−1

∫
RN

|F [∇u · σ](ξ)|2 dξ dλ(σ)

=
∫

RN

|û(ξ)|2
∫

SN−1
|ξ · σ|2 dλ(σ) dξ

= F̂ [û].

We then achieve the conclusion thanks to the one-to-one correspondence between
H1(RN ) and L2

w(RN ) provided by the Fourier transform. �

https://doi.org/10.1017/prm.2024.47 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.47


8 E. Davoli, G. Di Fratta and V. Pagliari

2.2. Positive Radon measures on RN

We recall here some definitions and properties that may be found, e.g. in [3, Secs.
1.3 and 1.4]; we refer to such a monograph for a more detailed study of (geometric)
measure theory.

Let X ⊆ RN be a set. A positive measure μ on the σ-algebra of Borel sets in X
is a positive Radon measure if it is finite on compact sets; if it holds as well that
μ(X) < +∞, we say that μ is a finite positive Radon measure. We denote the space
of positive Radon measures on X by Mloc(X) and the one of finite positive Radon
measures by M (X).

The Riesz representation theorem proves that Mloc(X) may be identified as the
dual of the space of compactly supported continuous functions Cc(X) endowed with
local uniform convergence. Accordingly, we say that a sequence {μk} ⊂ Mloc(X)
converges to μ ∈ Mloc(X) in the local weak-∗ sense, and we write μk

∗
⇀ μ in

Mloc(X), if

lim
k→+∞

∫
X

f(x) dμk(x) =
∫

X

f(x) dμ(x) for every f ∈ Cc(X). (2.6)

In wider generality, if μk
∗
⇀ μ in Mloc(X), then the previous equality holds for

every bounded Borel function f : X → R with compact support such that the set
of its discontinuity points is μ-negligible. In particular, if X is compact and μk

∗
⇀ μ

in Mloc(X), then (2.6) holds for every f ∈ C(X).
A uniform control on the mass of each compact set along a sequence of Radon

measures is sufficient to ensure local weak-∗ precompactness: if {μk} is a sequence of
positive Radon measures such that supk{μk(C) : C ⊂ X} < +∞ for every compact
set C ⊂ X, then there exists a locally weakly-∗ converging subsequence.

3. Proof of theorem 1.2

We devote this section to proving that the summability and decay conditions in
(1.5) are sufficient to yield convergence of a subsequence of {Fε}. In particular, we
are able to characterize the limiting functional, as (1.6) shows.

As a first step, by assuming that the kernels ρε satisfy (1.5) (actually, it suffices
that the bound holds just for one R > 0), we deduce that the energies F̂ε in (2.3)
are finite for every ψ ∈ L2

w(RN ), provided ε is small enough. This is an immediate
consequence of the next lemma, which, in spite of its simplicity, will prove to be
useful.

Lemma 3.1. For every ε ∈ J , let ρε : RN → [0, +∞) be measurable, and let us
suppose that (1.5) holds for R = 1. Then, for every ξ ∈ RN

lim sup
ε→0

∫
B(0,1)

ρε(z)
1 − cos(z · ξ)

|z|2 dz � M

2
|ξ|2,

lim sup
ε→0

∫
B(0,1)c

ρε(z)
1 − cos(z · ξ)

|z|2 dz � 2M,

where M � 0 is as in (1.5).
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Proof. From (1.5) with R = 1, it follows:

lim sup
ε→0

∫
B(0,1)

ρε(z) dz � M, lim sup
ε→0

∫
B(0,1)c

ρε(z)
|z|2 dz � M (3.1)

We first focus on contributions in B(0, 1). Since sin(t) � t for t � 0, we have:

1 − cos(z · ξ)
|z|2 =

1
|z|2

∫ |z·ξ|

0

sin(t) dt � 1
2
(ẑ · ξ)2, (3.2)

where ẑ := z/|z|. By taking into account the first inequality in (3.1), we deduce:

lim sup
ε→0

∫
B(0,1)

ρε(z)
1 − cos(z · ξ)

|z|2 dz � |ξ|2
2

lim sup
ε→0

∫
B(0,1)

ρε(z) dz � M

2
|ξ|2.

Instead, far from the origin, we have:

lim sup
ε→0

∫
B(0,1)c

ρε(z)
1 − cos(z · ξ)

|z|2 dz � 2 lim sup
ε→0

∫
B(0,1)c

ρε(z)
|z|2 dz � 2M,

where we used the second estimate in (3.1). �

For the second step towards the proof of theorem 1.2, it is convenient to introduce
the following notation: for every ξ ∈ RN and ε ∈ J , we let:

Iε(ξ;A) :=
∫

A

ρε(z)
1 − cos(z · ξ)

|z|2 dz, for all L N − measurable A ⊆ RN . (3.3)

By lemma 3.1, we know that, under condition (1.5), the functional Iε(ξ; RN ) grows
at most as 1 + |ξ|2. Then, recalling the formulation of the BBM formula in Fourier
variables provided by lemma 2.1, in order to show that (1.6) holds, it suffices to
characterize the pointwise limit of the family of integrals with respect to z in (2.3),
when regarded as functions of ξ, that is, of {Iε( · ; RN )}. The next proposition takes
care of this.

Note that in order to achieve the task that we have just outlined it is natural to
regard {ρε} as a family of Radon measures and to take the limit of {Iε( · ; RN )} by
appealing to some weak-∗ compactness argument. Even though such compactness is
actually available (see step 2 in the proof of proposition 3.2), the discontinuity of the
function z → (1 − cos(ξ · z))/|z|2 prevents the results recalled in § 2.2 from being
immediately viable. To circumvent such an obstacle, in the proof of proposition
3.2 we introduce an auxiliary parameter δ ∈ J to quantify the range of interactions
(respectively short, medium or long), and we accordingly define two families of
measures, which are meant to encode the limiting behaviour of {ρε} at different
scales.

Proposition 3.2. If (1.5) holds, then there exist an infinitesimal sequence {εk} ⊂ J
and two finite Radon measures μ ∈ M (SN−1) and ν ∈ M (RN ) that depend only on
{ρεk

} and such that for every ξ ∈ RN :

lim
k→+∞

Iεk
(ξ; RN ) =

1
2

∫
SN−1

|ξ · σ|2 dμ(σ) +
∫

RN\{0}

1 − cos(z · ξ)
|z|2 dν(z).
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Proof. Let us fix δ ∈ J . In order to compute the desired limit we part RN in three
regions: B(0, δ), Aδ, and B(0, δ−1)c, where Aδ := {z ∈ RN : δ < |z| < δ−1}. The
proof is then divided into several steps: for each given δ ∈ J (except for a countable
family of them, see step 2 below) we take the limits as ε→ 0 of Iε(ξ;B(0, δ)),
Iε(ξ;Aδ), and Iε(ξ;B(0, δ−1)c). For the analysis of the first two terms the starting
point is the observation that (1.5) implies for every R > 0 the existence of ε̄R ∈ J
such that ∫

B(0,R)

ρε(z) dz � M + 1 for every ε ∈ (0, ε̄R) (3.4)

(cf. (3.1)). In the final step, we conclude by summing up the three contributions
and taking the limit as δ → 0.

Step 1: long-range interactions. The term Iε(ξ;B(0, δ−1)c) is readily estimated by
means of (1.5): for every δ ∈ J we have:

lim sup
k→+∞

Iεk
(ξ;B(0, δ−1)c) � 2Mδ2. (3.5)

Step 2: medium-range interactions. For all ε ∈ J , let us define the measure νε :=
ρεL N (cf. (1.7)). Let {R(n)}n∈N be a strictly increasing sequence of strictly positive
real numbers. It follows from (3.4) that for every n ∈ N there exists η(n) ∈ J such
that it holds:∫

B(0,R(n))

dνε =
∫

B(0,R(n))

ρε(z) dz � M + 1, for every ε ∈ (0, η(n)).

We can choose each η(n) so that {η(n)} is strictly decreasing. From the previous
bound, for each n ∈ N we deduce the existence of a finite positive Radon measure
ν(n) ∈ M (B(0, R(n))) and of a sequence {ε(n)

k } ⊂ (0, η(n)) such that ν
ε
(n)
k

∗
⇀ ν(n)

weakly-∗ in M (B(0, R(n))). By grounding on this property, a diagonal argument
yields the existence of a sequence {εk} ⊂ J and of a Radon measure ν on RN such
that νεk

∗
⇀ ν locally weakly-∗ in Mloc(RN ). In particular, by the lower semiconti-

nuity of the total variation with respect to the weak-∗ convergence, since M does
not depend on R, we infer that ν is finite.

We next resort to a known property of Radon measures: if {Eδ}δ∈J is a family of
pairwise disjoint Borel sets in RN and if μ ∈ Mloc(RN ), then μ(Eδ) > 0 for at most
countably δ ∈ J (see [3, p. 29]). By applying this property to the family {∂Aδ}δ∈J

and the measure ν, we deduce that the set of discontinuity points of the function:

χδ(z) :=

{
0 if z /∈ Aδ,

1 if z ∈ Aδ

is ν-negligible for all δ ∈ J , but those in a certain countable subset C ⊂ J . As a
consequence, since {νεk

} weakly-∗ converges to ν, the following equality holds for
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every δ ∈ J \ C:

lim
k→+∞

Iεk
(ξ;Aδ) = lim

k→+∞

∫
RN

χδ(z)
1 − cos(z · ξ)

|z|2 dνεk
(z)

=
∫

Aδ

1 − cos(z · ξ)
|z|2 dν(z). (3.6)

Step 3: short-range interactions. We adapt the approach of [19, Subsec. 1.1]. For a
fixed δ ∈ J and each ε ∈ J we define the Radon measure μ(δ)

ε on SN−1 by setting:

μ(δ)
ε (E) :=

∫
E

(∫ δ

0

tN−1ρε(tσ) dt

)
dH N−1(σ)

for all H N−1 − measurable sets E ⊂ SN−1.

By means of the coarea formula we deduce from (3.4) with R = 1 that definitively
μ

(δ)
ε (SN−1) � M + 1. Thus, for all δ ∈ J , there exists an infinitesimal sequence

{ε(δ)k } ⊂ J and a finite Radon measures μ(δ) ∈ M (SN−1) such that μ(δ)

ε
(δ)
k

∗
⇀ μ(δ)

weakly-∗ in M (SN−1) as k → +∞. Note that it holds μ(δ)(SN−1) � M + 1 for
every δ ∈ J .

Next, by a Taylor expansion of the cosine in 0 we obtain:

Iε(ξ;B(0, δ)) =
1
2

∫
B(0,δ)

ρε(z)|ξ · ẑ|2 dz +
∫

B(0,δ)

ρε(z)O(|ξ|3|z|) dz

=
1
2

∫
SN−1

|ξ · σ|2 dμ(δ)
ε (σ) +

∫
B(0,δ)

ρε(z)O(|ξ|3|z|) dz.

Since σ → |ξ · σ|2 is a continuous function on SN−1, in view of the weak-∗ con-
vergence of {μ(δ)

ε
(δ)
k

} we can take the limit as k → +∞. Thus, for every δ ∈ J , we

find

lim sup
k→+∞

I
ε
(δ)
k

(ξ;B(0, δ))

=
1
2

∫
SN−1

|ξ · σ|2 dμ(δ)(σ) + lim sup
k→+∞

∫
B(0,δ)

ρ
ε
(δ)
k

(z)O(|ξ|3|z|) dz. (3.7)

Step 4: limit as δ → 0. In order to achieve the conclusion, we need to take the limit
as δ → 0 of the terms considered in steps 1–3.

To this aim, let us consider the sequence {εk} ⊂ J and the set C ⊂ J given in
step 2. Let also {δn}n∈N ⊂ J \ C be an infinitesimal sequence. We observe that for
any n ∈ N, by reasoning as in step 3, we can inductively extract a subsequence
{ε(n)

k } ⊂ {ε(n−1)
k } ⊂ {εk} such that the sequence of measures μ(n)

k := μ
(δn)

ε
(n)
k

weakly-

∗ converges in M (SN−1) to some μ(δn). Step 3 yields as well the existence of an
unrelabelled subsequence {δn} and of a Radon measure μ ∈ M (SN−1) such that
the sequence {μ(δn)} weakly-∗ converges in M (SN−1) to μ.
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Let us now define the diagonal sequence {ε̃k} by setting ε̃k := ε
(k)
k for every

k ∈ N. Then, recalling (3.4), it follows from (3.7) that

lim
n→+∞ lim sup

k→+∞
Iε̃k

(ξ;B(0, δn)) =
1
2

∫
SN−1

|ξ · σ|2 dμ(σ). (3.8)

We also note that by monotone convergence, we can take the limit also in (3.6):

lim
n→+∞ lim

k→+∞
Iε̃k

(ξ;Aδn
) =

∫
RN\{0}

1 − cos(z · ξ)
|z|2 dν(z). (3.9)

Eventually, by collecting (3.5)–(3.9), we get

lim
k→+∞

Iε̃k
(ξ; RN )

= lim
n→+∞ lim sup

k→+∞

[
Iε̃k

(ξ;B(0, δn)) + Iε̃k
(ξ;Aδn

) + Iε̃k

(
ξ;B(0, δ−1

n )c
)]
,

from which the conclusion follows. �

We are now in a position to prove theorem 1.2.

Proof of theorem 1.2. Keeping in force the notation in (3.3), by lemma 3.1 we
know that for k sufficiently large Iεk

(ξ; RN ) grows at most as 1 + |ξ|2. Proposi-
tion 3.2, instead, characterizes the pointwise limit of {Iεk

( · ; RN )}, where {εk} ⊂ J
is a suitable infinitesimal sequence. Thus, for every ψ ∈ L2

w(RN ), by dominated
convergence, we deduce:

lim
k→+∞

F̂εk (ψ) =

∫
RN

|ψ(ξ)|2
[

1

2

∫
SN−1

|ξ · σ|2 dμ(σ) +

∫
RN\{0}

1 − cos(z · ξ)
|z|2 dν(z)

]
dξ

where μ ∈ M (SN−1) and ν ∈ M (RN ) are as in proposition 3.2. Formula (1.6) is
then achieved by recalling that the Fourier transform is a one-to-one correspondence
between H1(RN ) and L2

w(RN ), and by computations similar to the ones in the proof
of lemma 2.1.

We are now only left to show that the right-hand side in (1.6) is finite for every
u ∈ H1(RN ). As for the gradient term, its finiteness is trivial. For what concerns
the nonlocal term, we note that in view of lemma 3.1 and of the construction in
proposition 3.2 there holds∫

RN\{0}

1 − cos(z · ξ)
|z|2 dν(z) � 2M(1 + |ξ|2)

pointwise in RN . Thus, we deduce∫
RN

|ψ(ξ)|2
∫

RN\{0}

1 − cos(z · ξ)
|z|2 dν(z) dξ � 2M

∫
RN

|ψ(ξ)|2(1 + |ξ|2) dξ

for every ψ ∈ L2
w(RN ). The claim follows then by the same computations as in

lemma 2.1. �
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4. Necessary and sufficient conditions for the BBM formula

The goal of this section is to prove that conditions (i) and (ii) in theorem 1.1
are both sufficient and necessary for the BBM formula to hold. We first address
the sufficiency by proving corollary 1.3, then we turn to the necessity, that is, to
theorem 1.1.

4.1. Sufficiency

As we outlined in § 1, corollary 1.3 is an immediate consequence of the proof of
theorem 1.2.

Proof of corollary 1.3. Under the current assumptions, we know that there exist
an infinitesimal sequence of {εk} and two Radon measures μ ∈ M (SN−1) and ν ∈
M (RN ) such that (1.6) is satisfied.

In order to conclude, it now suffices to recall that the measure ν is the weak-∗
limit of the sequence defined by (1.7) (see step 2 in the proof of proposition 3.2). We
are currently supposing that such sequence weakly-∗ converges to αδ0 for a suitable
α � 0: then, necessarily, ν = αδ0 and the second integral on the right-hand side in
(1.6) vanishes. The conclusion is thus achieved. �

4.2. Necessity

We now focus on the proof of theorem 1.1, thus showing that the sufficient condi-
tions devised in the previous subsection are also necessary for the BBM formula to
hold. As before, we rely on the formulation in Fourier variables provided by lemma
2.1, or, in other words, we assume that (2.5) holds for every ψ ∈ L2

w(RN ) and for a
given measure λ ∈ M (SN−1). We first show that such a nonlocal-to-local formula
forces the restrictions of the kernels {ρε} to any large ball to belong definitively to
L1, while the integrals of ρε(z)/|z|2 on the complement of such balls need to become
increasingly smaller (see (1.3)). Then, item (ii) in theorem 1.1 will be derived as
well.

Proposition 4.1. Suppose that the convergence in (2.5) holds for every ψ ∈
L2

w(RN ) and for a given measure λ ∈ M (SN−1). Then, there exists M � 0
depending only on N and λ such that for every R > 0 condition (1.3) is satisfied.

Proof. Throughout the proof, cN is a generic positive constant that depends just
on the dimension N and whose value may change from line to line.

Let ψ ∈ L2
w(RN ) \ {0} be a radial function. Then, there exists a measurable

v : [0, +∞) → R such that ψ(ξ) = v(|ξ|) and that

0 <
∫ +∞

0

tN−1(1 + t2)v2(t) dt < +∞. (4.1)

We define

ψR(ξ) := RN/2ψ(Rξ) for all R > 0,
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and we observe that a change of variables yields:∫
RN

|ξ|2|ψR(ξ)|2 dξ =
1
R2

∫
RN

|ξ|2|ψ(ξ)|2 dξ.

By choosing ψ = ψR in (2.5), we infer that

lim
k→+∞

∫
RN

|ψR(ξ)|2
∫

RN

ρεk
(z)

1 − cos(z · ξ)
|z|2 dz dξ � λ(SN−1)

∫
RN

|ξ|2||ψR(ξ)|2 dξ

=
c

R2
, (4.2)

where c := c(λ, ψ) is a suitable constant. We exchange the integrals on the left-
hand side of (4.2) by the Fubini theorem, and, for any fixed z ∈ RN \ {0}, recalling
that ẑ = z/|z|, we let Lẑ be a rotation such that ẑ = Lt

ẑe1, where the superscript t
denotes transposition. A change of variables yields:∫

RN

|ψR(ξ)|2 (1 − cos(z · ξ)) dξ =
∫

RN

|ψR(ξ)|2 (1 − cos (|z|e1 · (Lẑξ))) dξ

=
∫

RN

|ψR(ξ)|2 (1 − cos(|z|e1 · ξ)) dξ (4.3)

(recall that ψR is radial). By plugging (4.3) into (4.2), we obtain:

lim
k→+∞

∫
RN

ρεk
(z)

|z|2
∫

RN

|ψR(ξ)|2 (1 − cos(|z|e1 · ξ)) dξdz � c

R2
.

From now on, we detail the argument for N � 4 only; the lower dimensional cases
may be addressed by similar (but lighter) computations. First, we change variables
to find

lim
k→+∞

∫
RN

ρεk
(z)

|z|N+2

∫
RN

∣∣∣∣ψR

(
ξ

|z|
)∣∣∣∣2 (1 − cos(e1 · ξ)) dξ dz � c

R2
. (4.4)

Next, we rewrite the integral with respect to ξ on the left-hand side of (4.4) by
employing spherical coordinates: for σ ∈ SN−1 we consider ϑ1, . . . , ϑN−2 ∈ [0, π]
and ϑN−1 ∈ [0, 2π) such that

e1 · σ = cos(ϑ1),

ei · σ = cos(ϑi)
i−1∏
j=1

sin(ϑj) fori = 2, . . . , N − 1,

eN · σ =
N−1∏
j=1

sin(ϑj).
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By the coarea formula, recalling that ψR(ξ) = RN/2v(R|ξ|) for v as above, it holds:∫
RN

∣∣∣∣ψR

(
ξ

|z|
)∣∣∣∣2 (1 − cos(e1 · ξ)) dξ

= RN

∫ +∞

0

v2

(
R

|z| t
)
tN−1

∫
SN−1

(1 − cos(te1 · σ)) dH N−1(σ) dt

=
∫ 2π

0

dϑN−1

N−2∏
j=2

∫ π

0

sinN−j−1(ϑj) dϑj

·RN

∫ +∞

0

v2

(
R

|z| t
)
tN−1

∫ π

0

[1 − cos (t cos(ϑ1))] sinN−2(ϑ1) dϑ1 dt

= cNR
N

∫ +∞

0

v2

(
R

|z| t
)
tN−1

∫ π

0

[1 − cos (t cos(ϑ))] sinN−2(ϑ) dϑ dt

= cNR
N

∫ +∞

0

v2

(
R

|z| t
)
t

∫ t

−t

(1 − cos(s)) (t2 − s2)(N−3)/2 dsdt

Since the integrand in the last expression is positive, by restricting the domain of
integration we find∫

RN

∣∣∣∣ψR

(
ξ

|z|
)∣∣∣∣2 (1 − cos(e1 · ξ)) dξ

� cNR
N

∫ +∞

0

v2

(
R

|z| t
)
tN−2

∫ t/2

−(t/2)

(1 − cos(s)) dsdt

� cNR
N

∫ +∞

0

v2

(
R

|z| t
)
tN−1

(
1 − 2

t
sin
(
t

2

))
dt. (4.5)

Next, we proceed by splitting the interval (0, +∞) into two regions, and we analyse
the corresponding integrals separately.

We observe that by a Taylor expansion around 0 there exists α0 > 0 such that

1 − 2
t

sin
(
t

2

)
� α0t

2 for every t ∈ (0, 1].

Then, starting from (4.4) and taking into account (4.5), we infer

c

R2
� lim sup

k→+∞

∫
B(0,R)

ρεk
(z)

|z|N+2

∫
RN

∣∣∣∣ψR

(
ξ

|z|
)∣∣∣∣2 (1 − cos(e1 · ξ)) dξ dz

� α0cNR
N lim sup

k→+∞

∫
B(0,R)

ρεk
(z)

|z|N+2

∫ |z|/R

0

tN+1v2

(
R

|z| t
)

dtdz

=
α0cN
R2

lim sup
k→+∞

∫
B(0,R)

ρεk
(z)
∫ 1

0

tN+1v2(t) dtdz.
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In conclusion, owing to (4.1), we find

lim sup
k→+∞

∫
B(0,R)

ρεk
(z) dz � M0

for a suitable M0 := M0(N, λ, v) that is finite for each v �= 0 in (0, 1).
We now turn to the contribution accounting for ‘large’ |z|. Note that there exists

α1 > 0 such that

1 − 2
t

sin
(
t

2

)
� α1 for every t > 1.

Therefore, by estimates similar to the ones above, we obtain:

c

R2
� lim sup

k→+∞

∫
B(0,R)c

ρεk
(z)

|z|N+2

∫
RN

∣∣∣∣ψR

(
ξ

|z|
)∣∣∣∣2 (1 − cos(e1 · ξ)) dξ dz

� α1cNR
N lim sup

k→+∞

∫
B(0,R)c

ρεk
(z)

|z|N+2

∫ +∞

|z|/R

tN−1v2

(
R

|z| t
)

dtdz

= α1cN lim sup
k→+∞

∫
B(0,R)c

ρεk
(z)

|z|2
∫ +∞

1

tN−1v2(t) dtdz,

and, again by (4.1), we deduce

lim sup
k→+∞

∫
B(0,R)c

ρεk
(z)

|z|2 dz � M1

R2

for some M1 := M1(N, λ, v) that is finite for each v �= 0 in R \ [0, 1].
To conclude the proof, we first optimize M0 and M1 with respect to v and we

choose as M the largest of the two optima; note, in particular, that M is finite and
strictly positive, and depends only on the dimension of the space and on λ(SN−1).

�

Remark 4.2. Observe that, heuristically, inequality (4.2) has the same structure of
a Poincaré inequality: the L2-norm of a function on the left-hand side, the L2-norm
of its gradient on the right one. So, in a sense, the integral with respect to z on
the left-hand side may be regarded as the inverse of the Poincaré constant. The
latter has a well-known scaling property: if cP (Ω) denotes the Poincaré constant
associated with a certain domain Ω, then cP (RΩ) = RcP (Ω), where RΩ := {x ∈
RN : x/R ∈ Ω}. Such considerations motivated the choice of the scaling of the test
function ψ in the proof above (recall that there we work in Fourier variables).

With proposition 4.1 at hand, we are now in a position to prove theorem 1.1.

Proof of theorem 1.1. Thanks to proposition 4.1, we know that item (i) holds. As
a consequence, there is an infinitesimal sequence {εk} such that the inequality in
(1.5) holds, and we may invoke the compactness result in theorem 1.2. Thus, there
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exist a subsequence {εkn
} and two Radon measures μ ∈ M (SN−1) and ν ∈ M (RN )

such that for every u ∈ H1(RN ):

lim
n→+∞

Fεkn
[u] =

1

2

∫
RN

[∫
SN−1

|∇u(x) · σ|2 dμ(σ) +

∫
RN\{0}

|u(x+ z) − u(x)|2
|z|2 dν(z)

]
dx.

In particular, from the proof of theorem 1.2 we know that ν is the weak-∗ limit in
Mloc(RN ) of the subsequence {νkn

} defined by

〈νkn
, f〉 :=

∫
RN

ρεkn
(z)f(z) dz for all f ∈ Cc(RN ). (4.6)

Note that, in principle, the measures μ and λ may differ. However, since we are
assuming (1.2), for every u ∈ H1(RN ) it must hold:∫

RN

∫
SN−1

|∇u(x) · σ|2 dλ(σ) dx

=
1
2

∫
RN

[∫
SN−1

|∇u(x) · σ|2 dμ(σ) +
∫

RN\{0}

|u(x+ z) − u(x)|2
|z|2 dν(z)

]
dx.

By passing to Fourier variables as in the proof of lemma 2.1, the previous equality
becomes∫

RN

|ψ(ξ)|2
∫

SN−1
|ξ · σ|2 dλ(σ) dξ

=
∫

RN

|ψ(ξ)|2
[

1
2

∫
SN−1

|ξ · ẑ|2 dμ(z) +
∫

RN\{0}

1 − cos(z · ξ)
|z|2 dν(z)

]
dξ

for every ψ ∈ L2
w(RN ), whence, by the fundamental theorem of the calculus of

variations and the continuity with respect to the ξ variable, we deduce:∫
SN−1

|ξ · σ|2 dλ(σ) =
1
2

∫
SN−1

|ξ · ẑ|2 dμ(z)

+
∫

RN\{0}

1 − cos(z · ξ)
|z|2 dν(z) for every ξ ∈ RN . (4.7)

Then, by dividing (4.7) by |ξ|2 and letting |ξ| → +∞, we obtain:∫
SN−1

|ξ̂ · σ|2 dλ(σ) =
1
2

∫
SN−1

|ξ̂ · ẑ|2 dμ(z) for every ξ̂ ∈ SN−1. (4.8)

By (4.7) and (4.8), it follows that necessarily∫
RN\{0}

1 − cos(z · ξ̂)
|z|2 dν(z) = 0 for every ξ̂ ∈ SN−1,

but since z → (1 − cos(z · ξ̂))/|z|2 is a positive function with support on the whole
space for every ξ̂ ∈ SN−1, we infer that the restriction of ν to RN \ {0} is 0. By the
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definition of Lebesgue integral, we obtain that for any f ∈ Cc(RN )∫
RN

f(z) dν(z) = ν({0})f(0),

that is, ν = αδ0 for a suitable α � 0.
Finally, we conclude the proof of item (ii) by observing that for any subsequence

{εkn
} the associated sequence of measures {νkn

} defined by (4.6) must converge
weakly-∗ to αδ0, and hence the whole sequence {νk} converges. �

Remark 4.3. For each λ ∈ M (SN−1), let us define the positive semi-definite
symmetric matrix:

Aλ :=
∫

SN−1
σ ⊗ σ dλ(σ).

By employing this notation, the functional F in (2.2) rewrites as

F [u] =
∫

RN

Aλ∇u · ∇u dx

for every u ∈ H1(RN ).
As we observed in the previous proof, under the assumptions of theorem 1.1 the

measure λ in (1.2) and the measure μ obtained by the compactness argument need
not be the same. However, equality (4.8) expresses the fact that the associated
matrices satisfy Aλ = Aμ/2.

5. Discussion and perspectives

In what follows, we first present an alternative formulation of condition (i) in
theorem 1.1, and we then compare our results with previous ones in other con-
tributions. In particular, we explain how some classes of kernels that have been
considered in the literature are encompassed by our theory. We conclude by
outlining possible future investigations.

5.1. Lévy conditions and reformulation of (i)

As we recalled in § 1, the research on nonlocal-to-local formulas has been focused
on sufficient conditions. However, it must be mentioned that necessary conditions
for the finiteness of the nonlocal energies in (1.1) have been devised as well, and
they are sometimes referred to as Lévy conditions. It is indeed known that, when
u ∈ H1(RN ), an ε-uniform upper bound on the functionals in (1.1) entails a certain
summability close to the origin and a decay at infinity. Precisely, the following can
be shown:

Theorem 5.1. Suppose that for every u ∈ H1(RN ) there exists c := c(u) � 0 such
that Fε[u] � c for all ε ∈ J . Then, the family {ρε} fulfils the Lévy conditions, that
is, there exists M � 0 such that∫

B(0,1)

ρε(z) dz +
∫

B(0,1)c

ρε(z)
|z|2 dz � M for every ε ∈ J.
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For a proof, we refer, e.g. to the recent contribution [12, Thm. 2.1] (the authors
work under radiality assumptions on the kernels, but for the result at stake, this
does not play a role). Alternatively, we note that the argument in the proof of
proposition 4.1 may be adapted to establish the previous proposition: it is enough
to work with a fixed test function ψ ∈ L2

w(RN ).
When the bound in theorem 5.1 holds only asymptotically, that is,

lim supε→0 Fε[u] � c, it can be shown that

lim sup
ε→0

∫
RN

ρε(z)
1 + |z|2 dz � M. (5.1)

Such bound is necessary but not sufficient for the one in (i): as a counterexample,
consider for N = 1 the constant family ρε ≡ 1. As we observed in § 1, indeed,
condition (i) may be regarded as a uniform decay requirement on the kernels. In
more precise terms, the following holds:

Lemma 5.2. Condition (i) is equivalent to the following:

(i′) There exists M̃ � 0 such that for every R > 0 there holds

lim sup
k→+∞

∫
RN

ρεk
(z)

R2 + |z|2 dz � M̃

R2
. (5.2)

Proof. We first show that (1.3) implies (5.2). Fix R > 0. After a change of variable,
(1.3) rewrites as

lim sup
k→+∞

[∫
B(0,1)

ρεk
(Rz) dz +

∫
B(0,1)c

ρεk
(Rz)
|z|2 dz

]
� M

RN
.

The conclusion follows then by observing that∫
B(0,1)

ρεk
(Rz) dz +

∫
B(0,1)c

ρεk
(Rz)
|z|2 dz �

∫
RN

ρεk
(Rz)

1 + |z|2 dz

and by performing a further change of variables.
Conversely, assume that (5.2) holds. Then, for every R > 0 a change of variable

yields

lim sup
k→+∞

∫
RN

ρεk
(Rz)

1 + |z|2 dz � M̃

RN
.

Since the real function t → t2/(1 + t2) is increasing on the positive real line, we find∫
RN

ρεk
(Rz)

1 + |z|2 dz � 1
2

∫
B(0,1)

ρεk
(Rz)

1 + |z|2 dz +
∫

B(0,1)c

|z|2
1 + |z|2

ρεk
(Rz)
|z|2 dz

� 1
2

(∫
B(0,1)

ρεk
(Rz) dz +

∫
B(0,1)c

ρεk
(Rz)
|z|2 dz

)
.

A further change of variable entails (1.3). �
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Remark 5.3. We observed that (5.1) is necessary for (1.3) to hold. On the contrary,
a sufficient condition not involving the parameter R is the following: there exists
an infinitesimal family {ωε} ⊂ (0, +∞) such that

lim sup
ε→0

∫
RN

ρε(z)
1 + ωε|z|2 dz < +∞. (5.3)

However, this condition is stronger than (i): to see this, given a family {ωε} as
above, observe that for N = 1 the kernels ρε(z) := ω

1/4
ε fulfil (1.3), but not (5.3).

5.2. L1 and fractional kernels

In [5], the authors proved their nonlocal-to-local formula under the assumption
that the kernels ρε are standard mollifiers. A more general version of their result is
the following:

Theorem 5.4 (cf. Thm. 1 in [19]). Let p ∈ (1, +∞) be fixed. For every ε ∈ J , let
ρε : RN → [0, +∞) be a function with ‖ρε/2‖L1(RN ) = 1. Suppose also that for every
δ > 0

lim
ε→0

∫
B(0,δ)c

ρε(z) dz = 0. (5.4)

Then, for any u ∈W 1,p(RN ) there exists c > 0 such that

∫
RN×RN

ρε(x− y)
|u(x) − u(y)|p

|x− y|p dy dx � c for every ε ∈ J.

Besides, there exist an infinitesimal sequence {εk} ⊂ J and a positive Radon mea-
sure λ on the unit sphere SN−1 that depends only on {ρεk

} such that
∫

SN−1 dλ = 1
and

lim
k→+∞

1
2

∫
RN×RN

ρεk
(x− y)

|u(x) − u(y)|p
|x− y|p dy dx =

∫
RN

∫
SN−1

|∇u(x) · σ|p dλ(σ) dx

(5.5)

for every u ∈W 1,p(RN ).

We now show how the class of kernels considered in the theorem above falls within
our theory.

Example 5.5 (L1 kernels). Let {ρε}ε∈J be a family of kernels as in theorem 5.4. A
direct check shows that the normalization condition ‖ρε/2‖L1(RN ) = 1 implies (1.5).
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Besides, for every f ∈ Cc(RN \ {0}) there exists δ > 0 so small that∫
RN\{0}

ρε(z)f(z) dz =
∫

B(0,δ)c

ρε(z)f(z) dz.

It hence follows from (5.4) that

lim
ε→0

∫
RN\{0}

ρε(z)f(z) dz = 0,

which entails, similarly to the proof of corollary 1.3, that the weak-∗ limit of the
associated sequence in (1.7) is a multiple of δ0.

As we commented in § 1, fractional kernels are not exactly covered by theorem
5.4. With the next example, we see how they fit in our framework.

Example 5.6 (Fractional kernels). Given s ∈ (0, 1) and u ∈ L2(RN ), the (normal-
ized) s-Gagliardo seminorm of u is defined by

Gs[u] :=
1 − s

2

∫
RN×RN

|u(x) − u(y)|2
|x− y|N+2s

dy dx.

Such functional corresponds to the one in (1.1) upon selecting:

ε := 1 − s, ρε(z) = ρG
ε (z) :=

ε

2|z|N−2ε
.

Note that in this case ρε /∈ L1(RN ). On the contrary, for every δ > 0 and for suitable
N -depending constants α0, α1 > 0, we have:∫

B(0,δ)

ε

2|z|N−2ε
dz = α0δ

2ε,∫
B(0,δ)c

ε

2|z|N−2ε+2
dz = α1

ε

(1 − ε)δ2(1−ε)
.

In particular, by taking, e.g. M = 2, we see that (1.5) holds. Besides, for every
R > δ > 0 we have:

lim
ε→0

∫
B(0,R)\B(0,δ)

ε

2|z|N−2ε
dz = α0 lim

ε→0
(R2ε − δ2ε) = 0,

whence, similarly to the previous example, we infer that {ρG
ε } converges locally

weakly-∗ to a multiple of the Dirac delta in 0 in the sense of Radon measures.

5.3. Future directions

In this paper, we provided sufficient and necessary conditions on a family of
kernels {ρε} for the nonlocal functionals in (1.1) to converge to a variant of the
Dirichlet integral for every u ∈ H1(RN ). It is natural to wonder whether such
characterization still holds for the more general functionals considered in [5]. We
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conjecture that this is the case. Namely, given a family of positive, measurable ker-
nels {ρε}ε∈J , we conjecture that for any open set Ω ⊆ RN with Lipschitz boundary
and for any p ∈ [1, +∞) the following conditions are necessary and sufficient for
the BBM formula to hold for every u ∈W 1,p(Ω) when p > 1 or u ∈ BV (Ω) when
p = 1:

(i) there exists M � 0 such that for every R > 0 it holds:

lim sup
ε→0

∫
B(0,R)

ρε(z) dz � M,

lim sup
ε→0

∫
B(0,R)c

ρε(z)
|z|p dz � M

Rp
when Ω is unbounded;

(ii) there exists an infinitesimal sequence {εk} ⊂ J such that the sequence of
measures {νk} ⊂ Mloc(RN ) defined as in (1.4) converges locally weakly-∗ to
αδ0 in the sense of Radon measures for a suitable α � 0.

We remind that it is known that the BBM formula fails when the boundary of Ω
is not regular enough (see [19, Rmk. 1], and [13] on a possible remedy).

Naturally, for p �= 2 and Ω � RN the Fourier approach is not viable anymore
(but when p �= 2 and Ω = RN techniques of Fourier analysis may still be invoked
by resorting to the Littlewood–Paley theory, as it is done in the recent contribution
[6]). A possible strategy to establish the necessity of the previous conditions is to
follow the proof of [12, Thm. 2.1] and employ rescaled test functions as in the proof
of proposition 4.1.

A second research direction concerns the variational convergence of the nonlocal
energies to local ones, in the same spirit as [19, Thm. 8 and Cor. 8]. For a thorough
treatment of Γ-convergence we refer to the monograph [8]. It is not difficult to see
that the conditions in corollary 1.3 are sufficient for the Γ-convergence of {F̂ε} to
F̂ when it is known that the limiting function u has Sobolev regularity; under this
extra assumption, by the inverse Fourier transform, the Γ-convergence of {Fε} to
F is recovered. Proving that they are also necessary would require a refinement of
proposition 4.1, again possibly resorting to the approach of [12, Thm. 2.1]; note,
in particular, that in our analysis (1.3) is derived from a Γ-limsup type inequality
(see (4.2)).

Γ-Convergence results are usually complemented by equi-coercivity statements,
because in this way convergences of minima and minimizers are obtained thanks to
the so-called fundamental theorem of Γ-convergence, see e.g. [8, Cor. 7.20]. Such
results also have a role in devising the domain of the Γ-limit. The convergence
properties of sequences of Lp functions with equi-bounded nonlocal energy were con-
sidered already in [5, Thm. 4]; refined results in the same vein have been obtained
in [18, Thm. 1.2 and 1.3] and, more recently, in [1, Thm. 4.2]. Another natural
question that is left open from our analysis is what conditions on the kernels {ρε}
are necessary and sufficient for such a compactness result to hold. It is expected
that some requirement on the support of the measures μ in theorem 1.2 has to be
enforced (cf. [19, Thm. 5] and [1, Thm. 3.1]).
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