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We are given the conies G1 and C2, and A is any one of their
intersections. Take any point P in the plane. Then lines through
P cut Cj in pairs of points U, V which form an involution on Cx.
These pairs are projected from A by a pencil of lines in involution
whose pairs meet C2 in the pairs of points X, Y of an involution.
Their joins 1 7 must therefore pass through a fixed point Q.

Clearly, each line PUV can only lead to the unique line QXY,
and each QXY can only be arrived at from a unique PUV; in other
words, the lines PUV and QXY are pairs of a (1, 1) correspondence.

Consider now lines through P and Q conjugate with respect to
the conic C2. They are seen to be pairs of another (1, 1) corre-
spondence ; for given any line a through P, its pole with respect to
C2, and therefore the line j8 joining Q to the pole, is uniquely
determined, and starting from /? we come back uniquely to a.

Now in general there are two lines through P for which the
corresponding lines of the pencil through Q in the two (1, 1) corre-
spondences coincide; that is, there are two lines through P such that
(KLXY) is harmonic, in which case by projection from A, (KLUV)
is harmonic. Thus through a general point in the plane there pass
two lines only which cut the two conies harmonically. It follows
that such lines envelope a conic.

A Useful Expansion in Applications of Determinants

By A. C. AITKEN.

The expansion, in the form of a series, of the quotient of two
determinants, in which the numerator determinant differs from the
denominator in one column only, is moderately well known. It was
found in 1825 by P. Schweins (see Muir's History, Vol. 1, pp. 171-2),
and has many times since been rediscovered or proved ad hoc for
particular applications.

There is a special case of this expansion, so useful that it
seems worth while to present it on its own account. It is, for
example,
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where determinants are denoted by their diagonal elements, e.g.

b2 b3 64

I b2 c3 d41= c2 c3 c4

d2 d3 d4

The numerator is obtained by bordering the denominator by a
leading row and column. We assume that the denominators in the
expansion do not vanish. The general result is entirely similar to
the particular case we have used for illustration.

Proof. Denoting the left side of (1) by Qit we have

Qi — Q-i = 11 «i b2 c3 dt I I b2 c3 dA 11 -f- {I b2 c31 | b2 c3 dt |}.

The compound determinant in the numerator on the right is the
" extensional," by means of the " extension " (62c3), of

11 a1 d± I I 111 = — a 4 dx.
Hence its value is — | ai 62 c3 j | dx b2 c31

= — I «2 ^3 C4 I I K C2 dz I ,

by an even number of interchanges of rows and columns (letters and
suffixes).

Adding now Q4 — Q6, Qs — Q2, Q2 — Qi and Qx = au we have the
desired result (1), and the proof of the general case is analogous.

Corollary. If J ax 62 c3 d± \ — 0, and b2 =)= 0, | b2 c31 =(= 0, | b2 c3 d± | =f= 0,
we derive a t once

= a2.bx \a2b3\ \bxC2\ \a2b3c41 | b x c 2 d 3 \
1 + ^ (>1.62

 + 6 2 |6 2 c 3 | ^ \b2c3\\b2c3di

the general result of this kind being similar.

Applications.

1. Interpolation. Let us consider a standard problem, namely;
given n + 1 values of a polynomial/(a;), for x = aQ, alt a2, . . . . . an, to
determine / (a;) in terms of these values.

By way of illustration, let us find what polynomial / (x) of the
3rd degree takes the values f(a0), /(a1) , /(a2) , f(a3).

If we put / (x) = c0 + c^ x + c2 x
2 + c3 x

s, this equation is con-
sistent with four others obtained from it by putting x = a0, au a2, a3.
Hence the eliminant (an alternant)

o» a\ a\ a| I = 0. (3)
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Hence, by the Corollary (2) above, we have
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+ (x — a0) (x — a-i) (x — a2) /(ao> a.u «2. 03).

since factors cancel out from those alternants that are difference-
products, and the other quotients of alternants in each term give
Newton's divided differences, usually written f (a0, a{), f (a0, au a2), etc.

Thus we obtain Newton's divided difference formula of interpola-
tion as a special case of our expansion. Lagrange's formula, on the
other hand, is obtained by expanding the eliminant in (3) in terms of
the elements of its first column.

2. Seduction of a Quadratic Form to a Sum of Squares.

It is well known that a non-degenerate quadratic form can be
expressed by suitably bordering the adjugate of its determinant; for
example,

ax2+by2+ cz2 + 2hxy + 2gxz+2fyz = — A
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where capital letters denote, as usual, cofactors, and the denominator
is not zero.

If further the leading minors of this denominator do not vanish,
we may apply our expansion (1) and obtain the quadratic form in
the shape
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/(cA) + (gx + fy + cz)z/c,
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by Jacobi's theorem on a minor of the adjugate. This is really
Lagrange's reduction (1759) of a quadratic form to a sum of squares.
Incidentally, if c, A and A (minors each contained boxlike in its
successor) are all positive, the coefficients of the three squared
expressions in the reduced quadratic above are all positive. This
again, with the aid of Sylvester's theorem on the " Inertia of
Quadratic Forms," gives a classic result, namely, that if a set of
overlapping minors of successive orders in A, and finally A itself, are
all positive, this ensures that the quadratic form shall be positive
definite.

3. Problems of Approximation by Least Squares.
Let us next consider the problem of representing an arbitrary

function u (x) as closely as possible over the range x = a to x = 6 by
a polynomial f(x) of assigned degree, the criterion of approximation
being that the integral of squared deviations

?2= w(x){f(x)-u(z)}*dz (4)

shall be a minimum. The function w(x) is a "weight function,"
positive over at least part of the range. By way of illustration, let
us find such a polynomial of the 3rd degree.

+ c2x
2 + c3x

3, (5)

xr v) (x) u (x) dx = i¥,.

id8*/ecr = 0,

Let
n Cb

xr w (x) dx = mr,
^ a ^ a

Now (5) and the minimal conditions
being consistent, give the eliminant

f{x) 1 x x2 x'3

Mo m0 nil ^2 nis
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M2 m2 ' m3 m4 mb

M3 m3 m± m6 m6

= 0. (6)

Applying our Corollary (2), we obtain
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Thus/(a;) has been expressed in terms ot a set of polynomials
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depending on w {x), but not on u (x).
It is a simple matter to prove that these polynomials satisfy

weighted orthogonal conditions under integration over the range,
namely

f*
xr w (x) Ps (x) dx = 0, r < s.

•"«

Certain special cases are interesting. For example if w (x) = 1
the polynomials are Legendre polynomials. We may also apply the
same method to discrete data u (x), summation taking the place of
integration.

The above are only a few of many situations in which the
expansions to which we have drawn attention serve at least to
discover the formal solution of a problem, and often something more.
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