
2

Differential geometry

The space-time structure discussed in the next chapter, and assumed
through the rest of this book, is that of a manifold with a Lorentz
metric and associated affine connection.

In this chapter, we introduce in § 2.1 the concept of a manifold and
in § 2.2 vectors and tensors, which are the natural geometric objects
defined on the manifold. A discussion of maps of manifolds in § 2.3
leads to the definitions of the induced maps of tensors, and of sub-
manifolds. The derivative of the induced maps defined by a vector
field gives the Lie derivative defined in §2.4; another differential
operation which depends only on the manifold structure is exterior
differentiation, also defined in that section. This operation occurs in
the generalized form of Stokes' theorem.

An extra structure, the connection, is introduced in §2.5; this
defines the covariant derivative and the curvature tensor. The connec-
tion is related to the metric on the manifold in §2.6; the curvature
tensor is decomposed into the Weyl tensor and Ricci tensor, which are
related to each other by the Bianchi identities.

In the rest of the chapter, a number of other topics in differential
geometry are discussed. The induced metric and connection on a
hypersurface are discussed in §2.7, and the Gauss-Codacci relations
are derived. The volume element defined by the metric is introduced
in §2.8, and used to prove Gauss' theorem. Finally, we give a brief
discussion in §2.9 of fibre bundles, with particular emphasis on the
tangent bundle and the bundles of linear and orthonormal frames.
These enable many of the concepts introduced earlier to be reformu-
lated in an elegant geometrical way. §2.7 and §2.9 are used only at
one or two points later, and are not essential to the main body of the
book.

[10]
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2.1] MANIFOLDS 11

2.1 Manifolds

A manifold is essentially a space which is locally similar to Euclidean
space in that it can be covered by coordinate patches. This structure
permits differentiation to be defined, but does not distinguish intrin-
sically between different coordinate systems. Thus the only concepts
defined by the manifold structure are those which are independent of
the choice of a coordinate system. We will give a precise formulation
of the concept of a manifold, after some preliminary definitions.

Let Rn denote the Euclidean space of n dimensions, that is, the set
of all w-tuples (x1^2, ...,xn) ( — oo < xi < oo) with the usual topology
(open and closed sets are defined in the usual way), and let \Rn denote
the ' lower half of Rn, i.e. the region of Rn for which x1 < 0. A map <f> of
an open set 0 <= Rn (respectively \Rn) to an open set 0r <=: Rm (respec-
tively \Rm) is said to be of class Cr if the coordinates (a:'1, x'2,..., x'm) of
the image point </>(p) in 0' are r-times continuously differentiate
functions (the rth derivatives exist and are continuous) of the co-
ordinates (x1, x2,..., xn) ofp in 0. If a map is Cr for all r ^ 0, then it is
said to be C°°. By a C° map, we mean a continuous map.

A function/on an open set 0 of Rn is said to be locally Lipschitz if
for each open set % <= 0 with compact closure, there is some constant
K such that for each pair of points p,qe^, \f(p)— f(q)\ ^ K \p — q\,
where by \p\ we mean

A map (J) will be said to be locally Lipschitz, denoted by C1", if the
coordinates of <f)(p) are locally Lipschitz functions of the coordinates
ofp. Similarly, we shall say that a map (j) is Cr~ if it is Cr~x and if the
(r— l)th derivatives of the coordinates of <j>(p) are locally Lipschitz
functions of the coordinates oip. In the following we shall usually only
mention Cr, but similar definitions and results hold for Cr~.

If 8P is an arbitrary set in Rn (respectively \Rn), a map <f> from SP to
a set SP' c: Rm (respectively \Rm) is said to be a Cr map if <fi is the
restriction to @P and &' of a Cr map from an open set G containing 3P
to an open set 6' containing SP'.

A Cr n-dimensional manifold *M is a set *M together with a Cr atlas
{<%a, 0a}, that is to say a collection of charts (^a, <f>a) where the %a are
subsets of JK and the (j)a are one-one maps of the corresponding <̂ a to
open sets in Rn such that

(1) the ^ra cover JK', i.e. JK = \J fya,

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511524646.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511524646.003


12 DIFFERENTIAL GEOMETRY [2.1

(2) if tfta n Qlp is non-empty, then the map

is a Cr map of an open subset of Rn to an open subset of Rn (see figure 4).
Each <%a is a focaZ coordinate neighbourhood with the local coordinates

xa (a = 1 to w) defined by the map <pa (i.e. if ̂p G ̂ a , then the coordinates
of p are the coordinates of <f>a(p) in Rn). Condition (2) is the requirement
that in the overlap of two local coordinate neighbourhoods, the
coordinates in one neighbourhood are Cr functions of the coordinates
in the other neighbourhood, and vice versa.

FIGURE 4. In the overlap of coordinate neighbourhoods ^ a and <2^, coordinates
are related by a Cr map <f>a o <j>fx.

Another atlas is said to be compatible with a given Cr atlas if their
union is a Cr atlas for all Jt. The atlas consisting of all atlases com-
patible with the given atlas is called the complete atlas of the manifold;
the complete atlas is therefore the set of all possible coordinate
systems covering JK.

The topology of ^# is defined by stating that the open sets of *J(
consist of unions of sets of the form ^ a belonging to the complete atlas.
This topology makes each map <f>a into a homeomorphism.

A Cr differentiate manifold with boundary is defined as above, on
replacing 'R71' by '\Rn\ Then the boundary of JK, denoted by dJt, is
defined to be the set of all points of ̂  whose image under a map $5a lies
on the boundary of \Rn in Rn. dJt\& an (n — 1 )-dimensional Cr manifold
without boundary.
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2.1] MANIFOLDS 13

These definitions may seem more complicated than necessary. How-
ever simple examples show that one will in general need more than one
coordinate neighbourhood to describe a space. The two-dimensional
Euclidean plane R2 is clearly a manifold. Rectangular coordinates
(x, y; — oo < x < oo, —co<y<co) cover the whole plane in one
coordinate neighbourhood, where <j) is the identity. Polar coordinates
(r,d) cover the coordinate neighbourhood (r > 0, 0 < 6 < 2n); one
needs at least two such coordinate neighbourhoods to cover R2. The
two-dimensional cylinder C2 is the manifold obtained from R2 by identi-
fying the points (x,y) and (x+2n,y). Then (x,y) are coordinates in
a neighbourhood (0 < x < 2TT, —oo<y<co) and one needs two
such coordinate neighbourhoods to cover C2. The Mobius strip is the
manifold obtained in a similar way on identifying the points (x, y) and
(x + 2n, — y). The unit two-sphere S2 can be characterized as the surface
in i?3 defined by the equation (a;1)2 + (x2)2 + (a;3)2 = 1. Then

(x2,x3; -1 < x2 < 1, - 1 < z3 < 1)

are coordinates in each of the regions x1 > 0, x1 < 0, and one needs six
such coordinate neighbourhoods to cover the surface. In fact, it is not
possible to cover S2 by a single coordinate neighbourhood. The
n-sphere Sn can be similarly defined as the set of points

(x1)2+(a:2)2+... + (^+1)2= 1
in Rn+1.

A manifold is said to be orientable if there is an atlas {^a, 0a} in the
complete atlas such that in every non-empty intersection tfta n ̂ , the
Jacobian \dxl\dx'i\ is positive, where (x1, ...,xn) and (a:'1, ...,x'n) are
coordinates in °Ua and °llp respectively. The Mobius strip is an example
of a non-orientable manifold.

The definition of a manifold given so far is very general. For most
purposes one will impose two further conditions, that J( is Hausdorff
and that Ji is paracompact, which will ensure reasonable local
behaviour.

A topological space Jt is said to be a Hausdorff space if it satisfies
the Hausdorff separation axiom: whenever p, q are two distinct points
in J(, there exist disjoint open sets ^ , "T in Jt such that petftyqe'V.
One might think that a manifold is necessarily Hausdorff, but this is
not so. Consider, for example, the situation in figure 5. We identify the
points 6, b' on the two lines if and only if xh = yh. < 0. Then each point
is contained in a (coordinate) neighbourhood homeomorphic to an
open subset of JB1. However there are no disjoint open neighbourhoods
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14 DIFFERENTIAL GEOMETRY [2.1

: Xb) {X = 0)

(y = 2/b') (y = 0)

FIGURE 5. An example of a non-Hausdorff manifold. The two lines above are
identical for x = y < 0. However the two points a (x — 0) and a' (y = 0) are
not identified.

$/, V satisfying the conditions ae^ya' ef^, where a is the point x = 0
and a' is the point y = 0.

An atlas {tf/a, <fia} is said to be locally finite if every point pe^t has
an open neighbourhood which intersects only a finite number of the
sets <%a. JK is said to be paracompact if for every atlas {Wa, <f>a} there
exists a locally finite atlas {^, ^ } with each ^ contained in some ^ a .
A connected Hausdorff manifold is paracompact if and only if it has
a countable basis, i.e. there is a countable collection of open sets such
that any open set can be expressed as the union of members of this
collection (Kobayashi and Nomizu (1963), p. 271).

Unless otherwise stated, all manifolds considered will be paracompact,
connected C00 Hausdorff manifolds without boundary. It will turn out
later that when we have imposed some additional structure on J( (the
existence of an affine connection, see §2.4) the requirement of para-
compactness will be automatically satisfied because of the other
restrictions.

A function fon a Ck manifold ^ is a map from ^toR1. It is said to
be of class Cr (r ^ k) at a point p of Jt, if the expression/o ^a~

1 of/ on
any local coordinate neighbourhood °Ua is a Cr function of the local
coordinates at p\ and / is said to be a Cr function on a set i^ of <J( if
/ is a Cr function at each point pei^.

A property of paracompact manifolds we will use later, is the fol-
lowing: given any locally finite atlas {^a, ^a} on a paracompact Ck

manifold, one can always (see e.g. Kobayashi and Nomizu (1963),
p. 272) find a set of Ck functions ga such that

(1) 0 ^ ga ^ 1 on Ji, for each a;
(2) the support of ga, i.e. the closure of the set {p e J(\ ga(p) 4= 0}, is

contained in the corresponding ^ a ;
(3)
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2.1] MANIFOLDS 15

Such a set of functions will be called a partition of unity. The result
is in particular true for C00 functions, but is clearly not true for analytic
functions (an analytic function can be expressed as a convergent
power series in some neighbourhood of each pointy e *J(, and so is zero
everywhere if it is zero on any open neighbourhood).

Finally, the Cartesian product si x 86 of manifolds si, 8ft is a mani-
fold with a natural structure defined by the manifold structures of
si, 8ft \ for arbitrary points pes/, qe8S, there exist coordinate neigh-
bourhoods °U, y* containing p, q respectively, so the point (p, q) e si x 88
is contained in the coordinate neighbourhood f x f in J^' x86 which
assigns to it the coordinates (xi

fy
j), where xl are the coordinates of p

in °tt and yj are the coordinates of q in y \

2.2 Vectors and tensors
Tensor fields are the set of geometric objects on a manifold defined in
a natural way by the manifold structure. A tensor field is equivalent
to a tensor defined at each point of the manifold, so we first define
tensors at a point of the manifold, starting from the basic concept of
a vector at a point.

A Ck curve X(t) in ^?is a Ck map of an interval of the real line R1 into
Jt'. The vector (contravariant vector) (d/dt)A\ to tangent to the C1 curve
A(t) at the point A(t0) is the operator which maps each C1 function/at
A(£o) into the number (df/dt)x\ ,o; that is, (dfldt)x is the derivative of/in
the direction of \(t) with respect to the parameter t. Explicitly,

(df
I — *.*.*.**. ^ ijv^\v i v / / j \ " \ v y j ' ("'*•)

The curve parameter t clearly obeys the relation (djdt)xt = 1.
If (re1, ...,xn) are local coordinates in a neighbourhood of p,

3=1 dt
M

m
dt A«o)

(Here and throughout this book, we adopt the summation convention
whereby a repeated index implies summation over all values of that
index.) Thus every tangent vector at a point p can be expressed as
a linear combination of the coordinate derivatives

Conversely, given a linear combination Vj(d/dxj)\p of these operators,
where the Vj are any numbers, consider the curve A(£) defined by
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16 DIFFERENTIAL GEOMETRY [2.2

xj(A(t)) = xj(p) + tVj, for t in some interval [ — e, e]; the tangent vector
to this curve at p is Vj(d/dxj)\p. Thus the tangent vectors at p form
a vector space over R1 spanned by the coordinate derivatives (d/dxj)\p,
where the vector space structure is defined by the relation

(aX+pY)f=a(Xf)+j3(Yf)

which is to hold for all vectors X, Y, numbers a, /? and functions / .
The vectors {d\dx^)p are independent (for if they were not, there
would exist numbers V* such that Vj(d/dxj)\p = 0 with at least one Vj

non-zero; applying this relation to each coordinate xk shows

Vidxk/dxi = Vk = 0,

a contradiction), so the space of all tangent vectors to J( at^>, denoted
by Tp{JK) or simply Tp, is an w-dimensional vector space. This space,
representing the set of all directions at p, is called the tangent vector
space to Jl at p. One may think of a vector VeTp as an arrow at^>,
pointing in the direction of a curve A(t) with tangent vector V at p,
the 'length' of V being determined by the curve parameter t through
the relation V(t) = 1. (As V is an operator, we print it in bold type;
its components Vj, and the number V(f) obtained by V acting on a
function/, are numbers, and so are printed in italics.)

If {Ea} (a = 1 to n) are any set of n vectors at p which are linearly
independent, then any vector YeTp can be written V = VaEa where
the numbers {Va} are the components of V with respect to the basis
{Ea} of vectors Bit p. In particular one can choose the Ea as the coordi-
nate basis (d/dx1)]^, then the components Vi = F(^) = (dxildt)\p are
the derivatives of the coordinate functions x1 in the direction V.

A one-form (covariant vector) co at p is a real valued linear function
on the space Tp of vectors at p. If X is a vector at p, the number into
which co maps X will be written (co, X); then the linearity implies that

<co,aX + /?Y> = a<co,X>+/?<co, Y>

holds for all aJeR1 and X, YeTp. The subspace of Tp defined by
<co, X> = (constant) for a given one-form co, is linear. One may there-
fore think of a one-form at p as a pair of planes in Tp such that if
<co,X> = 0 the arrow X lies in the first plane, and if <co,X> = 1 it
touches the second plane.

Given a basis {Ea} of vectors at p, one can define a unique set of
n one-forms {Ea} by the condition: E i maps any vector X to the
number X1 (the ith component of X with respect to the basis {Ea}).
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2.2] VECTORS AND TENSORS 17

Then in particular, <Ea, E6> = Sa
b. Denning linear combinations of

one-forms by the rules

<aco + /?r),X> = a<co,X>+/?<Y),X>

for any one-forms co, YJ and any a, fieR1, XeTp, one can regard {Ea}
as a basis of one-forms since any one-form co at^> can be expressed as
co = o)i E* where the numbers a)i are defined by o)i= <co, E^). Thus the
set of all one forms at p forms an w-dimensional vector space at p} the
dual space T*p of the tangent space Tp. The basis {Ea} of one-forms is
the dual basis to the basis {Ea} of vectors. For any to e T*p, X G Tp one
can express the number (co, X) in terms of the components cot-, X* of
co, X with respect to dual bases {Ea}, {Ea} by the relations

<co,X> = (fOiE^XiEj} = UtX*.

Each function / on Jt defines a one-form d/ at p by the rule: for
each vector X, ^ X> = Xf.

d/is called the differential of/. If (a;1, ...,xn) are local coordinates, the
set of differentials (dx1, dx2

}..., dxn) at p form the basis of one-forms
dual to the basis (djdx1, djdx2, ..^djdxn) of vectors at p, since

In terms of this basis, the differential d/ of an arbitrary function/ is

g i v e n b y df=(df/dxi)dx\

If d/ is non-zero, the surfaces {/ = constant} are (n— l)-dimensional
manifolds. The subspace of Tp consisting of all vectors X such that
<d/,X> = 0 consists of all vectors tangent to curves lying in the
surface {/ = constant} through p. Thus one may think of d/ as a
normal to the surface {/ = constant} at p. If a 4= 0, a d / will also be
a normal to this surface.

From the space Tp of vectors at p and the space T*p of one-forms
at p, we can form the Cartesian product

Us
r = T*p x T*p x ... x T\ x Tp x Tp x ... x Tp,

r factors s factors

i.e. the ordered set of vectors and one-forms (TQ1, ...,Y)r, Yv..., Ys)
where the Ys and yjs are arbitrary vectors and one-forms respectively.

A tensor of type (r, s) at pis a, function on II* which is linear in each
argument. If T is a tensor of type (r, s) &tp, we write the number into
which T maps the element (TQ1, ..., rf, Yv ..., Ys) of II? as
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18 DIFFERENTIAL GEOMETRY [2.2

Then the linearity implies that, for example,

holds for all aJeR1 and X, Y e Tp.
The space of all such tensors is called the tensor product

_ HP 6h 6&71 6d T* 6h— -fp\5/ . . . v&Mp viz •* pvo^•

r factors s factors

In particular, T\{p) = Tp and T\(p) = T*p.
Addition of tensors of type (r, 5) is defined by the rule: (T -f T') is the

tensor of type (r, s) at p such that for all Yi G Tp,

Similarly, multiplication of a tensor by a scalar oceR1 is defined by the
rule: (aT) is the tensor such that for all Y^JJ,,

With these rules of addition and scalar multiplication, the tensor
product Tr

8(p) is a vector space of dimension nr+s over R1.
Let XieTp(i= 1 to r) and w ^ f ^ (j = 1 to s). Then we shall

denote by Xx ® ... ® Xr ® io1 ® ... ® ws that element of ^JCp) which
maps the element (YJ1, ..., yjr, Yl9..., Yg) of II* into

( ^ X . X ^ X , ) . . . ( ^ X , ) ^ , Y ^ . . . <co«,Y8>.

Similarly, if ReTr
s(p) and S G T ^ ) , we shall denote by R ® S that

element of Tr
s\^(p) which maps the element (yj1, ...,*)r+p, Yl9..., Ys+fl)

of IIJH in^° ^ e number

With the product ®, the tensor spaces at p form an algebra
over JR.

If {EJ, {E«} are dual bases of Tp, T*p respectively, then

{EOi ® ... ® E^ ® E6i ® ... ® E6*}, (aif bj run from 1 to n),

will be a basis for Tr
8(p). An arbitrary tensor T e Tr

s(p) can be expressed
in terms of this basis as

T = Tai~arbi...bsEai ® ... ® E^ ® E&i ® ... ® Eb*
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2.2] VECTORS AND TENSORS 19

where {Tai"-ar
 bl^bg} are the components of T with respect to the dual

bases {Ea}, {Ea} and are given by

Relations in the tensor algebra at p can be expressed in terms of the
components of tensors. Thus

Because of its convenience, we shall usually represent tensor relations
in this way.

If {Ea,} and {Ea} are another pair of dual bases for Tp and T*p, they
can be represented in terms of {Ea} and {Ea} by

Ea, = < V E a (2.2)

where Oa,
a is an n x n non-singular matrix. Similarly

Ea'=Q>a'aE
a (2.3)

where Oa'a is another nxn non-singular matrix. Since {Ea,}, {E°'} are
dual bases,

*>'a, = <E*>',Ea,> =

i.e. Oa,
a, Oa'a are inverse matrices, and Sa

b = O°6, ®
b b-

The components Ta'^"a'fb,x b.& of a tensor T with respect to the
dual bases {Ea,}, {Ea'} are given by

They are related to the components 2T°1*"%1...6, of T with respect to
the bases {Eo}, {Ea} by

6 ^ . (2.4)

The contraction of a tensor T of type (r,s), with components
Tab-"d

ef g with respect to bases {Ea}, {Ea}, on the first contra variant
and first covariant indices is defined to be the tensor G\(T) of type
(r—1,5—1) whose components with respect to the same basis are
Tab"d

af...g, i.e.

CftT) = T«b~d
af_gEb ®...®Ed® Ef® ... ® Jfr.
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20 DIFFERENTIAL GEOMETRY [2.2

If {Ea,}, {Ea} are another pair of dual bases, the contraction C{(T)
defined by them is

C'i(T) = T"'*~>*aTamm(t

.E6® ... ® E d ®
daf...gEb ® ... ® Ed ® Ef ® ... ® E*

so the contraction C\ of a tensor is independent of the basis used in its
definition. Similarly, one could contract T over any pair of contra-
variant and covariant indices. (If we were to contract over two contra-
variant or covariant indices, the resultant tensor would depend on the
basis used.)

The symmetric part of a tensor T of type (2,0) is the tensor $(T)
defined by

for all Y)!,Y)2GT*P. We shall denote the components S(T)ab of S(T) by
T<o6>; then

J^ab) _ JL Sj^ab _|_ Tba\

Similarly, the components of the skew-symmetric part of T will be
denoted by

rpiab] — _ <rpab _ J^baX

In general, the components of the symmetric or antisymmetric part of
a tensor on a given set of covariant or contravariant indices will be
denoted by placing round or square brackets around the indices. Thus

-L\a1...ar)

= —{sum over all permutations of the indices al to a,(Tai..,ar
b'"f)}

and

= — {alternating sum over all permutations of the indices
r' «itoar(Ta i . .

For example,
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2.2] VECTORS AND TENSORS 21

A tensor is symmetric in a given set of contravariant or covariant
indices if it is equal to its symmetrized part on these indices, and is
antisymmetric if it is equal to its antisymmetrized part. Thus, for
example, a tensor T of type (0, 2) is symmetric if Tab = \(Tab + Tba),
(which we can also express in the form: T[ab] = 0).

A particularly important subset of tensors is the set of tensors of
type (0, q) which are antisymmetric on all q positions (so q ^ n); such
a tensor is called a q-form. If A and B are#- and g-forms respectively,
one can define a (p + q)-foTm A A B from them, where A is the skew-
symmetrized tensor product ®; that is, A A B is the tensor of type
(0, p + q) with components determined by

(A *B)a...bc...f = A[a...bBe...f}-

This rule implies ( A A B ) = ( - ) M ( B A A ) . With this product, the
space of forms (i.e. the space of all ^-forms for all p> including one-
forms and defining scalars as zero-forms) constitutes the Grassmann
algebra of forms. If {Ea} is a basis of one-forms, then the forms
E°i A ... A Eap [ai run from 1 to n) are a basis of ̂ -forms, as any p-form
A can be written A = Aa bE

a A ... A E6, where Aa b = A[a b].
So far, we have considered the set of tensors defined at a point on

the manifold. A set of local coordinates {x1} on an open set % in Jt
defines a basis {(#/&£*) I*>} of vectors and a basis {(drc*)|p} of one-forms
at each point p of °ll, and so defines a basis of tensors of type (r, s) at
each point of °tt. Such a basis of tensors will be called a coordinate
basis. A Ck tensor field T of type (r, s) on a set "T <= J( is an assignment
of an element of Tr

s(p) to each point p ei^ such that the components
of T with respect to any coordinate basis defined on an open subset
of i^ are Ck functions.

In general one need not use a coordinate basis of tensors, i.e. given
any basis of vectors {Ea} and dual basis of forms {Ea} on y , there will
not necessarily exist any open set in *V on which there are local
coordinates {xa} such that Ea = d/dxa and Ea = dxa. However if one
does use a coordinate basis, certain specializations will result; in parti-
cular for any function/, the relations Ea(Ebf) = Eb(Eaf) are satisfied,
being equivalent to the relations d2fldxadxb = d2fjdxbdxa. If one
changes from a coordinate basis Ea = djdxa to a coordinate basis
Eo, = djdxa\ applying (2.2), (2.3) to xa, xa> shows that

. dxa . , dxa'
dxa" ^ a dxa'

Clearly a general basis {Ea} can be obtained from a coordinate basis

Cambridge Books Online © Cambridge University Press, 2009https://doi.org/10.1017/CBO9780511524646.003 Published online by Cambridge University Press

https://doi.org/10.1017/CBO9780511524646.003


22 DIFFERENTIAL GEOMETRY [2.2

{d/dx1} by giving the functions EJ which are the components of the Ea

with respect to the basis {d/dx1}) then (2.2) takes the form Ea = EJd/dz*
and (2.3) takes the form Ea = Ea

idxi, where the matrix Ea
i is dual to

the matrix EJ.

2.3 Maps of manifolds

In this section we define, via the general concept of a Ck manifold map,
the concepts of 'imbedding', 'immersion', and of associated tensor
maps, the first two being useful later in the study of submanifolds, and
the last playing an important role in studying the behaviour of
families of curves as well as in studying symmetry properties of
manifolds.

A map <j) from a Ck ̂ -dimensional manifold^ to a Ck> nr-dimensional
manifold «•#' is said to be a Cr map (r ^ k, r < k') if, for any local
coordinate systems in *J( and «•#', the coordinates of the image point
(j){p) in Jtf are Cr functions of the coordinates of p in Jt\ As the map
will in general be many-one rather than one-one (e.g. it cannot be
one-one if n > nf), it will in general not have an inverse; and if a Cr

map does have an inverse, this inverse will in general not be Cr (e.g.
if (j) is the map R1->R1 given by x^-xz, then 0"1 is not differentiable at
the point x = 0).

If/is a function on JK'', the mapping (j> defines the function <j> */on JK
as the function whose value at the point p of *JK is the value of/ at

#P),i.e. <f>*f(p)=f(<P(p))- (2.5)
Thus when (j> maps points from <Jl to «^' , <fi* maps functions linearly
from J(' to Jt'.

If A(t) is a curve through the point peJK, then the image curve
0(A(£)) in Jt' passes through the point <fi(p). If r ^ 1, the tangent
vector to this curve at <j)(p) will be denoted by (frxid/dt)^^); one can
regard it as the image, under the map <f>, of the vector (d/dt)x\p. Clearly
<p* is a linear map of Tp{JK) into T^^UK'). From (2.5) and the defini-
tion (2.1) of a vector as a directional derivative, the vector map <fi%
can be characterized by the relation: for each Cr (r ̂  1) function/at
(j>(p) and vector X at p,

x&*f)\p = t*xif)W- (2-6)
Using the vector mapping <j)% from ^JK to «.#', we can if r ^ 1 define

a linear one-form mapping <fi* from T*^p)(^
f) to T*V{J() by the

condition: vector-one-form contractions are to be preserved under the
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2.3] MAPS OF MANIFOLDS 23

maps. Then the one-form AeT*^p) is mapped into the one-form
<f>*AeT*p where, for arbitrary vectors XeTpi

A consequence of this is that

). (2.7)

The maps (j>* and 0* can be extended to maps of contravariant
tensors from JK to JC and covariant tensors from Jt' to J( respec-
tively, by the rules $*\ TeTl(p)-><f>*TeT^((f){p)) where for any

and 0*: TeTo
s(<f>(p))-*<f>*TeT°s(p),

where for any X^ e Tp,

t*T(Xlt...,X,)\p = T(^Xlt...,^Xs)\^p).

When r ^ 1, the Cr map <fi from ^ to ^ ' is said to be of rank s at p
if the dimension of (j)^{Tp(JK)) is s. It is said to be injective at p if 5 = n
(and so 7i ̂  w') at p\ then no vector in Tp is mapped to zero by <f>*. It
is said to be surjective if s = n' (so n ^ rz/).

A Cr map ^ (r ^ 0) is said to be an immersion if it and its inverse
are Cr maps, i.e. if for each point peJP there is a neighbourhood
°tt of p in Jt such that the inverse (j)'1 restricted to ^>{°U) is also
a Cr map. This implies n ^ nf. By the implicit function theorem
(Spivak (1965),p. 41), whenr ^ 1, (j) will be an immersion if and only if
it is injective at every point pe.stf\ then 0^ is an isomorphism of Tp

into the image (fi*(Tp) c= T^p). The image ^(dl) is then said to be an
n-dimensional immersed submanifold in ̂ ' . This submanifold may
intersect itself, i.e. <f> may not be a one-one map from ^ to <f>(*df)
although it is one-one when restricted to a sufficiently small neighbour-
hood of Jt'. An immersion is said to be an imbedding if it is a homeo-
morphism onto its image in the induced topology. Thus an imbedding
is a one-one immersion; however not all one-one immersions are
imbeddings, cf. figure 6. A map <j) is said to be a proper map if the
inverse image (j)~1( JT) of any compact set Jf* <= JK' is compact. It can
be shown that a proper one-one immersion is an imbedding. The
image (^{Jt) ofJK under an imbedding <fi is said to be an n-dimensional
imbedded submanifold oiJC.

The map <fi from J( to Jl' is said to be a Cr diffeomorphism if it is
a one-one Cr map and the inverse 0"1 is a Cr map from Jl1 to Jt'. In
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this case, n = nf, and (f> is both injective and surjective if r ^ 1; con-
versely, the implicit function theorem shows that if 0* is both injective
and surjective at p, then there is an open neighbourhood °ll of p such
that (j)\ °U-> <f>{°U) is a diffeomorphism. Thus ̂  is a local diffeomorphism
near p if 0* is an isomorphism from Tp to T7^).

FIGURE 6. A one-one immersion of Rl in R2 which is not an imbedding, obtained
by joining smoothly part of the curve y = sin (I/a;) to the curve

{(y,0); -co<y< 1}.

When the map <j> is a Cr (r ^ 1) diffeomorphism, 0* maps TV(J() to
T^Jt') and (0-1)* maps T%(uT) to T*^)^')- Thus we can define
a map $$* of Tj(p) to Tj(?i(p)) for any r, 5, by

for any X^eT^, y)leT*p. This map of tensors of type (r, 5) on ^ to
tensors of type (r, 5) on Jt' preserves symmetries and relations in the
tensor algebra; e.g. the contraction of 0*T is equal to 0* (the con-
traction of T).

2.4 Exterior differentiation and the Lie derivative

We shall study three differential operators on manifolds, the first two
being defined purely by the manifold structure while the third is
defined (see § 2.5) by placing extra structure on the manifold.
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2.4] EXTERIOR DIFFERENTIATION 25

The exterior differentiation operator d maps r-form fields linearly to
(r-t-l)-form fields. Acting on a zero-form field (i.e. a function) / , it
gives the one-form field d/defined by (cf. §2.2)

<d/, X> = Xf for all vector fields X (2.8)

and acting on the r-form field

A = Aab ddxaAdxbA... Adxd

it gives the (r+ l)-form field dA defined by

dA = dAab_d A dxa A dxb A ... A dxd. (2.9)

To show that this (r + l)-form field is independent of the coordinates
{xa} used in its definition, consider another set of coordinates {xa'}.
T h e n A = Aa.v_#dx*' A da:6' A ... A dxd\

where the components Aa,b, d, are given by

dxa dxb dxd

A

Thus the (r + l)-form dA defined by these coordinates is

dA = dAa,b, ^d'dxa' A dxb' A ... A dxd'

dxa dxb dxd . A

d2xa dxb dxd

= dA^ d A dx" A da;6 A ... A dxd

as d2xa/dxa' dx? is symmetric in a' and e', but da '̂ A da:a' is skew. Note
that this definition only works for forms', it would not be independent
of the coordinates used if the A product were replaced by a tensor
product. Using the relation d(fg) = gdf+fdg, which holds for arbi-
trary functions / , g} it follows that for any r-form A and form B,
d(A A B) = dA A B + ( - )r A A dB. Since (2.8) implies that the local
coordinate expression for d/ is d / = (df/dx^dx1, it follows that
d(d/) = {d^fjdx1 dx*) dxl A da;'' = 0, as the first term is symmetric and
the second skew-symmetric. Similarly it follows from (2.9) that

d(dA) = 0
holds for any r-form field A.
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The operator d commutes with manifold maps, in the sense: if
<t>\J(->Jil' is a Cr (r > 2) map and A is a Ck (k > 2) form field on Jt\
then (by (2.7))

(which is equivalent to the chain rule for partial derivatives).
The operator d occurs naturally in the general form of Stokes*

theorem on a manifold. We first define integration of n-forms: let Jl
be a compact, orientable n-dimensional manifold with boundary d*4l
and let {/a} be a partition of unity for a finite oriented atlas {^a, <fia}.
Then if A is an n-form field on ̂ , the integral of A over Jl is defined as

f A = (n!)-*2 \ (2.10)

where A12 n are the components of A with respect to the local co-
ordinates in the coordinate neighbourhood ^ a , and the integrals on
the right-hand side are ordinary multiple integrals over open sets
<fia(Wa) of Rn. Thus integration of forms on J( is defined by mapping
the form, by local coordinates, into Rn and performing standard
multiple integrals there, the existence of the partition of unity
ensuring the global validity of this operation.

The integral (2.10) is well-defined, since if one chose another atlas
{y^, \jr^ and partition of unity {g^} for this atlas, one would obtain
the integral

!)"1 S f 9fiArr...n,da1'dx*...dxn\
fiJ

where x1' are the corresponding local coordinates. Comparing these
two quantities in the overlap (tfta f] i^) of coordinate neighbourhoods
belonging to two atlases, the first expression can be written

and the second can be written

Comparing the transformation laws for the form A and the multiple

integrals in Rn, these expressions are equal at each point, so I A is

independent of the atlas and partition of unity chosen.
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Similarly, one can show that this integral is invariant under
diffeomorphisms: - r

0*A= A
lot* iaf

if <f> is a Cr diffeomorphism (r ^ 1) from Jl to ^ ' .
Using the operator d, the generalized Stokes' theorem can now be

written in the form: if B is an (n— l)-form field on Jl, then

f
Jd

= dB,

which can be verified (see e.g. Spivak (1965)) from the definitions
above; it is essentially a general form of the fundamental theorem of
calculus. To perform the integral on the left, one has to define an
orientation on the boundary dJl oiJK. This is done as follows: if °Ua is
a coordinate neighbourhood from the oriented atlas of *Jl such that
°Ua intersects dJK, then from the definition of dJK> <f>a(Wa 0 #uf) lies in
the plane x1 = 0 in JR* and <f>a(% 0 J() lies in the lower half x1 < 0.
The coordinates (x2, a;3,..., xn) are then oriented coordinates in the
neighbourhood <%a n dJl of dJt. I t may be verified that this gives an
oriented atlas on dJt.

The other type of differentiation defined naturally by the manifold
structure is Lie differentiation. Consider any Cr (r ^ 1) vector field X
on Jl. By the fundamental theorem for systems of ordinary differential
equations (Burkill (1956)) there is a unique maximal curve A(£) through
each point jpoiJK such that A(0) = p and whose tangent vector at the
point \(t) is the vector X|A(/). If{xi} are local coordinates, so that the
curve A(t) has coordinates xi(t) and the vector X has components Xi

9

then this curve is locally a solution of the set of differential equations

This curve is called the integral curve of X with initial pointy. For each
point q of ̂ , there is an open neighbourhood tfl of q and an e > 0 such
that X defines a family of diffeomorphisms (f>t: °U->Jl whenever
\t\ < e, obtained by taking each pointy in ^ a parameter distance t
along the integral curves of X (in fact, the <f>t form a one-parameter
local group of diffeomorphisms, as <j>t+8 = <j>t o <f>8 = <j)3 o <f>t for
\t\, \s\, \t + s\ < e, so <j)_t = ((fit)"1 and <j>Q is the identity). This
diffeomorphism maps each tensor field T at p of type (r,s) into

The Lie derivative LXT of a tensor field T with respect to X is
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defined to be minus the derivative with respect to t of this family of
tensor fields, evaluated at t = 0, i.e.

From the properties of 0*, it follows that
(1) Lx preserves tensor type, i.e. if T is a tensor field of type (r,s),

then LXT is also a tensor field of type (r, s);
(2) i j maps tensors linearly and preserves contractions.
As in ordinary calculus, one can prove Leibniz' rule:
(3) For arbitrary tensors S, T, LX(S ® T) = Lx S ® T + S ® Lx T.
Direct from the definitions:
(4) Lxf = Xf, where/is any function.
Under the map <fit, the point q = </>^t(p) is mapped into p. Therefore

<f>t* is a map from Tq to Tp. Thus, by (2.6),

If {x1} are local coordinates in a neighbourhood of p, the coordinate
components of (f>t* Y at p are

therefore
d*\ dxHq) ; t _

(L.YY = - 1 (^ YY\M = g ^ - | g YK (2.11)

One can rewrite this in the form

(LxY)f=X(Yf)-Y(Xf)

for all C2 functions/. We shall sometimes denote LXY by [X, Y], i.e.

If the Lie derivative of two vector fields X, Y vanishes, the vector
fields are said to commute. In this case, if one starts at a point p, goes
a parameter distance t along the integral curves of X and then a
parameter distance s along the integral curves of Y, one arrives at the
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same point as if one first went a distance s along the integral curves
of Y and then a parameter distance t along the integral curves of X
(see figure 7). Thus the set of all points which can be reached along
integral curves of X and Y from a given point p will then form an
immersed two-dimensional submanifold through p.

= <fnx{<t>Mp))

FIGURE 7. The transformations generated by commuting vector fields X, Y
move a point p to points <f>tx(P)> <f>8Y(P) respectively. By successive applications
of these transformations, p is moved to the points of a two-surface.

The components of the Lie derivative of a one-form to may be found
by contracting the relation

Lx(io ® Y) = Lxto ® Y + co ® ixY

(Lie derivative property (3)) to obtain

ZJS<«, Y> = <Zxw, Y> + <u>, Lx Y>

(by property (2) of Lie derivatives), where X, Y are arbitrary C1

vector fields, and then choosing Y as a basis vector E .̂ One finds the
coordinate components (on choosing E^ = djdx1) to be

because (2.11) implies

Similarly, one can find the components of the Lie derivative of any
Cr (r ^ 1) tensor field T of type (r,s) by using Leibniz' rule on
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and then contracting on all positions. One finds the coordinate com-
ponents to be

- (all upper indices) + Tab-d
if g dXijd3f + (all lower indices).

(2.12)

Because of (2.7), any Lie derivative commutes with d, i.e. for any
-form field c*>, , / r x T , , x

' d(ixco) = Lj[dto).
From these formulae, as well as from the geometrical interpretation,

it follows that the Lie derivative -£xT|p of a tensor field T of type
(r, s) depends not only on the direction of the vector field X at the
point p, but also on the direction of X at neighbouring points. Thus
the two differential operators defined by the manifold structure are
too limited to serve as the generalization of the concept of a partial
derivative one needs in order to set up field equations for physical
quantities on the manifold; d operates only on forms, while the
ordinary partial derivative is a directional derivative depending only
on a direction at the point in question, unlike the Lie derivative. One
obtains such a generalized derivative, the covariant derivative, by
introducing extra structure on the manifold. We do this in the next
section.

2.5 Covariant differentiation and the curvature tensor
The extra structure we introduce is a (affine) connection on ^tf.
A connection V at a point p of Jt is a rule which assigns to each vector
field X at p a differential operator Vx which maps an arbitrary
Cr (r ̂  1) vector field Y into a vector field VXY, where:

(1) VXY is a tensor in the argument X, i.e. for any functions/, g,
and C1 vector fields X, Y, Z,

(this is equivalent to the requirement that the derivative Vx at p
depends only on the direction of X at p);

(2) Vx Y is linear in Y, i.e. for any C1 vector fields Y, Z and a, fie B\

Vx(aY+/?Z) = aVxY+/?VxZ;

(3) for any C1 function/and C1 vector field Y,

= X(/)Y+/VXY.
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Then VXY is the covariant derivative (with respect to V) of Y in the
direction X at^>. By (1), we can define VY, the covariant derivative of Y,
as that tensor field of type (1,1) which, when contracted with X,
produces the vector VXY. Then we have

A Cr connection V on a Ck manifold ^ (k ^ r + 2) is a rule which
assigns a connection V to each point such that if Y is a Cr+1 vector field
on Jt', then VY is a Cr tensor field.

Given any Cr+1 vector basis {Ea} and dual one-form basis {Ea} on
a neighbourhood °U, we shall write the components of VY as Ya. b, so

VY= Ya.bE
b®Ea.

The connection is determined on °tt by n* Cr functions Ya
bc defined by

Y\c = <E«, VE6Ec>oVEc = Y

For any C1 vector field Y,

VY = V(7CEC) = d7c®Ec + 7c

Thus the components of VY with respect to coordinate bases {d/dxa},
{dxb} are ya^ = dYajex

b+ra
bc Yc.

The transformation properties of the functions Ta
bc are determined by

connection properties (1), (2), (3); for

if Ea, = <S>a-
a Ert, E

a' = <!>a'a E
a. One can rewrite this as

In particular, if the bases are coordinate bases defined by coordinates
{xa}, {xa>}, the transformation law is

tot* I dh« d**d* \
b'c' " dxa \dxb' dx°'+ dxb> dx°' bc) '

Because of the term Eb,{Q}c,
a), the Ta

bc do not transform as the compo-
nents of a tensor. However if VY and VY are covariant derivatives
obtained from two different connections, then

VY-VY = (Ta
bc-T

a
bc) 7cE6®Ea

will be a tensor. Thus the difference terms (Fa
6c— Ta

bc) will be the
components of a tensor.
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The definition of a covariant derivative can be extended to any
Cr tensor field if r ^ 1 by the rules (cf. the Lie derivative rules):

(1) if T is a Cr tensor field of type (q, s), then VT is a C'-1 tensor field
of type (g, 5+1);

(2) V is linear and commutes with contractions;
(3) for arbitrary tensor fields S, T, Liebniz' rule holds, i.e.

V(S0T) = VS®T + S®VT;

(4) V/ = d/for any function/.
We write the components of VT as (VEh

T)a'"de...g = Ta"mde...o;h- A s
a consequence of (2) and (3),

VE6E< = - I \ a E « ,

where {Ea} is the dual basis to {Ea}, and methods similar to those used
in deriving (2.12) show that the coordinate components of VT are

rpab...d %rpab...d 1^4 J . F« Tjb...d
1 ef...g;h ~ C1 ef...g\Cx + 1 hi1 ef...g

+ (all upper indices) - Tj
heT

ab--d
jf g- (all lower indices). (2.13)

As a particular example, the unit tensor Ea®Ea , which has compo-
nents 8a

b, has vanishing covariant derivative, and so the generalized
unit tensors with components S^S"*^... Sa\s, # [%/%2 . . . Sap\p

(p ^ n) also have vanishing covariant derivatives.
If T is a Cr (r ̂  1) tensor field defined along a Cr curve A(t), one can

define DT/dt, the covariant derivative of T along A(t), as Vd/M T where T
is any Cr tensor field extending T onto an open neighbourhood of A.
DT/dt is a C1"'1 tensor field defined along A(t), and is independent of
the extension T. In terms of components, if X is the tangent vector
to A(0, then DTa-d

eJdt = Ta-d
e g.hX

h. In particular one can choose
local coordinates so that A(t) has the coordinates xa(t), Xa = dxa/dt,
and then for a vector field Y

D Ya/dt = d Ya/dt + T\c Yc dxbldt. (2.14)

The tensor T is said to beparallelly transported along A if DT/dt = 0.
Given a curve A(t) with endpoints p, q, the theory of solutions of
ordinary differential equations shows that if the connection V is at
least C1" one obtains a unique tensor at q by parallelly transferring
any given tensor from p along A. Thus parallel transfer along A is a
linear map from Tr

s(p) to Tr
s(q) which preserves all tensor products and

tensor contractions, so in particular if one parallelly transfers a basis
of vectors along a given curve from p to q, this determines an iso-
morphism of Tp to Tq. (If there are self-intersections in the curve,
p and q could be the same point.)
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A particular case is obtained by considering the covariant deriva-
tive of the tangent vector itself along A. The curve A(t) is said to be
a geodesic curve if D

v x

is parallel to (d/dt)x, i.e. if there is a function/ (perhaps zero) such that
Xa

;bX
b = fXa. For such a curve, one can find a new parameter v(t)

along the curve such that

¥(P\ =0;
such a parameter is called an affine parameter. The associated tangent
vector V = (d/8v)^ is parallel to X but has its scale determined by
V(v) = 1; it obeys the equations

V«.bV
b = 0 o ^ - + r « 6 c ^ - ^ - = 0, (2.15)

>0 dt;2 6c dv dv v '
the second expression being the local coordinate expression obtainable
from (2.14) applied to the vector V. The affine parameter of a geodesic
curve is determined up to an additive and a multiplicative constant,
i.e. up to transformations v' = av + b where a, b are constants; the
freedom of choice of b corresponds to the freedom to choose a new
initial point A(0), the freedom of choice in a corresponding to the
freedom to renormalize the vector V by a constant scale factor,
V = (I/a) V. The curve parametrized by any of these affine parameters
is said to be a geodesic.

Given a Cr (r ^ 0) connection, the standard existence theorems for
ordinary differential equations applied to (2.15) show that for any
pointy of J( and any vector Xp at^>, there exists a maximal geodesic
Ax(v) in Jt with starting point p and initial direction Xp, i.e. such that
Ax(0) = p and (8/dv)x\v=0 = Xp. If/- ̂  1 —, this geodesic is unique and
depends continuously onp and Xp. If r ^ 1, it depends differentiably
on p and Xp. This means that if r ^ 1, one can define a Cr map exp:
Tp -> Jl', where for each X G ^ , exp (X) is the point in Ji a unit para-
meter distance along the geodesic Ax from p. This map may not be
defined for all Xe Tp, since the geodesic Ax(v) may not be defined for
all v. If v does take all values, the geodesic A(v) will be said to be a
complete geodesic. The manifold J( is said to be geodesically complete
if all geodesies on Jt are complete, that is if exp is defined on all Tp for
every point p oiJi.

Whether *J( is complete or not, the map expp is of rank n &tp. There-
fore by the implicit function theorem (Spivak (1965)) there exists an
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open neighbourhood JV^ of the origin in Tp and an open neighbourhood
Jfp of p in dl such that the map exp is a Cr diffeomorphism of *V0

onto Jfv. Such a neighbourhood JV^ is called a normal neighbourhood
of p. Further, one can choose Jfv to be convex, i.e. to be such that any
point q of Jfv can be joined to any other point r in Jfp by a unique
geodesic starting at q and totally contained in Jfp. Within a convex
normal neighbourhood Jf one can define coordinates (a;1, ...,xn) by
choosing any point q EJV, choosing a basis {Ea} of Tq, and defining the
coordinates of the point r \HJV by the relation r = exp (xaEa) (i.e. one
assigns to r the coordinates, with respect to the basis {Ea}, of the point
exp-i(r) in Tq.) Then (djdx% = E, and (by (2.15)) T\jk)\q = 0. Such
coordinates will be called normal coordinates based on q. The existence
of normal neighbourhoods has been used by Geroch (1968 c) to prove
that a connected C3 Hausdorff manifold Jt with a C1 connection has
a countable basis. Thus one may infer the property of paracompactness
of a C3 manifold from the existence of a C1 connection on the manifold.
The c normal' local behaviour of geodesies in these neighbourhoods is
in contrast to the behaviour of geodesies in the large in a general space,
where on the one hand two arbitrary points cannot in general be
joined by any geodesic, and on the other hand some of the geodesies
through one point may converge to 'focus' at some other point. We
shall later encounter examples of both types of behaviour.

Given a Cr connection V, one can define a Cr~x tensor field T of
type (1, 2) by the relation

) = V x Y-V y X-[X,Y] ,

where X, Y are arbitrary Cr vector fields. This tensor is called the
torsion tensor. Using a coordinate basis, its components are

We shall deal only with torsion-free connections, i.e. we shall assume
T = 0. In this case, the coordinate components of the connection obey
Tijk = Ti

kj> so such a connection is often called a symmetric connec-
tion. A connection is torsion-free if and only if f;ii = / ; ^ for all func-
tions / . From the geodesic equation (2.15) it follows that a torsion-free
connection is completely determined by a knowledge of the geodesies
on -#.

When the torsion vanishes, the covariant derivatives of arbitrary C1

vector fields X, Y are related to their Lie derivative by

[X,Y] = V x Y-V Y Xo(ZxY)"= Ya
;bX

b-Xa
;bY

b, (2.16)
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and for any C1 tensor field T of type (r, s) one finds

IT. T\ab...d — rpab...d Yh__Wjb...d Ya
K-^X1 ) ef...g — -1 ef...g;h^ J ef...g^ ;j

- (all upper indices) + Tab~-d
jf ..gX>.e + (all lower indices). (2.17)

One can also easily verify that the exterior derivative is related to the
covariant derivative by

dA = Aa_c;ddxd Adxa A ... Adx?<>(dA)a_cd = (-)pA[a_c;d],

where A is any p-form. Thus equations involving the exterior deriva-
tive or Lie derivative can always be expressed in terms of the co-
variant derivative. However, because of their definitions, the Lie
derivative and exterior derivative are independent of the connection.

If one starts from a given point p and parallelly transfers a vector
Xp along a curve y that ends at p again, one will obtain a vector X'p
which is in general different from Xp; if one chooses a different curve
y', the new vector one obtains at p will in general be different from
Xp and X'p. This non-integrability of parallel transfer corresponds to
the fact that the covariant derivatives do not generally commute. The
Riemann (curvature) tensor gives a measure of this non-commutation.
Given C+1 vector fields X, Y, Z, a C^1 vector field R(X, Y) Z is defined
by a Cr connection V by

R(X, Y)Z = VX(VYZ)-Vy(VxZ)-VK,Y]Z. (2.18)

Then R(X, Y) Z is linear in X, Y, Z and it may be verified that the
value of R(X, Y) Z at̂ > depends only on the values of X, Y, Z at#, i.e.
it is a C*-1 tensor field of type (3,1). To write (2.18) in component
form, we define the second covariant derivative VVZ of the vector Z
as the covariant derivative V(VZ) of VZ; it has components

z«;bc = (za
;b);c.

Then (2.18) can be written

R\cdX°YdZb = {Za.dY
d).cX°-(Za.dX

d).cY°

-Za.d(Y
d.cX°-Xd.cY°)

= (Z"ide-Z°;ea)X°Y*, • '

where the Riemann tensor components Ba
bcd with respect to dual

bases {EJ, {Ea} are defined by Ra
bcd = <E«, R(EC, Ed) E6>. As X, Y are

arbitrary vectors, Z°;dc-Z
a

;cd = R\cdZ*> (2.19)

expresses the non-commutation of second covariant derivatives of Z
in terms of the Riemann tensor.
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Since

Vx(yj®VyZ) = VxY)®VyZ+Y)®VxVyZ

=> <>)> VXVYZ> = X«y,, V Y Z » - <Vxrj, VYZ>

holds for any C2 one-form field YJ and vector fields X, Y, Z, (2.18)
implies

<E«, R(EC, Ed) Eb) = Ee«JEf, VB, E 6 » - Ed«E°, VEc E 6 »

- <VEc E», VEd E6> + <V* E«, VEc E6> - <E«, V ^ , E6>.

Choosing the bases as coordinate bases, one finds the expression

R\ca = dValte? ~ W"Jdxd + T"cfTfdh - T"dfTtch (2.20)

for the coordinate components of the Riemann tensor, in terms of the
coordinate components of the connection.

It can be verified from these definitions that in addition to the

symmetry ^ , = - ^ ^ - ^ ( 0 = 0 (2.21a)

the curvature tensor has the symmetry

# W ] = 0 o R\ca + Raabc + Racdb = 0. (2.216)
Similarly the first covariant derivatives of the Riemann tensor satisfy
Blanches identities

-»We] = OoK\cd;e + Ka
bec;d + Ka

bde;c = 0. (2.22)
It now turns out that parallel transfer of an arbitrary vector along

an arbitrary closed curve is locally integrable (i.e. X'p is necessarily the
same as Xp for each^? eJK) only ifRa

bcd = 0 at all points of J(\ in this
case we say that the connection is flat.

By contracting the curvature tensor, one can define the Ricci tensor
as the tensor of type (0,2) with components

RM = R\aa-

2.6 The metric
A metric tensor g at a point p eJi is a symmetric tensor of type (0, 2)
at p, so a Cr metric on J( is a Cr symmetric tensor field g. The metric g
at p assigns a 'magnitude5 (|^(X,X)|)i to each vector X G T P and
defines the ' cos angle'

between any vectors X, Y e Tp such that g(X, X). g(Y, Y) =# 0; vectors
X, Y will be said to be orthogonal if ^(X, Y) = 0.
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The components of g with respect to a basis {Eo} are

Eb) = g(Eb,Ea),

i.e. the components are simply the scalar products of the basis vectors
Ea. If a coordinate basis {d/dxa} is used, then

& = gab&xa®dxb' (2-23)

Tangent space magnitudes defined by the metric are related to
magnitudes on the manifold by the definition: the path length between
points p = y(a) and q = y(b) along a 0°, piecewise C1 curve y(t) with
tangent vector djdt such that g(d/dt, djdt) has the same sign at all points
along y(t), is the quantity

L= [\\g{djdtydjdt)\)ldt. (2.24)
Ja

We may symbolically express the relations (2.23), (2.24) in the form

ds2 = g{j dxl dxj

used in classical textbooks to represent the length of the' infinitesimal'
arc determined by the coordinate displacement xi->xi + dxi.

The metric is said to be non-degenerate at p if there is no non-zero
vector XeTp such that<7(X, Y) = 0 for all vectors YeTp. In terms of
components, the metric is non-degenerate if the matrix (gab) of com-
ponents of g is non-singular. We shall from now on always assume the
metric tensor is non-degenerate. Then we can define a unique sym-
metric tensor of type (2, 0) with components gab with respect to the
basis {EJ dual to the basis {Ea}, by the relations

ga%c = K,

i.e. the matrix (gab) of components is the inverse of the matrix (gab).
It follows that the matrix (gab) is also non-singular, so the tensors
9ab> 9ab c a n be used to give an isomorphism between any covariant
tensor argument and any contra variant argument, or to * raise and
lower indices'. Thus, if Xa are the components of a contravariant
vector, then Xa are the components of a uniquely associated covariant
vector, where Xa = gabX

b, Xa = gabXb; similarly, to a tensor Tab of
type (0, 2) we can associate unique tensors Ta

b = gacTcb, Tb = gbcTac,
rpab __ gacgbdTcd. We shall in general regard such associated covariant
and contravariant tensors as representations of the same geometric
object (so in particular, gab, Sa

banid gab maybe thought of as representa-
tions (with respect to dual bases) of the same geometric object g),
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although in some cases where we have more than one metric we shall
have to distinguish carefully which metric is used to raise or lower
indices.

The signature of g at p is the number of positive eigenvalues of the
matrix (gab) at p, minus the number of negative ones. If g is non-
degenerate and continuous, the signature will be constant o n . / ; by
suitable choice of the basis {Ea}, the metric components can at any
point p be brought to the form

\{n+s) terms \{n — s) terms
where s is the signature of g and n is the dimension of Jt. In this case
the basis vectors {Ea} form an orthonormal set at p, i.e. each is a unit
vector orthogonal to every other basis vector.

A metric whose signature is n is called a, positive definite metric; for
such a metric, g(X, X) = 0 => X = 0, and the canonical form is

n terms
A positive definite metric is a ' metric' on the space, in the topological
sense of the word.

A metric whose signature is (n— 2) is called a Lorentz metric; the
canonical form is

l , . . . , + l , - 1 ) .

{n-1) terms
With a Lorentz metric on Jt> the non-zero vectors at^p can be divided
into three classes: a vector X e ^ , being said to be timelike, null, or
spacelike according to whether g(X, X) is negative, zero, or positive,
respectively. The null vectors form a double cone in Tp which separates
the timelike from the spacelike vectors (see figure 8). If X, Y are any
two non-spacelike (i.e. timelike or null) vectors in the same half of the
light cone at p, then g(X, Y) ^ 0, and equality can only hold if X and
Y are parallel null vectors (i.e. if X = aY, g(X,X) = 0).

Any paracompact Cr manifold admits a Cr~1 positive definite metric
(that is, one defined on the whole of J(). To see this, let {/a} be a parti-
tion of unity for a locally finite atlas {^a, <f>a}. Then one can define g by

where < , > is the natural scalar product in Euclidean space Bn;
thus one uses the atlas to determine the metric by mapping the
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Null cone

vectors lie
the null cones

Timelike vectors ^ ^ x V J f y^ Spacelike vectors lie
lie inside the —--"""'̂  u / s^*-***^*^*^^ outside the null cones
null cones ~ ^ ^

Hyperplane spanned by

Null cone

FIGURE 8. The null cones defined by a Lorentz metric.

Euclidean metric into Jt'. This is clearly not invariant under change of
atlas, so there are many such positive definite metrics on JC.

In contrast to this, a Cr paracompact manifold admits a Cr~*
Lorentz metric if and only if it admits a non-vanishing C1*"1 line
element field; by a line element field is meant an assignment of a pair
of equal and opposite vectors (X, — X) at each pointy of «^, i.e. a line
element field is like a vector field but with undetermined sign. To see
this, let g be a C7*"1 positive definite metric defined on the manifold.
Then one can define a Lorentz metric g by

a(Y 7\ - fi(Y 7\<7(Y, Z) - $(Y, Z) -

at each point p, where X is one of the pair (X, — X) at p. (Note that as
X appears an even number of times, it does not matter whether X or
- X is chosen.) Then gr(X,X) = -£(X,X), and if Y, Z are orthogonal
to X with respect to g, they are also orthogonal to X with respect to
g and g(Y,Z) = $(Y, Z). Thus an orthonormal basis for § is also an
orthonormal basis for g. As g is not unique, there are in fact many
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Lorentz metrics on *Jt if there is one. Conversely, if g is a given
Lorentz metric, consider the equation gabX

b = A§abX
b where g is any

positive definite metric. This will have one negative and (n— 1)
positive eigenvalues. Thus the eigenvector field X corresponding to
the negative eigenvalue will locally be a vector field determined up to
a sign and a normalizing factor; one can normalize it by gab X

aXb = — 1,
so defining a line element field on Jt'.

In fact, any non-compact manifold admits a line element field,
while a compact manifold does so if and only if its Euler invariant is
zero (e.g. the torus T2 does, but the sphere S2 does not, admit a line
element field). It will later turn out that a manifold can be a reasonable
model of space-time only if it is non-compact, so there will exist many
Lorentz metrics on J('.

So far, the metric tensor and connection have been introduced as
separate structures on J(. However given a metric g on e^, there is
a unique torsion-free connection on J( defined by the condition: the
covariant derivative of g is zero, i.e.

9ab;c = 0. (2.25)

With this connection, parallel transfer of vectors preserves scalar
products defined by g, so in particular magnitudes of vectors are
invariant. For example if d/dt is the tangent vector to a geodesic, then
g(d/dt, djdt) is constant along the geodesic.

From (2.25) it follows that

X(g(Y,Z)) = Vx(jr(Y,Z)) = VX<7(Y,Z) + <7(VXY,Z)

+ g(Y, Vx Z) = <7(VX Y, Z) + g(Y, Vx Z)

holds for arbitrary C1 vector fields X, Y, Z. Adding the similar expres-
sion for F(gr(Z,X)) and subtracting that for Z(g(KtY)) shows

g(Z, VXY) = i{-Z(sr(X,Y))+ Y(g(Z,X)) + X(g(Y,Z))

+ g(Z, [X, Y]) + g(Y, [Z, X]) - g(K, [Y, Z])}.

Choosing X, Y, Z as basis vectors, one obtains the connection
components ^

in terms of the derivatives of the metric components gab = g(Ea, E6),
and the Lie derivatives of the basis vectors. In particular, on using
a coordinate basis these Lie derivatives vanish, so one obtains the
usual Christoffel relations

ra6c = mrJ**+d9aJW - *WM (2-26)
for the coordinate components of the connection.
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From now on we will assume that the connection on *J( is the unique
Cr~x torsion-free connection determined by the Cr metric g. Using this
connection, one can define normal coordinates (§2.5) in a neighbour-
hood of a point q using an orthonormal basis of vectors at q. In these
coordinates the components gab of g at q will be ± Sab and the compo-
nents Ta

bc of the connection will vanish at q. By * normal coordinates',
we shall in future mean normal coordinates defined using an ortho-
normal basis.

The Riemann tensor of the connection defined by the metric is a
Cr~2 tensor with the symmetry

Parted = 0oRabcd = -Rbacd (2.27a)

in addition to the symmetries (2.21); as a consequence of (2.21) and
(2.27a), the Riemann tensor is also symmetric in the pairs of indices
{ab}, {cd}, i.e. R

•Kabcd — ncdab' \L'L ' °)

This implies that the Ricci tensor is symmetric:

Rab = Rba. (2.27c)

The curvature scalar R is the contraction of the Ricci tensor:

R = R\ = Ba
badg

bd.

With these symmetries, there are -^n2(n2— 1) algebraically inde-
pendent components ofRabcdi where n is the dimension of M; \n{n -f 1)
of them can be represented by the components of the Ricci tensor. If
n = 1, Rabcd = 0; if 7i = 2 there is one independent component of
Rabcd, which is essentially the function R. If n = 3, the Ricci tensor
completely determines the curvature tensor; if n > 3, the remaining
components of the curvature tensor can be represented by the Weyl
tensor Cabcd, defined by

_
As the last two terms on the right-hand side have the curvature tensor
symmetries (2.21), (2.27), it follows that Cabcd also has these sym-
metries. One can easily verify that in addition,

bad = 0,

i.e. one can think of the Weyl tensor as that part of the curvature
tensor such that all contractions vanish.
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An alternative characterization of the Weyl tensor is given by the
fact that it is a conformal invariant. The metrics g and £ are said to
be conformal if ^

for some non-zero suitably differentiable function Q. Then for any
vectors X, Y, V, W at a point p,

g(X,Y) §(X,Y)

so angles and ratios of magnitudes are preserved under conformal
transformations; in particular, the null cone structure in Tp is pre-
served by conformal transformations, since

,X) > o, = 0, < 0 =>0(X,X) > 0, = 0, < 0,

respectively. As the metric components are related by
A _ Q2/» t fiab _ C

the coordinate components of the connections defined by the metrics
(2.28) are related by

g) . (M9)
Calculating the Riemann tensor of g, one finds

where Cl\: = 4Q-i(Q-i);6ef lf«-

the covariant derivatives in this equation are those determined by the
metric g. Then (assuming n > 2)

frd = Q~2Rb
d + (n - 2) O-^Q-1). ̂ ^ - (n - 2)-in-»(Q*-*);acg

ac6b
d

and ^ = C*bcd,

the last equation expressing the fact that the Weyl tensor is con-
formally invariant. These relations imply

R = a-2R-2(n-l)Q-H2;cdg
cd-(n-l)(n-4c)n-^Q.cQ;dg

cd. (2.30)

Having split the Riemann tensor into a part represented by the
Ricci tensor and a part represented by the Weyl tensor, one can use
the Bianchi identities (2.22) to obtain differential relations between
the Ricci tensor and the Weyl tensor: contracting (2,22) one obtains

Wbca-.a-Rba-.c-K-.a (2-31)
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and contracting again one obtains

From the definition of the Weyl tensor, one can (if n > 3) rewrite
(2.31) in the form

If n < 4, (2.31) contain all the information in the Bianchi identities
(2.22), so if n = 4, (2.32) are equivalent to these identities.

A diffeomorphism <fi: Jt-+dt will be said to be an isometry if it
carries the metric into itself, that is, if the mapped metric <f># g is equal
to g at every point. Then the map (p^-.Tp-^T^ preserves scalar
products, as

g(X, Y)\p = ̂ g(^X,^Y)yp) = g(^X,^Y)\^p).

If the local one-parameter group of diffeomorphisms <j)t generated
by a vector field K is a group of isometries (i.e. for each t, the trans-
formation <fit is an isometry) we call the vector field K a Killing vector
field. The Lie derivative of the metric with respect to K is

since g = 0,*g for] each t. But from (2.17), I^g^ = 2Kia;b), so a
Killing vector field K satisfies Killing's equation

Ka;b + Kb;a = 0. (2.33)

Conversely, if K is a vector field which satisfies Killing's equation,
then i g g = 0, so

s=0 p

Thus K is a Killing vector field if and only if it satisfies Killing's equa-
tion. Then one can locally choose coordinates xa = (af91) (v = 1 to n - 1)
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such that Ka = dxajdt = Sa
n; in these coordinates Killing's equation

takes the form o /o. -

A general space will not have any symmetries, and so will not admit
any Killing vector fields. However a special space may admit r
linearly independent Killing vector fields Ka (a = 1, ...,r). It can be
shown that the set of all Killing vector fields on such a space forms a
Lie algebra of dimension r over R, with the algebra product given by
the Lie bracket [ , ] (see (2.16)), where 0 ̂  r ̂  %n(n+l). (The
upper limit may be lessened if the metric is degenerate.) The local
group of diffeomorphisms generated by these vector fields is an
r-dimensional Lie group of isometries of the manifold Jt'. The full
group of isometries of Jt may include some discrete isometries (such
as reflections in a plane) which are not generated by Killing vector
fields; the symmetry properties of the space are completely charac-
terized by this full group of isometries.

2.7 Hypersurfaces
If £f is an (n — 1 )-dimensional manifold and 6: S?-> Jt is an imbedding,
the image d{Sf) of SP is said to be a hyper surface, in Jf. If pe£f, the
image of Tp in Te(p) under the map 0* will be a (n — 1) -dimensional plane
through the origin. Thus there will be some non-zero form ne l 7 *^)
such that for any vector XeTpi <n, 0* X) = 0. The form n is unique
up to a sign and a normalizing factor, and if 6(6?) is given locally by
the equation / = 0 where d/ 4= 0 then n may be taken locally as d/.
If d(£f) is two-sided in Jt', one can choose n to be a nowhere zero
one-form field on d(£f). This will be the situation if Sf and JK are both
orientable manifolds. In this case, the choice of a direction of n will
relate the orientations o£0(Sf) and oiJK: if {x1} are local coordinates
from the oriented atlas of JK such that locally d(Sf) has the equation
x1 = 0 and n = ocdx1 where a > 0, then (x2, ...,xn) are oriented local
coordinates for d(£f).

If g is a metric on JK, the imbedding will induce a metric 0*g on Sf \
where if X9YeTp, d*g(X,Y)\p = g(d*X,6*Y)|w. This metric is
sometimes called the first fundamental form of £f. If g is positive
definite the metric #*g will be positive definite, while if g is Lorentz,
0*g will be

(a) Lorentz if gabnanb > 0 (in this case, 0(Sf) will be said to be a
timelike hyper surf ace),
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(6) degenerate ifgabnanb = 0 (in this case, O(Sf) will be said to be a
null hyper surf ace),

(c) positive definite \igabnanb < 0 (in this case, 0(Sf) will be said to
be a spacelike hyper surf ace).

To see this, consider the vector Nb = nag
ab. This will be orthogonal

to all the vectors tangent to 0(£f), i.e. to all vectors in the subspace
H = 0#(Tp) in T6(p). Suppose first that N does not itself lie in this
subspace. Then if (E2,..., E J are a basis for Tp, (N, 0*(E2),..., 0*(En))
will be linearly independent and so will be a basis for T0(p). The compo-
nents of g with respect to this basis will be

/flf(N,N) 0 \ / < 7 ( N , N ) 0 \
9ab \ 0 9(0*^), O^E,))) \ 0 0*<7(E,,Ey)/'

As the metric g is assumed to be non-degenerate, this shows that
g(N, N) #= 0. If g is positive definite, g(N, N) must be positive and so
the induced metric #*g must also be positive definite. If g is Lorentz
and g(N, N) = gabnanb < 0, then #*g must be positive definite since
the matrix of the components of g has only one negative eigenvalue.
Similarly if g(N, N) = gabnanh > 0, then #*g will be a Lorentz metric.
Now suppose that N is tangent to d(Sf). Then there is some non-zero
vector XeTp such that d+(X) = N. But ^ ( N ^ Y ) = 0 for all YeTpy

which implies 6* g(X, Y) = 0. Thus 0*g is degenerate. Also, taking
Y to be X, g(N, N) = gabnanb = 0.

If gabnanb =# 0, one can normalize the normal form n to have unit
magnitude, i.e. gabnanb = ± 1. In this case the map 6*: T*e(p)^T*p

will be one-one on the (n— 1)-dimensional subspace H*6(p) of T*d(p)

consisting of all forms co at 6(p) such that gabna(ob = 0, because
6*n = 0 and n does not lie in H *. Therefore the inverse (0*)"1 will be
a map B* of T*p onto H*d(p), and so into T*d(p).

This map can be extended in the usual way to a map of covariant
tensors on £f to covariant tensors on 0(Sf) in J(\ as there already is
a map d% of contra variant tensors on Sf to d(Sf), one can extend 6* to
a map B* of arbitrary tensors on ^ to d(£f). This map has the property
that B^T has zero contraction with n on all indices, i.e.

(&*T)a-b
c^dna = 0 and (d*T)" •b

c...dg
cene = 0

for any tensor T e T&Sf).
The tensor h on 6(S?) is defined by h = #*(0*g). In terms of the

normalized form n (remember gabnanb = ± 1),

Kb = 9ab + nanb
since this implies 0*h = 0*g and habg

bcnc = 0.
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The tensor ha
b = $™\b is a projection operator, i.e. ha

bh
b

c = ha
c. It

projects a vector X e Te^p) into its part lying in the subspace H = 0*(Tp)
of 2^,) tangent to

where the second term represents the part of X orthogonal to d{Sf).
Also ha

b projects a form wel 7 *^) into its part lying in the subspace

*p)' (0a = hb
aG)b±nan

bG)b.

Similarly one can project any tensor TeTr
s(d(p)) into its part in

r factors s factors

i.e. its part which is orthogonal to n on all indices.
The map d% is one-one from Tp to Hd(p). Therefore one can define

a map #* from T^p) to Tp by first projecting with ha
b into He^p) and then

using the inverse (0)*"1. As one already has a map d* of forms on d{Sf)
to forms on Sf, one can extend the definition of 6* to a map 8* of
tensors of any type on d(Sf) to tensors on Sf. This map has the property
that #*(#*T) = T for any tensor TeTr

8(p) and #*(#*T) = T for any
tensor TeHr

8(d(p)). We shall identify tensors on Sf with tensors in
Hr

s on O(Sf) if they correspond under the maps #*, 8*. In particular,
h can then be regarded as the induced metric on d(Sf).

If n is any extension of the unit normal n onto an open neighbour-
hood of O(Sf) then the tensor x defined on O(Sf) by

is called the second fundamental form of Sf. I t is independent of the
extension, since the projections by ha

b restrict the covariant deriva-
tives to directions tangent to 0(6?). Locally the field h can be expressed
in the form n = a d / where/ and a are functions on <J( and / = 0 on
0{Sf). Therefore xab must be symmetric, since/;a6 =/ ; 6 aand/.aAa

6 = 0.
The induced metric h = 6% on Sf defines a connection on Sf. We

shall denote covariant differentiation with respect to this connection
by a double stroke, ||. For any tensor TeHr

8,

rpa...b — Wi...j la }>b Ik U }>m
1 c.dwe — 1 k...l;ma i'"fl jn c - ^ d ^ e>

where T is any extension of T to a neighbourhood of Q(Sf). This
definition is independent of the extension, as the hs restrict the
covariant differentiation to directions tangential to Q(Sf). To see this
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is the correct formula, one has only to show that the covariant deriva-
tive of the induced metric is zero and that the torsion vanishes. This
follows because

enf);gh%hfb¥c = 0,

and /lla6 = h*ah%f;eg = h*ah%f.ge = f,ba.

The curvature tensor R'abcd of the induced metric h can be related
to the curvature tensor Ba

bcd on d(S?) and the second fundamental
form x as follows. If YeH is a vector field on 0(S?), then

P'a Vb _ ya ya
11 bed1 — l \\dc~ 2 Wed'

Now

= Ye.,kh*ehfdh
k
c+ Y^fne

and Y°.,nehfd = (F«»e);/*/,

since Yene = 0 on 6(6^), therefore

B''M Y" = {R%kth\n\yd ±

Since this holds for all YeH,

R'abca = &fghh«ehfbhoch\ ± xa
cXbd + r ^ & c - (2.34)

This is known as Gauss' equation.
Contracting this equation on a and c and multiplying by hbd, one

obtains the curvature scalar JB' of the induced metric:

fa6- (2.35)

One can derive another relation between the second fundamental
form and the curvature tensor Ra

bcd on d(Sf) by subtracting the
expressions _ , d , e

lA a/116 ~ \ n ;dn a);e/l b

and (rb\a = (nc
;dKK);fVaK,

finding r6.,a ~ r<,.6 = ^e /^^6. (2.36)
This is known as Codacci's equation.

2.8 The volume element and Gauss9 theorem

If {Ea} is a basis of one-forms, one can form from it the w-form

€ = w!E1AE2A...AEn.
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If {Ea}, related to {Ea} by Ea' = Oa'aE
a, is another basis, the n-form

c' defined by this basis will be related to € by

e' = det((Ka)e,

so this form is not unique. However, one can use the existence of the
metric to define (in a given basis) the form

where g = det (gab). This form has components

The transformation law for g will just cancel the determinant,
det(Oa'a), provided that det(Oa'o) > 0. Therefore if Jt is orientable
the w-forms yj defined by coordinate bases of an oriented atlas will be
identical, i.e. given an orientation of Jty one can define a unique
7i-form field yj, the canonical n-form, on JK.

The contra variant antisymmetric tensor

]
n,

v ef...h
has components

vab...d = ( _ )i(n-s)nl |^|i S[\Sb
2 ... 8d]

n

where s is the signature of g (so \{n — s) is the number of negative
eigenvalues of the matrix of metric components (gab)). Therefore these
tensors satisfy the relations

Vab~dVef...h = (-)i<n-s)n\S«[e8
b

r..8dh]. (2.37)

The Christoffel relations imply that the covariant derivatives of
r]ah d and 7]ab-"d with respect to the connection defined by the metric
vanish, i.e. nh ^ ~

Vab'd;e = 0 = Vab...d;e'

Using the canonical n-form, one can define the volume (with respect

to the metric g) of an ^-dimensional submanifold <?/ as —: r\.

Thus Y) can be regarded as a positive definite volume measure on Jt.
We shall often use it in this sense, and shall denote it by dv. Note that
d is not meant to represent the exterior differential operator here; dv
is simply a measure on Jt. If/ is a function on Ji\ one can define its
integral over °ll with respect to this volume measure as

fdv = - f
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With respect to local oriented coordinates {a^}, this can be expressed
as the multiple integral

which is invariant under a change of coordinates.
If X is a vector field on Jl, its contraction with TQ will be an (n — 1)-

form field X .YJ, where

This (n— l)-form may be integrated over any (n— l)-dimensional
compact orientable submanifold y \ We write this integral as

where the canonical form yj is regarded as defining a measure-valued
form dcra on the submanifold V. If the orientation of "K is given by
the direction of the normal form na, then dcro can be expressed as
nad<r where dcr is a positive definite volume measure on the sub-
manifold y \ The volume measure dcr is not unique unless the normal
na is normalized. If na is normalized to unit magnitude in a metric g
on Ji', i.e. nanbg

ab = ± 1, then dcr is equal to the volume measure on "K
defined by the induced metric on i^ (to see this, simply choose an
orthonormal basis with nag

ab as one of the basis vectors).
Using the canonical form, one can derive Gauss' formula from

Stokes' theorem: for any compact ^-dimensional submanifold % oi*JK,

But

on using relation (2.37) twice. Therefore

f X°d<ra = f X'.gdv
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holds for any vector field X; this is Gauss' theorem. Note that the
orientation on °il for which this theorem is valid is that given by the
normal form r\ such that <n, X) is positive if X is a vector which points
out of ^ . If the metric g is such that ^o6waw6 is negative, the vector
gabnb will point into $£.

2.9 Fibre bundles
Some of the geometrical properties of a manifold JK can be most
easily examined by constructing a manifold called a fibre bundle,
which is locally a direct product of JK and a suitable space. In this
section we shall give the definition of a fibre bundle and shall consider
four examples that will be used later: the tangent bundle T{JK), the
tensor bundle Tr

s(^), the bundle of linear frames or bases L(<Jf), and
the bundle of orthonormal frames 0{Jt).

A Ck bundle over a C8 (s ^ k) manifold <Jf is a Ck manifold S and
a Ck surjective map TT\$-+ *Jl. The manifold $ is called the total space,
J( is called the base space and n the projection. Where no confusion
can arise, we will denote the bundle simply by S. In general, the
inverse image TT~\P) of a point peJK need not be homeomorphic to
7r-1(g) for another point qeJK. The simplest example of a bundle is
a product bundle (JK x stf, *JK, n) where s/ is some manifold and the
projection n is defined by n(p, v) = p for all p e ~#, v es&\ For example,
if one chooses Jt as the circle S1 and <$/ as the real line J?1, one con-
structs the cylinder C2 as a product bundle over S1.

A bundle which is locally a product bundle is called a fibre bundle.
Thus a bundle is & fibre bundle with fibre !F if there exists a neighbour-
hood °ll of each point q of ̂  such that ir-\°U) is isomorphic with tftxtF,
in the sense that for each point p e % there is a difFeomorphism <f>p of
n~1(p) onto fF such that the map r]r defined by i/r(u) = (n(u), (j)^)) is
a difFeomorphism i/r: 7r~1(^)->^x«^\ Since *Jl is paracompact, we
can choose a locally finite covering of ^ by such open sets ^ a . If
^ a and Qtp are two members of such a covering, the map

is a difFeomorphism of ̂ on to itself for e&chp e {°tta n 4fy). The inverse
images ir~\p) of points peJK are therefore necessarily all difFeo-
morphic to !F (and so to each other). For example, the Mobius strip
is a fibre bundle over S1 with fibre R1; we need two open sets Qfv <%2
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to give a covering by sets of the form ^ x JR1. This example shows that
if a manifold is locally the direct product of two other manifolds, it is
nevertheless not, in general, a product manifold; it is for this reason
that the concept of a fibre bundle is so useful.

The tangent bundle T(JK) is the fibre bundle over a Ck manifold *Jl
obtained by giving the set $ = U Tn its natural manifold structure

and its natural projection into *JK. Thus the projection n maps each
point of Tp into p. The manifold structure in £ is defined by local
coordinates {zA} in the following way. Let {x1} be local coordinates in
an open set °tt of *Jt'. Then any vector YeTp (for any p e °ll) can be
expressed as V = Vid/dxi\p. The coordinates {zA} are defined in
n"1^) by {zA} = {x1, Va}. On choosing a covering of <Jt by coordinate
neighbourhoods ^ a , the corresponding charts define a Ck~x atlas on £
which turn it into a Ck~x manifold (of dimension n2); to check this, one
needs only note that in any overlap (<%a n ^ ) the coordinates {x1^ of
a point are Ck functions of the coordinates {x1^ of the point, and the
components {Va

a} of a vector field are Ck~x functions of the compo-
nents {Vafl} of the vector field. Thus in TT~\^la n . ^ ) , the coordinates
{zA

a} are C*'1 functions of the coordinates \zA^.
The fibre ir~\p) is Tp, and so is a vector space of dimension n. This

vector space structure is preserved by the map <j)at p: Tp -» J?n, which
is given by <f>atP(u) = Va(u)i i.e. (j)ap maps a vector at p into its com-
ponents with respect to the coordinates {xa

a}. If {xap} are another set
of local coordinates then the map {({>oLiP)o(<j)^p~

1) is a linear map of
Rn onto itself. Thus it is an element of the general linear group
GL(n, R) (the group of all non-singular n x n matrices).

The bundle of tensors of type (r,s) over ^9 denoted by Tr
s{Ji), is

defined in a very similar way. One forms the set § = \J Tr
s(p), defines

the projection n as mapping each point in Tr
s(p) into p, and, for any

coordinate neighbourhood °ll in Jt, assigns local coordinates {zA} to
TI-\°U) by {zA} = {xl, Ta-"b

c d} where {x1} are the coordinates of the
point p and {Ta-~b

c d} are the coordinate components of T (that is,
T = Ta'~b

c_ddldxa®...®dxd\p). This turns «?into a C*"1 manifold of
dimension nr+s+1; any point u in Tr

s(,JK) corresponds to a unique
tensor T of type (r, s) at n(u).

The bundle of linear frames (or bases) L(JK) is a C*"1 fibre bundle
defined as follows: the total space & consists of all bases at all points
of J(, that is all sets of non-zero linearly independent w-tuples of
vectors {Ea}, Ea e Tpi for each^ eJK {a runs from 1 to ri). The projection
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n is the natural one which maps a basis at a point p to the point p. If
{x1} are local coordinates in an open set °U c Jt', then

are local coordinates in 77-~1(̂ ),̂ where EJ is the j th components of the
vector Ea with respect to the coordinate bases djdx1. The general
linear group GL(n,R) acts on L{JK) in the following way: if {Ea} is
a basis vXpeJt, then A e GL(n9 R) maps w = {p, E J to

4(«) = {p,406E6}.

When there is a metric g of signature 5 on *J(, one can define a sub-
bundle of L{Jt), the bundle oforthonormal frames O(J(), which con-
sists of orthonormal bases (with respect to g) at all points of J(.
0{J() is acted on by the subgroup O(\(n + s), \{n — s)) of GL(n,R).
This consists of the non-singular real matrices Aab such that

where Gbc is the matrix

l , + l , . . . , + l , - 1 , - 1 , . . . , - 1 ) .

\{n + s) terms \{n — s) terms

It maps (p, Ea) G 0{Ji) to (p, Aab E6) e 0{JK). In the case of a Lorentz
metric (i.e. s = n — 2), the group O(n— 1,1) is called the ^-dimensional
Lorentz group.

A Cr cross-section of a bundle is a Cr map O: «^ -> (̂  such that TT o O
is the identity map on Jt\ thus a cross-section is a Cr assignment to
each point p of Jl of an element O(jp) of the fibre n~1{p). A cross-
section of the tangent bundle T(JK) is a vector field on Ji\ a cross-
section of Tr

s{JK) is a tensor field of type (r, s) on Jt\ a cross-section of
L(JK) is a set of w non-zero vector fields {Ea} which are linearly inde-
pendent at each point, and a cross-section of O(Jl) is a set of ortho-
normal vector fields on ^ .

Since the zero vectors and tensors define cross-sections in T(JK) and
Tr

s(JK)y these fibre bundles will always admit cross-sections. If ̂  is
orientable and non-compact, or is compact with vanishing Euler
number, there will exist nowhere zero vector fields, and hence cross-
sections of T(JK) which are nowhere zero. The bundles L{Ji) and
0{J() may or may not admit cross-sections; for example L(S2) does
not, but L(Rn) does. If L(J() admits a cross-section, Ji is said to be
parallelizable. R.P.Geroch has shown (1968c) that a non-compact
four-dimensional Lorentz manifold JK admits a spinor structure if
and only if it is parallelizable.
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One can describe a connection on *Jt in an elegant geometrical way
in terms of the fibre bundle L{JK). A connection on JK may be regarded
as a rule for parallelly transporting vectors along any curve y(t) in *Jt.
Thus if {Ea} is a basis at a point p = y(t0), i.e. {p, Ea} is a point u in
L(JK), one can obtain a unique basis at any other point y(t), i.e. a
unique point y(t) in the fibre 7r~1(y(̂ )), by parallelly transporting {Ea}
along y(t). Therefore there is a unique curve y(t) in L(JK), called the
lift of y(t), such that:

(1) y(t0) = u,
(2) 77(7(0) = y(0,
(3) the basis represented by the point 7(0 is parallelly transported

along the curve 7(0 in Jt'.
In terms of the local coordinates {zA}, the curve 7(0 is given by

{x"(y(t)), EJ(t)}, where

Consider the tangent space TU(L(^)) to the fibre bundle L(,JK) at
the point u. This has a coordinate basis {d/dzA\u}. The n-dimensional
subspace spanned by the tangent vectors {(d/dt)-it)\u} to the lifts of all
curves y(t) through p is called the horizontal subspace Hu of
In terms of local coordinates,

dx«(y(t)) d t dEJ d
dt dxa dt dEJJ

— -E jTl

dxa m '

so a coordinate basis of Hu is {djdxa-EJTi
ajdjdEm

i}. Thus the con-
nection in *Jt determines the horizontal subspaces in the tangent spaces
at each point of L(JK). Conversely, a connection in Jt may be defined
by giving an n-dimensional subspace of TU(L(^)) for each UEL(^)

with the properties:
(1) If AeGL^R1), then the map A*: Tu{L{JK))->TA{u){L(JK))

maps the horizontal subspace Hu into HA(u);
(2) Hu contains no non-zero vector belonging to the vertical sub-

space Vu.
Here, the vertical subspace Vu is defined as the n2-dimensional

subspace of TU{L{JK)) spanned by the vectors tangent to curves in the
fibre 7T~1(7r(̂ )); in terms of local coordinates, Vu is spanned by the
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vectors {d/dE^}. Property (2) implies that Tu is the direct sum of Hu

and Vu.
The projection map n: L{^K)->JK induces a surjective linear map

7T*: TU(L{J?)) -> Tn{u){J(), such that n*(Vu) = 0 and IT* restricted to Hu

is 1-1 onto Tn(u). Thus the inverse TT*"1 is a linear map of T^u)(JK)
onto Hu. Therefore for any vector X e Tp(JK) and point u e n'Hp), there
is a unique vector XeHu, called the horizontal lift of X, such that
TT^ (X) = X. Given a curve y(t) in ,Jt', and an initial point u in TT~1(7(̂ O))J

one can construct a unique curve y(t) in L(JK)y where y(£) is the curve
through u whose tangent vector is the horizontal lift of the tangent
vector of y(t) in Jt. Thus knowing the horizontal subspaces at each
point in L{JK), one can define parallel propagation of bases along any
curve y(t) in Jt'. One can then define the covariant derivative along
y(t) of any tensor field T by taking the ordinary derivatives with
respect to t, of the components of T with respect to a parallelly
propagated basis.

If there is a metric g on ̂  whose covariant derivative is zero, then
orthonormal frames are parallelly propagated into orthonormal
frames. Thus the horizontal subspaces are tangent to O(^) in £(~#),
and define a connection in 0(^).

Similarly a connection on ^( defines w-dimensional horizontal sub-
spaces in the tangent spaces to the bundles T(JK) and Tr

s{JK), by
parallel propagation of vectors and tensors. These horizontal sub-
spaces have coordinate bases

:a aedyf

and

(y/-» t> Ya
e1 + (all upper indices)

cxe \ '
- Ta-"b

f ^ r ^ - (all lower indices)

respectively. As with L(^)9 n* maps these horizontal subspaces
one-one onto T^U){JH)\ thus again n* can be inverted to give a unique
horizontal lift X £ Tu of any vector X e T^). In the particular case of
T(<Jf), u itself corresponds to a unique vector We^yf j f ) , and so
there is an intrinsic horizontal vector field W defined on T(JK) by the
connection. In terms of local coordinates {xa, Vb},

Id 8
_ 17a I yeT^f _ 1 _
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This vector field may be interpreted as follows: the integral curve of W
through u = (p, X) e T(JK) is the horizontal lift of the geodesic in JK
with tangent vector X at p. Thus the vector field W represents all
geodesies on Jt'. In particular, the family of all geodesies through
peJK is the family of integral curves of W through the fibre
77—1(̂ >) °- T(*JK)\ the curves in *JK have self intersections at least at p,
but the curves in T(Jt) are non-intersecting everywhere.
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