2
Differential geometry

The space-time structure discussed in the next chapter, and assumed
through the rest of this book, is that of a manifold with a Lorentz
metric and associated affine connection.

In this chapter, we introduce in § 2.1 the concept of a manifold and
in §2.2 vectors and tensors, which are the natural geometric objects
defined on the manifold. A discussion of maps of manifolds in §2.3
leads to the definitions of the induced maps of tensors, and of sub-
manifolds. The derivative of the induced maps defined by a vector
field gives the Lie derivative defined in §2.4; another differential
operation which depends only on the manifold structure is exterior
differentiation, also defined in that section. This operation occurs in
the generalized form of Stokes’ theorem.

An extra structure, the connection, is introduced in §2.5; this
defines the covariant derivative and the curvature tensor. The connec-
tion is related to the metric on the manifold in §2.6; the curvature
tensor is decomposed into the Weyl tensor and Ricci tensor, which are
related to each other by the Bianchi identities.

In the rest of the chapter, a number of other topics in differential
geometry are discussed. The induced metric and connection on a
hypersurface are discussed in §2.7, and the Gauss—Codacci relations
are derived. The volume element defined by the metric is introduced
in §2.8, and used to prove Gauss’ theorem. Finally, we give a brief
discussion in §2.9 of fibre bundles, with particular emphasis on the
tangent bundle and the bundles of linear and orthonormal frames.
These enable many of the concepts introduced earlier to be reformu-
lated in an elegant geometrical way. §2.7 and §2.9 are used only at
one or two points later, and are not essential to the main body of the
book.

[10]
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2.1] MANIFOLDS 11

2.1 Manifolds

A manifold is essentially a space which is locally similar to Euclidean
space in that it can be covered by coordinate patches. This structure
permits differentiation to be defined, but does not distinguish intrin-
sically between different coordinate systems. Thus the only concepts
defined by the manifold structure are those which are independent of
the choice of a coordinate system. We will give a precise formulation
of the concept of a manifold, after some preliminary definitions.

Let R™ denote the Euclidean space of n dimensions, that is, the set
of all n-tuples (x1,22, ...,2") (— o0 < &% < 00) with the usual topology
(open and closed sets are defined in the usual way), and let $R* denote
the ‘lower half’ of B", i.e. the region of R" for which 2! < 0. Amap ¢ of
an open set @ < R* (respectively $B") to an open set @' = B™ (respec-
tively 1R™) is said to be of class C7 if the coordinates (z'1, 2’2, ...,2'™) of
the image point @(p) in @ are r-times continuously differentiable
functions (the rth derivatives exist and are continuous) of the co-
ordinates (1,22, ...,2") of pin @. If a map is C" for all » > 0, then it is
said to be C*. By a C° map, we mean a continuous map.

A function f on an open set @ of R" is said to be locally Lipschitz if
for each open set Z < @ with compact closure, there is some constant
K such that for each pair of points p,qe, |f(p)—f(g)| < K |p—4q|,
where by |p| we mean

{@(@)*+ @)+ ... + @ (p)}.

A map ¢ will be said to be locally Lipschitz, denoted by C'—, if the
coordinates of ¢(p) are locally Lipschitz functions of the coordinates
of p. Similarly, we shall say that a map ¢ is Cr— if it is C"! and if the
(r—1)th derivatives of the coordinates of ¢(p) are locally Lipschitz
functions of the coordinates of p. In the following we shall usually only
mention C”, but similar definitions and results hold for Cr—.

If 2 is an arbitrary set in R" (respectively $R"), a map ¢ from £ to
a set &' < R™ (respectively 4R™) is said to be a C map if ¢ is the
restriction to & and #’ of a C" map from an open set @ containing #
to an open set ¢’ containing &'.

A O n-dimensional manifold M is a set A together with a C” atlas
{%«,, $,}, that is to say a collection of charts (%,, ¢,) where the %, are
subsets of .# and the ¢, are one—one maps of the corresponding %, to
open sets in RB” such that

(1) the %, cover A ,i.e. £ =U%Z,,

]
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12 DIFFERENTIAL GEOMETRY [2.1

(2) if %, n U is non-empty, then the map
¢a o ¢ﬂ_1: ¢ﬂ(%a n %ﬂ) g ¢a(%a n %ﬂ)

isa C" map of an open subset of B” to an open subset of B” (see figure 4).

Each %, is a local coordinate neighbourhood with the local coordinates
z¢ (@ = 1ton)defined by the map ¢, (i.e. if p e %,, then the coordinates
of p are the coordinates of ¢,(p) in B*). Condition (2)is the requirement
that in the overlap of two local coordinate neighbourhoods, the
coordinates in one neighbourhood are Cr functions of the coordinates
in the other neighbourhood, and vice versa.

B $a@a 0 Up)

F1GURE 4. In the overlap of coordinate neighbourhoods %, and % 4, coordinates
are related by a C" map @,0 ¢,

Another atlas is said to be compatible with a given C* atlas if their
union is a Cr atlas for all .#. The atlas consisting of all atlases com-
patible with the given atlas is called the complete atlas of the manifold;
the complete atlas is therefore the set of all possible coordinate
systems covering .#.

The topology of # is defined by stating that the open sets of 4
consist of unions of sets of the form %, belonging to the complete atlas.
This topology makes each map ¢, into a homeomorphism.

A Cr differentiable manifold with boundary is defined as above, on
replacing ‘R™’ by ‘}R™’. Then the boundary of .#, denoted by 0.#, is
defined to be the set of all points of # whose image under a map ¢, lies
on the boundary of B”in R”. 0.# is an (n — 1)-dimensional C" manifold
without boundary.
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2.1} MANIFOLDS 13

These definitions may seem more complicated than necessary. How-
ever simple examples show that one will in general need more than one
coordinate neighbourhood to describe a space. The two-dimensional
Euclidean plane R? is clearly a manifold. Rectangular coordinates
(xz, y; —0 <2 <0, —w<y<w) cover the whole plane in one
coordinate neighbourhood, where ¢ is the identity. Polar coordinates
(r,0) cover the coordinate neighbourhood (r > 0, 0 < 8 < 27); one
needs at least two such coordinate neighbourhoods to cover R2 The
two-dimensional cylinder C?is the manifold obtained from R? by identi-
fying the points (x,y) and (x+ 2m,y). Then (x,y) are coordinates in
a neighbourhood (0 < # < 27, —00 <y < 00) and one needs two
such coordinate neighbourhoods to cover C2% The Mdbius strip is the
manifold obtained in a similar way on identifying the points (z,y) and
(x+ 27, —y). The unit two-sphere 82 can be characterized as the surface
in R? defined by the equation (x')2+ (x%)2+ (%)% = 1. Then

(x%2% —1<a?2<1,—1<a23< 1)

are coordinates in each of the regions 2! > 0, 2! < 0, and one needs six
such coordinate neighbourhoods to cover the surface. In fact, it is not
possible to cover 8% by a single coordinate neighbourhood. The
n-sphere 8™ can be similarly defined as the set of points

(1) + (222 + ... + (2*t1)2 = 1
in R»+1,

A manifold is said to be orientable if there is an atlas {%,, ¢,} in the
complete atlas such that in every non-empty intersection %, n %, the
Jacobian |0xi/ox'l| is positive, where (2,...,2") and (2}, ...,2'") are
coordinates in %, and % respectively. The Mobius strip is an example
of a non-orientable manifold.

The definition of a manifold given so far is very general. For most
purposes one will impose two further conditions, that .# is Hausdorff
and that .# is paracompact, which will ensure reasonable local
behaviour. '

A topological space .# is said to be a Hausdorff space if it satisfies
the Hausdorff separation axiom: whenever p, g are two distinct points
in , there exist disjoint open sets %, 7" in 4 such that pe %, qe¥".
One might think that a manifold is necessarily Hausdorff, but this is
not so. Consider, for example, the situation in figure 5. We identify the
points b, b’ on the two lines if and only if #, = y,, < 0. Then each point
is contained in a (coordinate) neighbourhood homeomorphic to an
open subset of R1. However there are no disjoint open neighbourhoods
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14 DIFFERENTIAL GEOMETRY
b «
&~ . 2 xr
(z = zp) (z = 0)
b’ o
-- ®- Yy
¥y = yy) (y=0)

[2.1

F1GURE 5. An example of a non-Hausdorff manifold. The two lines above are
identical for = y < 0. However the two points a (x = 0) and a’(y = 0) are

not identified.

%,V satisfying the conditions a e %, a’ € ¥", where a is the point z = 0

and a' is the point y = 0.

An atlas {%,, ¢,} is said to be locally finite if every point p € .# has
an open neighbourhood which intersects only a finite number of the
sets %,. A is said to be paracompact if for every atlas {%,, ¢,} there
exists a locally finite atlas {¥7, {5} with each ¥ contained in some %,.
A connected Hausdorff manifold is paracompact if and only if it has
a countable basis, i.e. there is a countable collection of open sets such
that any open set can be expressed as the union of members of this

collection (Kobayashi and Nomizu (1963), p. 271).

Unless otherwise stated, all manifolds considered will be paracompact,
connected C* Hausdorff manifolds without boundary. It will turn out
later that when we have imposed some additional structure on .# (the
existence of an affine connection, see §2.4) the requirement of para-
compactness will be automatically satisfied because of the other

restrictions.

A function f on a C* manifold .# is a map from .# to R It is said to
be of class O (r < k) at a point p of ., if the expression fo ¢, of f on
any local coordinate neighbourhood %, is a Cr function of the local
coordinates at p; and f is said to be a C" function on a set ¥~ of A if

Jis a C7 function at each point pe¥”.

A property of paracompact manifolds we will use later, is the fol-
lowing: given any locally finite atlas {#,,¢,} on a paracompact C*
manifold, one can always (see e.g. Kobayashi and Nomizu (1963),

p- 272) find a set of C* functions g, such that
(1) 0 < g, < 1on .#, for each a;

(2) the support of g,, i.e. the closure of the set {pe .4 g,(p) + 0}, is

contained in the corresponding %, ;
(3) Xg,(p) =1, forall pe 4.
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2.1] MANIFOLDS 15

Such a set of functions will be called a partition of unity. The result
isin particular true for C* functions, but is clearly not true for analytic
functions (an analytic function can be expressed as a convergent
power series in some neighbourhood of each point p € .#, and so is zero
everywhere if it is zero on any open neighbourhood).

Finally, the Cartesian product & x % of manifolds &/, & is a mani-
fold with a natural structure defined by the manifold structures of
&, A for arbitrary points pe o/, g€ %, there exist coordinate neigh-
bourhoods %, ¥ containing p, q respectively, so the point (p, ¢) e & x#
is contained in the coordinate neighbourhood % x ¥” in & x & which
assigns to it the coordinates (2%, %’), where x* are the coordinates of p
in % and y’ are the coordinates of ¢ in ¥".

2.2 Vectors and tensors

Tensor fields are the set of geometric objects on a manifold defined in
a natural way by the manifold structure. A tensor field is equivalent
to a tensor defined at each point of the manifold, so we first define
tensors at a point of the manifold, starting from the basic concept of
a vector at a point.

A C% curve A(t) in A is a C* map of an interval of the real line R!into
M . The vector (contravariant vector) (9/2t),,, tangent to the C* curve
A(t) at the point A(t,) is the operator which maps each C* function f at
A(t,) into the number (8f/2t),|,,; that is, (9f/0t), is the derivative of fin
the direction of A(t) with respect to the parameter ¢. Explicitly,

(@),

The curve parameter ¢ clearly obeys the relation (9/of),t = 1.
If (21, ...,2") are local coordinates in a neighbourhood of p,

(Qf _r dad(A) ol _ddof
t), o Jo1 At |0y, At dad

(Here and throughout this book, we adopt the summation convention
whereby a repeated index implies summation over all values of that
index.) Thus every tangent vector at a point p can be expressed as
a linear combination of the coordinate derivatives

(0f0xY)] s ..., (8f02)] .

Conversely, given a linear combination V4(9/dx%)|, of these operators,
where the V7 are any numbers, consider the curve A(f) defined by

= lim L(0+) =AW, (2.1)

At
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16 DIFFERENTIAL GEOMETRY 2.2

xI(A(t)) = @/(p)+ ¢V, for t in some interval [ — ¢, €]; the tangent vector
to this curve at p is ¥7(9/027)|,. Thus the tangent vectors at p form
a vector space over B! spanned by the coordinate derivatives (9/027)|,,,
where the vector space structure is defined by the relation

(@X +BY)f = «(Xf)+B(YS)

which is to hold for all vectors X, ¥, numbers «, £ and functions f.
The vectors (9/0x7), are independent (for if they were not, there
would exist numbers V7 such that Vi(9/0x7)|,, = 0 with at least one V7
non-zero; applying this relation to each coordinate z* shows

Vioak|ox) = VE = 0,

a contradiction), so the space of all tangent vectors to .# at p, denoted
by T,,(.#) or simply T, is an n-dimensional vector space. This space,
representing the set of all directions at p, is called the tangent vector
space to A at p. One may think of a vector VeT), as an arrow at p,
pointing in the direction of a curve A(¢) with tangent vector V at p,
the ‘length’ of V being determined by the curve parameter ¢ through
the relation V() = 1. (As V is an operator, we print it in bold type;
its components V4, and the number V(f) obtained by V acting on a
function f, are numbers, and so are printed in italics.)

If {E,} (@ = 1 to n) are any set of n vectors at p which are linearly
independent, then any vector Ve T}, can be written V = V°E, where
the numbers {V4} are the components of V with respect to the basis
{E,} of vectors at p. In particular one can choose the E, as the coordi-
nate basis (8/0z%)|,; then the components V* = V(z%) = (dx?/dt)|, are
the derivatives of the coordinate functions «¢ in the direction V.

A one-form (covariant vector) w at p is a real valued linear function
on the space T), of vectors at p. If X is a vector at p, the number into
which w maps X will be written (w, X); then the linearity implies that

{w,aX+Y) = alw, X} + f{»,Y)

holds for all «, #c R and X, YeT,. The subspace of T, defined by
{w, X) = (constant) for a given one-form w, is linear. One may there-
fore think of a one-form at p as a pair of planes in 7}, such that if
{w,X) = 0 the arrow X lies in the first plane, and if (w,X) =11t
touches the second plane.

Given a basis {E,} of vectors at p, one can define a unique set of
n one-forms {E¢} by the condition: E* maps any vector X to the
number X* (the sth component of X with respect to the basis {E_}).
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2.2] VECTORS AND TENSORS 17

Then in particular, {(E® E,» = §%,. Defining linear combinations of
one-forms by the rules

(aw + 49, X) = a(w,X)+4{n,X)

for any one-forms w, y and any a, fcR!, X¢e T, one can regard {E?}
as a basis of one-forms since any one-form w at p can be expressed as
w = w; E? where the numbers w, are defined by w; = {(w, E,). Thus the
set of all one forms at p forms an n-dimensional vector space at p, the
dual space T'*,, of the tangent space T},. The basis {E“} of one-forms is
the dual basis to the basis {E,} of vectors. For any weT*,, Xe T}, one
can express the number (w, X) in terms of the components w,, X* of
w, X with respect to dual bases {E?}, {E,} by the relations

{w,X) = (B}, XT'E;) = 0, X",
Each fraction f on # defines a one-form df at p by the rule: for
each vector X, df, Xy = Xf.

df is called the differential of f. If (z1, ..., 2") are local coordinates, the
set of differentials (dz!,dx?, ...,dz") at p form the basis of one-forms
dual to the basis (9/0x!, 0/0x?, ..., 0[0x™) of vectors at p, since

{dat, 0foxy = oxiloxt = &%
In terms of this basis, the differential df of an arbitrary function f is
given by df = (9fox) dxt.
If df is non-zero, the surfaces {f = constant} are (n— 1)-dimensional
manifolds. The subspace of 7}, consisting of all vectors X such that
{df,X) = 0 consists of all vectors tangent to curves lying in the
surface {f = constant} through p. Thus one may think of df as a
normal to the surface {f = constant} at p. If « + 0, adf will also be
a normal to this surface.

From the space T}, of vectors at p and the space 7'*, of one-forms
at p, we can form the Cartesian product

s _ Tk * *
I =T* xT*,x...xT px%prx...pr,

r factors s factors

i.e. the ordered set of vectors and one-forms (n!,...,9",Y,,...,Y,)
where the Ys and yjs are arbitrary vectors and one-forms respectively.

A tensor of type (r, s) at p is a function on II¢ which is linear in each
argument. If T is a tensor of type (7, s) at p, we write the number into
which T maps the element (', ...,%", Y,, ..., Y,) of IIS as

TW, ..., Y, ..., Y,).
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18 DIFFERENTIAL GEOMETRY [2.2

Then the linearity implies that, for example,

Tm, ..., aX+4Y,Y,,....Y)=a. T, ..., X, Y,,...,Y,)

+8.TqY, ..., Y, Y,,....Y,)

holds for all &, fe B! and X, Y e T,,.

The space of all such tensors is called the tensor product

Tp) =T1,..0T, @ T*,®...0T*,.
r factors s factors

In particular, T§(p) = T, and T(p) = T'*,.

Addition of tensors of type (r, s) is defined by the rule: (T + T") is the
tensor of type (r,s) at p such that for all Y;e T}, neT*,,

(T+T') (nl’ ,..,1‘7" Yl’ ...,Ys) = T(nl’ “.’.nr’Yl’ "'sYs)
+T'0, . Yy, L YY),

Similarly, multiplication of a tensor by a scalar a. € R! is defined by the
rule: («T) is the tensor such that for all Y;€T,, n/eT*,,

eIy ... Yy, ..., Y)=a. T, ...,0, Yy, ..., Y,).

With these rules of addition and scalar multiplication, the tensor
product T%(p) is a vector space of dimension »™+ over Rl

Let X;eT, (¢ =1 to 7) and w/eT*,(j=1 to s). Then we shall
denote by X; ® ... X, ® 0! ® ... ® w® that element of T%(p) which
maps the element (v, ...,0", Y,,...,Y,) of I} into

L XD % Xy - (07 X (00, Y . (e, V)

Similarly, if ReT(p) and S e T%(p), we shall denote by R ® S that
element of T51%(p) which maps the element (v, ...,9"+?, Y, veer Yoio)
of I1¢%2 into the number

r+p
R, ..o’ Yy, L Y St ot Y, L Y ).

With the product ®, the tensor spaces at p form an algebra

over R.
If {E,}, {E%} are dual bases of 7;,, T'*, respectively, then

{E,,®..®E, E"® ... ® E%}, (a;,b; run from 1 to n),

will be a basis for 7%(p). An arbitrary tensor T € T'(p) can be expressed
in terms of this basis as

T=Ta%, ,E ®. OFE, QE"®..QE
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2.2] VECTORS AND TENSORS 19

where {T%--%, 1 are the components of T with respect to the dual

bases {E,}, {E%} and are given by
Tal'"a'bl”.b‘, = T(Eal, veey Ea', Ebl’ “eey Ebs).

Relations in the tensor algebra at p can be expressed in terms of the
components of tensors. Thus

’ “ee — “es ’ aee
(T +T7 )0y p, = T00ry o+ Ty
.ee —_— A1.+. Q,
(@T)n0ny 4= Ty 4,

\ay... — Tay... ’
(T Q@T')ur+my, gy, = Ty, o, T W41 %m0y e

Because of its convenience, we shall usually represent tensor relations
in this way.

If {E,} and {E®} are another pair of dual bases for 7}, and T'* , they
can be represented in terms of {E,} and {E<} by

E, =9,°E, (2.2)
where @2 is an n x n non-singular matrix. Similarly
E® = @7 _Eso (2.3)

where ®%, is another » x n non-singular matrix. Since {E,}, {E%} are
dual bases,

8%, = (EYE,) = <q)b’b Eb, @,2E,) = ©,° (Db,b 8,0 = D, DY,

ie. @, % % areinverse matrices, and 6%, = ®%, QY.
The components T'#1--¢r, . of a tensor T with respect to the
dual bases {E,}, {E*} are given by

Tal'"arb'l...b"' = T(Eal, ...,Eaf, Eb’]’ ""Eb' ).

They are related to the components 7%, ., of T with respect to
the bases {E,}, {E?} by

a'y...a = Tay... a’ a’, b b,
Tovary, oy, =T, 5, @V o @Frg Dy Or Dy B (2.4)

The contraction of a tensor T of type (r,s), with components
Tab--4,.  with respect to bases {E,}, {E}, on the first contravariant
and first covariant indices is defined to be the tensor C}(T) of type
(r—1,s—1) whose components with respect to the same basis are
Tabmdaf.,.g’ ie.

CYT)=T*4, E,®..QE;QFE®..QE.

https://doi.org/10.1017/cB097805 2 aMmbridge R dliRerParmigdondrivassily Press, 2009


https://doi.org/10.1017/CBO9780511524646.003

20 DIFFERENTIAL GEOMETRY (2.2

If {E,}, {E*} are another pair of dual bases, the contraction C}(T)
defined by them is

ONT) = Tvty, B, ®..0E, @E'®... 0 B
= ®a'a Qah' Th’b""d'a'f'”_g¢ (Db'b vee q)d/d @f’f ees (Dg’g
E,®.. QE,QFE.. @F
= Tab"'daf."gEb ® e ® Ed ®Ef® oo ® Eﬂ = C%(T),

so the contraction C} of a tensor is independent of the basis used in its
definition. Similarly, one could contract T over any pair of contra-
variant and covariant indices. (If we were to contract over two contra-
variant or covariant indices, the resultant tensor would depend on the
basis used.)

The symmetric part of a tensor T of type (2, 0) is the tensor S(T)
defined by 1
S(T) (ny,m,) = 3 {T(ny,2) + T (0, my)}

for all ,,m,€T*,. We shall denote the components S(T)? of S(T) by
T@d; then 1
THad) — §T {Tab + Tba}'

Similarly, the components of the skew-symmetric part of T will be

denoted by
Tlab) — % {Tab _ Tba}.

In general, the components of the symmetric or antisymmetric part of
a tensor on a given set of covariant or contravariant indices will be
denoted by placing round or square brackets around the indices. Thus

b...
T(a,...a,.) 4

1 . o qs
= {sum over all permutations of the indices a, to a,(T, _,%7)}

and
T(al...a,]bm"r
1 . . < .
=5 {alternating sum over all permutations of the indices

2 to a, (Ta,...a,bmf)}'

For example,

Kayoq = ${K%q+ Koo+ K gy — K% — K%pq— K%}
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A tensor is symmetric in a given set of contravariant or covariant
indices if it is equal to its symmetrized part on these indices, and is
antisymmetric if it is equal to its antisymmetrized part. Thus, for
example, a tensor T of type (0, 2) is symmetric if T, = 3T, + T}0)s
(which we can also express in the form: T, = 0).

A particularly important subset of tensors is the set of tensors of
type (0, q) which are antisymmetric on all ¢ positions (so ¢ < »); such
a tensor is called a ¢-form. If A and B are p- and ¢g-forms respectively,
one can define a (p +¢q)-form A A B from them, where A is the skew-
symmetrized tensor product ®; that is, A A B is the tensor of type
(0, p+¢) with components determined by

(AAB)y, pe..s = Aig..B...p1

This rule implies (A A B) = (—)?¢(B A A). With this product, the
space of forms (i.e. the space of all p-forms for all p, including one-
forms and defining scalars as zero-forms) constitutes the Grassmann
algebra of forms. If {E¢} is a basis of one-forms, then the forms
Ex A ... AE% (a;run from 1 to n) are a basis of p-forms, as any p-form
A can be written A = 4, ,E*A...AE® where 4, , = A4, 4.

So far, we have considered the set of tensors defined at a point on
the manifold. A set of local coordinates {z‘} on an open set % in .4
defines a basis {(9/02%)|,} of vectors and a basis {(d«?)|,} of one-forms
at each point p of %, and so defines a basis of tensors of type (r, s) at
each point of %. Such a basis of tensors will be called a coordinate
basis. A C¥ tensor field T of type (r, s) on a set ¥~ < .4 is an assignment
of an element of T%(p) to each point pe¥” such that the components
of T with respect to any coordinate basis defined on an open subset
of ¥~ are C* functions.

In general one need not use a coordinate basis of tensors, i.e. given
any basis of vectors {E,} and dual basis of forms {E%} on ¥”, there will
not necessarily exist any open set in ¥~ on which there are local
coordinates {22} such that E, = 9/02* and E¢ = dz®. However if one
does use a coordinate basis, certain specializations will result; in parti-
cular for any function f, the relations E,(E,f) = E,(E,f) are satisfied,
being equivalent to the relations o¢%[dx?dx® = 0%f[oxboxe. If one
changes from a coordinate basis E, = 9/0x® to a coordinate basis
E, = 0/ox¥, applying (2.2), (2.3) to 2%, 2% shows that

ox® . x
(D“'a:@_x“" (Daa‘—"%{'
Clearly a general basis {E,} can be obtained from a coordinate basis
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{6/0z%} by giving the functions E,’ which are the components of the E
with respect to the basis {9/0x%}; then (2.2) takes the form E, = E ! 6/0x*
and (2.3) takes the form E¢ = E¢;dx*, where the matrix E¢, is dual to
the matrix B °.

2.3 Maps of manifolds

In this section we define, via the general concept of a C* manifold map,
the concepts of ‘imbedding’, ‘immersion’, and of associated tensor
maps, the first two being useful later in the study of submanifolds, and
the last playing an important role in studying the behaviour of
families of curves as well as in studying symmetry properties of
manifolds.

A map ¢ froma C* n-dimensional manifold .# to a C*' n'-dimensional
manifold .#' is said to be a C" map (r < k, r < k') if, for any local
coordinate systems in .4 and .#’, the coordinates of the image point
@(p) in A’ are C" functions of the coordinates of p in #. As the map
will in general be many-one rather than one—one (e.g. it cannot be
one-one if » > #'), it will in general not have an inverse; and if a Cr
map does have an inverse, this inverse will in general not be Cr (e.g.
if ¢ is the map B! R! given by x— 23, then ¢~ is not differentiable at
the point z = 0).

Iffisafunction on.#’, the mapping ¢ defines the function ¢*fon .#
as the function whose value at the point p of # is the value of f at

¢(p), ie. P*f(p) = f($(D)). (2.5)

Thus when ¢ maps points from .# to #', ¢* maps functions linearly
from A’ to M.

If A(¢) is a curve through the point pe.#, then the image curve
d(At)) in A’ passes through the point ¢(p). If r > 1, the tangent
vector to this curve at ¢(p) will be denoted by ¢, (9/é%),|4»; one can
regard it as the image, under the map ¢, of the vector (9/t),,. Clearly
¢4 is a linear map of T,(#) into Ty, (.#"). From (2.5) and the defini-
tion (2.1) of a vector as a directional derivative, the vector map ¢,
can be characterized by the relation: for each Cr (r > 1) function f at
¢(p) and vector X at p,

X(@*)p = b5 X ()] - (2.6)

Using the vector mapping ¢, from 4 to .#’, we can if r > 1 define

a linear one-form mapping ¢* from T'*,,(A#') to T*,(#) by the
condition: vector-one-form contractions are to be preserved under the
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maps. Then the one-form AeT*y,, is mapped into the one-form
¢*A eT*, where, for arbitrary vectors X €T},

(P*A, X, = (A, 84 Xl yn-
A consequence of this is that
$*(df) = d($*f). (2.7)

The maps ¢, and ¢* can be extended to maps of contravariant
tensors from .# to .#' and covariant tensors from .#’ to .# respec-
tively, by the rules ¢,: TeT)(p)—> ¢+ TeTs(¢(p)) where for any

te* ,
WETTs0r pgr, L %)), = BT o) g
and ¢*: TeTUP(p) > $*T e TYp),
where for any X;e T,

ST Xy, s Xlp = TP X, -0 64 X) g0

When r > 1, the C* map ¢ from A to A’ is said to be of rank s at p
if the dimension of @,(T),(.#)) is s. It is said to be injective at p if s = n
(and son < n') at p; then no vector in 7}, is mapped to zero by ¢,. It
is said to be suryectwe ifs=n"(son>=n )

A C" map ¢ (r ) is said to be an immersion if it and its inverse
are C' maps, i.e. 1f for each point pe.# there is a neighbourhood
% of p in .# such that the inverse ¢! restricted to ¢(%) is also
a C" map. This implies » < »’. By the implicit function theorem
(Spivak (1965), p. 41), when r > 1, ¢ will be an immersion if and only if
it is injective at every point pe.#; then ¢, is an isomorphism of 7,
into the image ¢4(T,) < Ty,). The image ¢(.#) is then said to be an
n-dimensional immersed submanifold in .#’. This submanifold may
intersect itself, i.e. ¢ may not be a one—one map from .# to ¢(.#)
although it is one—one when restricted to a sufficiently small neighbour-
hood of .#. An immersion is said to be an imbedding if it is a homeo-
morphism onto its image in the induced topology. Thus an imbedding
is a one—one immersion; however not all one-one immersions are
imbeddings, cf. figure 6. A map ¢ is said to be a proper map if the
inverse image ¢~1(¢) of any compact set ¥~ < 4" is compact. It can
be shown that a proper one—one immersion is an imbedding. The
image ¢(.#) of A4 under an imbedding ¢ is said to be an n-dimensional
imbedded submanifold of MA'.

The map ¢ from # to 4’ is said to be a C* diffeomorphism if it is
a one—-one " map and the inverse ¢—1is a C* map from .4’ to 4. In
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this case, n = n’, and ¢ is both injective and surjective if » > 1; con-
versely, the implicit function theorem shows that if ¢, is both injective
and surjective at p, then there is an open neighbourhood % of p such
that ¢: % — $(#) is a diffeomorphism. Thus ¢ is a local diffeomorphism
near p if ¢, is an isomorphism from 7}, to Ty,.

AN
WY \/

F1GURE 6. A one-one immersion of R!in R? which is not an imbedding, obtained
by joining smoothly part of the curve y = sin (1/x) to the curve

{(y,0); —0 <y < 1}.

When the map ¢ is a C7 (r > 1) diffeomorphism, ¢, maps T,(.#) to
Typp(A') and (¢=1)* maps T*,(#) to T*,,,(#"). Thus we can define
amap @y of T(p) to T(¢(p)) for any r, s, by

T ..on’ Xy - X)),
= ¢*T((¢_l)*7}1’ AN (¢—1)*7Is> ¢*X1, ey ¢*X1)|¢(p)

for any X;eT,, n*eT*,. This map of tensors of type (r, s) on .# to
tensors of type (r, s) on A’ preserves symmetries and relations in the
tensor algebra; e.g. the contraction of ¢, T is equal to ¢, (the con-
traction of T). .

2.4 Exterior differentiation and the Lie derivative

We shall study three differential operators on manifolds, the first two
being defined purely by the manifold structure while the third is
defined (see § 2.5) by placing extra structure on the manifold.
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The exterior differentiation operator d maps r-form fields linearly to
(r+1)-form fields. Acting on a zero-form field (i.e. a function) f, it
gives the one-form field df defined by (cf. §2.2)

{df,X) = Xf for all vector fields X (2.8)
and acting on the r-form field
A=4, ;dz*Ada®A...Ada?
it gives the (r + 1)-form field dA defined by
dA =d4,, sAdz*Ada®A...Adat (2.9)

To show that this (r + 1)-form field is independent of the coordinates
{2} used in its definition, consider another set of coordinates {x?}.

Then A = Aa’b’...d’ dza’ /\ d:l:b' /\ ses A dxd’,
where the components 4., 4 are given by

ox® ox®  ox?
Aa’b’...d’ = ng? “on WAab...d'

Thus the (r+ 1)-form dA defined by these coordinates is
dA =d4,, gdz* Ada¥ A...Ada?

_ 0% %2®  Oa?

T T \oa® ¥ 9x®

_ 0x* 0P  Oat

T %% 0 a®

+ %z 0x®  0xt

0x% %% 9% " 0¥

=dd,. grdztada®A... Adad

as 92x%[0x® 0x¢ is symmetric in a’ and ¢’, but da? A dz® is skew. Note
that this definition only works for forms; it would not be independent
of the coordinates used if the A product were replaced by a tensor
product. Using the relation d(fg) = gdf+fdg, which holds for arbi-
trary functions f, g, it follows that for any r-form A and form B,
d(AAB)=dAAB+(—)AAdB. Since (2.8) implies that the local
coordinate expression for df is df = (9f/ox?)da?, it follows that
d(df) = (0%/oxt 0x7) da? A da? = 0, as the first term is symmetric and
the second skew-symmetric. Similarly it follows from (2.9) that

d(dA)=0
holds for any r-form field A.

Aab,_.d) Ada® Ada¥ A ... Ada?
dA,. gAnda® Ada? A ... Ada?

Ay gdz? Adz¥ Ada” Ao Ad2¥ + ..+
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The operator d commutes with manifold maps, in the sense: if
¢ M—> M i8aC" (r > 2) map and A is a C* (k > 2) form field on .4,
then (by (2.7))

d(g*A) = g*(dA)
(which is equivalent to the chain rule for partial derivatives).

The operator d occurs naturally in the general form of Stokes’
theorem on a manifold. We first define integration of n-forms: let .#
be a compact, orientable #n-dimensional manifold with boundary 2.4
and let {f,} be a partition of unity for a finite oriented atlas {#,, ¢,}.
Then if A is an n-form field on .#, the integral of A over .# is defined as

f A=@m)y fodyy dida?..dem,  (2.10)
H a J $ou(¥q)
where 4,, , are the components of A with respect to the local co-
ordinates in the coordinate neighbourhood #,, and the integrals on
the right-hand side are ordinary multiple integrals over open sets
d.(%,) of R*. Thus integration of forms on .# is defined by mapping
the form, by local coordinates, into B and performing standard
multiple integrals there, the existence of the partition of unity
ensuring the global validity of this operation.

The integral (2.10) is well-defined, since if one chose another atlas
{¥3, ¥4} and partition of unity {g,} for this atlas, one would obtain
the integral

()13 f Gpdyy . ¥ da? ... da,
B Iy

where 2% are the corresponding local coordinates. Comparing these
two quantities in the overlap (%, n ¥}) of coordinate neighbourhoods
belonging to two atlases, the first expression can be written

(n‘)*lzz fagﬂAm...ndxl dxz"'dxn:
a B JofHgn¥g)

and the second can be written
m) 2z Fe9pAyy. . da¥ da¥ .. Ao,
a B JYp(¥an¥g)

Comparing the transformation laws for the form A and the multiple

integrals in R™, these expressions are equal at each point, so '[ Ais
-

independent of the atlas and partition of unity chosen.
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Similarly, one can show that this integral is invariant under
diffeomorphisms:
Jarer=f A
s v

if ¢ is a Cr diffeomorphism (r > 1) from .# to #".
Using the operator d, the generalized Stokes’ theorem can now be
written in the form: if B is an (n— 1)-form field on .4, then

f B=f dB,
oH M

which can be verified (see e.g. Spivak (1965)) from the definitions
above; it is essentially a general form of the fundamental theorem of
calculus. To perform the integral on the left, one has to define an
orientation on the boundary .4 of .#. This is done as follows: if %, is
a coordinate neighbourhood from the oriented atlas of .4 such that
%, intersects 0.4, then from the definition of 0.4, ¢,(%, n 0.4) lies in
the plane z! = 0 in R* and ¢,(%, n #) lies in the lower half 2! < 0.
The coordinates (2 23, ...,2™) are then oriented coordinates in the
neighbourhood %, N o.# of o.4. It may be verified that this gives an
oriented atlas on o.4.

The other type of differentiation defined naturally by the manifold
structure is Lie differentiation. Consider any CT (r > 1) vector field X
on .#. By the fundamental theorem for systems of ordinary differential
equations (Burkill (1956)) there is a unique maximal curve A(t) through
each point p of 4 such that A(0) = p and whose tangent vector at the
point A(t) is the vector X|,.. If {%} are local coordinates, so that the
curve A(t) has coordinates z*(¢) and the vector X has components X,
then this curve is locally a solution of the set of differential equations

dat/dt = Xi(x(2), ..., z™(t)).

This curve is called the integral curve of X with initial point p. For each
point g of .#, there is an open neighbourhood % of ¢ and an ¢ > 0 such
that X defines a family of diffeomorphisms ¢,: % —>.# whenever
|| < €, obtained by taking each point p in % a parameter distance ¢
along the integral curves of X (in fact, the ¢, form a one-parameter
local group of diffeomorphisms, as ¢, = ¢,0¢, = ¢,0¢, for
[t], |8], |t+3] <€, s0o ¢_;=(h)! and @, is the identity). This
diffeomorphism maps each tensor field T at p of type (r,s) into

¢l* Tl $p)
The Lie derivative Lg'T of a tensor field T with respect to X is
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defined to be minus the derivative with respect to ¢ of this family of
tensor fields, evaluated at ¢ = 0, i.e.

LxT|, = lim 2 (T|,~$,, T|,).
t—0

From the properties of ¢,, it follows that

(1) Lg preserves tensor type, i.e. if T is a tensor field of type (r, s),
then Ly T is also a tensor field of type (r,s);

(2) Lx maps tensors linearly and preserves contractions.

As in ordinary calculus, one can prove Leibniz’ rule:

(3) Forarbitrary tensors S, T, Lx(S® T)=LgS @ T+S ® Ly T.

Direct from the definitions:

(4) Lgf = Xf, where f is any function.

Under the map ¢,, the point ¢ = ¢_,(p) is mapped into p. Therefore
@ is a map from T, to T},. Thus, by (2.6),

(B f o = Y(d*lo

If {«*} are local coordinates in a neighbourhood of p, the coordinate
components of ¢, Y at p are

. ) , 0 )
(P Y)'lp = P Y'pﬂ':t = Y’lq'—— (=*(p))

oxi(q)
0xH(P«9)) v
- iy,

dxt ,
Now % = X% 50
d (0x'(d,(q)) _ Xt
therefore Cﬁ (W) io = o0 p,
, d ) oYt . oX*'._ .
80 (LY} = =3 (P V)| 1o = 55 X -7 17, (2.11)

One can rewrite this in the form
(Lx Y)f = X(Yf) - Y(Xf)
for all C? functions f. We shall sometimes denote Lz Y by [X, Y], i.e.
LyY = - LyX = [X,Y] = - [Y,X].

If the Lie derivative of two vector fields X, Y vanishes, the vector
fields are said to commute. In this case, if one starts at a point p, goes
a parameter distance ¢ along the integral curves of X and then a
parameter distance s along the integral curves of Y, one arrives at the
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same point as if one first went a distance s along the integral curves
of Y and then a parameter distance ¢ along the integral curves of X
(see figure 7). Thus the set of all points which can be reached along
integral curves of X and Y from a given point p will then form an
immersed two-dimensional submanifold through p.

Psvlgix(p))
= dix(@sv(p))

Ficure 7. The transformations generated by commuting vector fields X, Y
move a point p to points @,x(p), P.e(p) respectively. By successive applications
of these transformations, p is moved to the points of a two-surface.

The components of the Lie derivative of a one-form «w may be found
by contracting the relation

Lyw®Y)=Ilzw @Y+ ® LgY
(Lie derivative property (3)) to obtain
Lg(w,Y) = (Lyw, Y)+ (w, LYy
(by property (2) of Lie derivatives), where X, Y are arbitrary C*!

vector fields, and then choosing Y as a basis vector E;. One finds the
coordinate components (on choosing E; = 9/0z%) to be

(Lxw); = (0w,[0x?) X7 + w,(0X7[0x%)

because (2.11) implies
(Lx(0fox?)y = — 0X[ox?.

Similarly, one can find the components of the Lie derivative of any
Cr (r > 1) tensor field T of type (r, s) by using Leibniz’ rule on

LyTRE*®...QEQE,®...QF,),
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and then contracting on all positions. One finds the coordinate com-
ponents to be

(LgT)eb-4, = (2T%-4,,  [oa%) Xi— T4,  9Xa|oxt

— (all upper indices) -+ 7'e®-4,,  0X*[ox*+ (all lower indices).
(2.12)

Because of (2.7), any Lie derivative commutes with d, i.e. for any
p-form field o, d(Lgw) = Ly(dw).

From these formulae, as well as from the geometrical interpretation,
it follows that the Lie derivative LgT|, of a tensor field T of type
(r,s) depends not only on the direction of the vector field X at the
point p, but also on the direction of X at neighbouring points. Thus
the two differential operators defined by the manifold structure are
too limited to serve as the generalization of the concept of a partial
derivative one needs in order to set up field equations for physical
quantities on the manifold; d operates only on forms, while the
ordinary partial derivative is a directional derivative depending only
on a direction at the point in question, unlike the Lie derivative. One
obtains such a generalized derivative, the covariant derivative, by
introducing extra structure on the manifold. We do this in the next
section.

2.5 Covariant differentiation and the curvature tensor

The extra structure we introduce is a (affine) connection on 4.
A connection V at a point p of .# is a rule which assigns to each vector
field X at p a differential operator Vx which maps an arbitrary
Cr (r = 1) vector field Y into a vector field V3 Y, where:
(1) VgY is a tensor in the argument X, i.e. for any functions f, g,
and C! vector fields X, Y, Z,
VizigxZ = fVgZ +gVsZ;

(this is equivalent to the requirement that the derivative Vg at p
depends only on the direction of X at p);
(2) VgYislinearinY,i.e. for any C! vector fields Y, Z and o, S € R?,

(3) for any C* function f and C* vector field Y,
Vx(fY) = X(f)Y +fVgY.
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Then Vg Y is the covariant derivative (with respect to V) of Y in the
direction X at p. By (1), we can define VY, the covariant derivative of Y,
as that tensor field of type (1,1) which, when contracted with X,
produces the vector Vx Y. Then we have

(3) <= V(fY)=df@Y +fVY.

A Cr connection V on a C* manifold .# (k > r+2) is a rule which
assigns a connection V to each point such that if Y is a C+! vector field
on .4, then VY is a C* tensor field.

Given any C7+! vector basis {E,} and dual one-form basis {E*} on
a neighbourhood %, we shall write the components of VY as Y4, ,, so

VY = Y+, E*QE,.
The connection is determined on % by »® O functions I'¢,, defined by
I'e, = (E? Vg,E;) < VE, = ', E*QE,.
For any C! vector field Y,
VY =V(YE,)) = dY*®QE + Y°I'%,,E*’QE,.
Thus the components of VY with respect to coordinate bases {9/0x?},
{da?} are Ya,, = 0¥%/oub+ T4y, Y.
The transformation properties of the functions I',, are determined by
connection properties (1), (2), (3); for
[y = (B%, Vg, B, = (0, E4, Yoy 5,(0,E,)

= 0%, O (Bp( D) + D T'%,)
ifE, = ®,“E, E¥ = ®7, E“ One can rewrite this as

ey, = 0% (Ey(P,2) + Oy o D o T2,,).

In particular, if the bases are coordinate bases defined by coordinates
{x2}, {x*}, the transformation law is

_ 0x%( %@ + Oxb oxe
¥¢ T xa \0a¥ 0z ' oa¥ 9zt b))

o

Because of the term E,.(®,2), the I'?,, doA not transform as the compo-
nents of a tensor. However if VY and VY are covariant derivatives
obtained from two different connections, then

VY -¥Y = (I's,, — ') B’ QE,

will be a tensor. Thus the difference terms (F“bc—f‘“bc) will be the
components of a tensor.
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The definition of a covariant derivative can be extended to any
Cr tensor field if > 1 by the rules (cf. the Lie derivative rules):

(1) if T is a Cr tensor field of type (g, s), then VT is a C"1 tensor field
of type (g, s+ 1);

(2) V is linear and commutes with contractions;

(3) for arbitrary tensor fields S, T, Liebniz’ rule holds, i.e.

V(S®T)=VS®T+S®VT,;
(4) Vf = df for any function f.
We write the components of VT as (Vg,T)*4, = T4, .. As
a consequence of (2) and (3),

Vg, E¢ = ~ T, E°,
where {E¢} is the dual basis to {E,}, and methods similar to those used
in deriving (2.12) show that the coordinate components of VT are

Tav.d . o = gTabd, [oghy Tay Pit-d,
+ (all upper indices) — I'f, 794, — (all lower indices). (2.13)

As a particular example, the unit tensor E,® E%, which has compo-
nents 0%, has vanishing covariant derivative, and so the generalized
unit tensors with components §@, 8%, ...9%),, &y, %y ... (Sap]bp
(p < n) also have vanishing covariant derivatives.

If Tisa Cr (r > 1) tensor field defined along a C7 curve A(t), one can
define DT/ét, the covariant derivative of T along A(t), as V5, T where T
is any C tensor field extending T onto an open neighbourhood of A.
DT/ét is a Cr-! tensor field defined along A(t), and is independent of
the extension T. In terms of components, if X is the tangent vector
to A(t), then DTe-4 [ot = T*-4 ., X* In particular one can choose

local coordinates so that A(¢) has the coordinates x4(t), X@ = dz?/dt,
and then for a vector field Y
DYejot = 0Y %[0t + e, Yo dab/dt. (2.14)
The tensor T is said to be parallelly transported along A if DT /ot = 0.
Given a curve A(¢) with endpoints p, ¢, the theory of solutions of
ordinary differential equations shows that if the connection V is at
least C'~ one obtains a unique tensor at ¢ by parallelly transferring
any given tensor from p along A. Thus parallel transfer along A is a
linear map from 7"(p) to T"(q) which preserves all tensor products and
tensor contractions, so in particular if one parallelly transfers a basis
of vectors along a given curve from p to ¢, this determines an iso-
morphism of 7, to 7). (If there are self-intersections in the curve,
P and ¢ could be the same point.)
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A particular case is obtained by considering the covariant deriva-
tive of the tangent vector itself along A. The curve A(t) is said to be

a geodesic curve if
at\at),

is parallel to (9/0t),, i.e. if there is a function f (perhaps zero) such that
X4, X% = fXe. For such a curve, one can find a new parameter v(t)
along the curve such that

D (ﬁ) —0:

ow\ow/,

such a parameter is called an affine parameter. The associated tangent
vector V = (9/0v), is parallel to X but has its scale determined by
V(») = 1; it obeys the equations

d%xe da® dat
@t =0
the second expression being the local coordinate expression obtainable
from (2.14) applied to the vector V. The affine parameter of a geodesic
curve is determined up to an additive and a multiplicative constant,
i.e. up to transformations v’ = av+b where a, b are constants; the
freedom of choice of b corresponds to the freedom to choose a new
initial point A(0), the freedom of choice in @ corresponding to the
freedom to renormalize the vector V by a constant scale factor,
V' = (1/a) V. The curve parametrized by any of these affine parameters
is said to be a geodesic.

Given a C* (r > 0) connection, the standard existence theorems for
ordinary differential equations applied to (2.15) show that for any
point p of .# and any vector X, at p, there exists a maximal geodesic
Ag(v) in # with starting point p and initial direction X, i.e. such that
Ax(0) = p and (9/v),|,—o = X,,. If r > 1—, this geodesic is unique and
depends confinuously on p and X,,. If 7 > 1, it depends differentiably
on p and X,. This means that if » > 1, one can define a C* map exp:
T, — M, where for each X €T}, exp (X) is the point in .# a unit para-
meter distance along the geodesic Ax from p. This map may not be
defined for all XeT), since the geodesic Ax(v) may not be defined for
all ». If v does take all values, the geodesic A(v) will be said to be a
complete geodesic. The manifold .# is said to be geodesically complete
if all geodesics on .# are complete, that is if exp is defined on all 7}, for
every point p of A.

Whether .# is complete or not, the map exp,, is of rank n at p. There-
fore by the implicit function theorem (Spivak (1965)) there exists an

Ve, Vb =0 (2.15)
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open neighbourhood .A4; of the origin in 7}, and an open neighbourhood
A, of p in A such that the map exp is a C* diffeomorphism of .47,
onto 4. Such a neighbourhood 4, is called a normal neighbourhood
of p. Further, one can choose .4}, to be convez, i.e. to be such that any
point g of 4, can be joined to any other point r in .4, by a unique
geodesic starting at ¢ and totally contained in .#;,. Within a convex
normal neighbourhood 4" one can define coordinates (x%,...,2") by
choosing any point g €.4", choosing a basis {E,} of T}, and defining the
coordinates of the point r in A" by the relation r = exp (xz?E,) (i.e. one
assigns to r the coordinates, with respect to the basis {E,}, of the point
exp~(r) in 7}.) Then (9/0x%)|, = E; and (by (2.15)) I';|, = 0. Such
coordinates will be called normal coordinates based on q. The existence
of normal neighbourhoods has been used by Geroch (1968¢) to prove
that a connected C® Hausdorff manifold .# with a C' connection has
a countable basis. Thus one may infer the property of paracompactness
of a C3 manifold from the existence of a C! connection on the manifold.
The ‘normal’ local behaviour of geodesics in these neighbourhoods is
in contrast to the behaviour of geodesics in the large in a general space,
where on the one hand two arbitrary points cannot in general be
joined by any geodesic, and on the other hand some of the geodesics
through one point may converge to ‘focus’ at some other point. We
shall later encounter examples of both types of behaviour.

Given a CT connection V, one can define a Cr-1 tensor field T of
type (1, 2) by the relation

T(X, Y) = VxY—' Vyx— [X, Y],

where X, Y are arbitrary Cr vector fields. This tensor is called the
torsion tensor. Using a coordinate basis, its components are
Ty = Iy — T,

We shall deal only with torsion-free connections, i.e. we shall assume
T = 0. In this case, the coordinate components of the connection obey
I, = I'y;, so such a connection is often called a symmetric connec-
tion. A connection is torsion-free if and only if f,;; = f,;; for all func-
tions f. From the geodesic equation (2.15) it follows that a torsion-free
connection is completely determined by a knowledge of the geodesics
on .#.

When the torsion vanishes, the covariant derivatives of arbitrary C1
vector fields X, Y are related to their Lie derivative by

[X,Y] = Vg Y — Vg X< (Lg Y)* = Yo, Xo— X, ¥b, (2.16)
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and for any C? tensor field T of type (r, s) one finds
(LXT)ab"'def...a = Tab...defmg;hXh_ ijmdef...gXa;j
— (all upper indices) + T9--4,. X7, + (all lower indices). (2.17)

One can also easily verify that the exterior derivative is related to the
covariant derivative by

dA = Aa...c; ddxd Adz®A ... A dae <> (dA)a...cd = (_ )pA[a...c; db

where A is any p-form. Thus equations involving the exterior deriva-
tive or Lie derivative can always be expressed in terms of the co-
variant derivative. However, because of their definitions, the Lie
derivative and exterior derivative are independent of the connection.

If one starts from a given point p and parallelly transfers a vector
X, along a curve y that ends at p again, one will obtain a vector X',
which is in general different from X, ; if one chooses a different curve
7', the new vector one obtains at p will in general be different from
X, and X’,. This non-integrability of parallel transfer corresponds to
the fact that the covariant derivatives do not generally commute. The
Riemann (curvature) tensor gives a measure of this non-commutation.
Given C™lvector fields X, Y, Z, a Cr-1vector field R(X, Y) Z is defined
by a C" connection V by

R(X, Y)Z = Vx(VY Z)—VY(VXZ)_VIX,Y]Z' (2.18)
Then R(X,Y)Z is linear in X,Y,Z and it may be verified that the
value of R(X, Y)Z at p depends only on the valuesof X, Y, Z at p, i.e,
it is a Cr-! tensor field of type (3,1). To write (2.18) in component

form, we define the second covariant derivative VVZ of the vector Z
as the covariant derivative V(VZ) of VZ; it has components

Za;bc = (Za;b);c'
Then (2.18) can be written
'RabchchZb = (Za;d Yd);cXc— (Za;dXd);c Ye

—Za;d(Yd;cXc'"Xd;c Yc)
= (Za; dc_Za;cd) Xch,

where the Riemann tensor components R?,; with respect to dual
bases {E,}, {E%} are defined by R%,.; = (E*, R(E,, E;)E,>. As X, Y are
arbitrary vectors, 28, 4= 20, o = ROy 20 (2.19)
expresses the non-commutation of second covariant derivatives of Z
in terms of the Riemann tensor.
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Since
Vi(n®VyZ) = Vgn@Vy Z +n®VxVy Z
=M, VgVy Z) = X((n,VxZ)) — (Vgn, Vy Z)

holds for any C? one-form field vy and vector fields X, Y, Z, (2.18)
implies

(E%, R(E,, Ey) E,) = E(CE?, Vg, Ep)) — E4(CE?, Vg, E}))

— Ve, E%, Vg, Ey) + (Vg E%, Vg, Ey) — (B, Vg, 5, Ey).
Choosing the bases as coordinate bases, one finds the expression
Rey ;= o0y, |0x° — T2 [028 + T2, T 3y — T2 TV (2.20)

for the coordinate components of the Riemann tensor, in terms of the
coordinate components of the connection.

It can be verified from these definitions that in addition to the
symmetry Ry = — Ro%gp<> Ry = 0 (2.210)
the curvature tensor has the symmetry

Ropeqy = 0> R%q+ Ry + R% gy = 0. (2.21b)

Similarly the first covariant derivatives of the Riemann tensor satisfy
Bianchi’s identities
Rab[cd;e] = OéRabcd;e'l'Rabec;d“l'Rabde;c = 0. (2'22)

It now turns out that parallel transfer of an arbitrary vector along
an arbitrary closed curve is locally integrable (i.e. X', is necessarily the
same as X, for each p e .#) only if R%, ; = 0 at all points of .#; in this
case we say that the connection is flat.

By contracting the curvature tensor, one can define the Ricci tensor
as the tensor of type (0, 2) with components

R,y = Ry

2.6 The metric

A metric tensor g at a point p e A is a symmetric tensor of type (0, 2)
at p, s0 a Cr metric on .# is a C* symmetric tensor field g. The metric g
at p assigns a ‘magnitude’ (|g(X,X)|)t to each vector Xe7), and
defines the ‘cos angle 9(X.Y)

(JoX, X).g(Y, Y)[)

between any vectors X, Y € T}, such that ¢(X, X).g(Y,Y) * 0; vectors
X, Y will be said to be orthogonal if ¢(X,Y) = 0.
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The components of g with respect to a basis {E} are

9ap = 9(Eq, By) = g(Ey, Ey),

i.e. the components are simply the scalar products of the basis vectors
E,. If a coordinate basis {0/0x2} is used, then

g = g, dz*®@dad. (2.23)

Tangent space magnitudes defined by the metric are related to
magnitudes on the manifold by the definition: the path length between
points p = y(a) and ¢ = y(b) along a C° piecewise C! curve y(¢) with
tangent vector 0/t such that g(8/0t, 9/ot) has the same sign at all points
along y(t), is the quantity

L= f b(|g(8/9t, ojet)|) at. (2.24)

We may symbolically express the relations (2.23), (2.24) in the form
ds? = g,; da? da

used in classical textbooks to represent the length of the ‘infinitesimal’
arc determined by the coordinate displacement af— 2?4 da®.

The metric is said to be non-degenerate at p if there is no non-zero
vector X €7, such that (X, Y) = 0 for all vectors Y € T,. In terms of
components, the metric is non-degenerate if the matrix (g,,) of com-
ponents of g is non-singular. We shall from now on always assume the
metric tensor is non-degenerate. Then we can define a unique sym-
metric tensor of type (2, 0) with components g* with respect to the
basis {E,} dual to the basis {E%}, by the relations

gabgbc = §%,
i.e. the matrix (g2°) of components is the inverse of the matrix (g,,).
It follows that the matrix (¢g#°) is also non-singular, so the tensors
g°®, g, can be used to give an isomorphism between any covariant
tensor argument and any contravariant argument, or to ‘raise and
lower indices’. Thus, if X¢ are the components of a contravariant
vector, then X, are the components of a uniquely associated covariant
vector, where X, = g,, X%, X® = ¢%X,; similarly, to a tensor T, of
type (0, 2) we can associate unique tensors T, = g%T, T b = ¢*T, ,
Tab = goacgbdT .. We shall in general regard such associated covariant
and contravariant tensors as representations of the same geometric
object (soinparticular,g,,, §,°and g may be thought of asrepresenta-
tions (with respect to dual bases) of the same geometric object g),
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although in some cases where we have more than one metric we shall
have to distinguish carefully which metric is used to raise or lower
indices.

The signature of g at p is the number of positive eigenvalues of the
matrix (g,,) at p, minus the number of negative ones. If g is non-
degenerate and continuous, the signature will be constant on .#; by
suitable choice of the basis {E,}, the metric components can at any
point p be brought to the form

Jep = diag(+1, +1,...,+1, —1,..., = 1),
——— e
3(n+s) terms  ¥(n — s) terms
where s is the signature of ¢ and » is the dimension of .#. In this case
the basis vectors {E,} form an orthonormal set at p, i.e. each is a unit
vector orthogonal to every other basis vector.

A metric whose signature is n is called a posttive definite metric; for
such a metrie, ¢g(X,X) = 0 = X = 0, and the canonical form is

Jap = diag (+1,..., +1).
)
n terms

A positive definite metric is a ‘metric’ on the space, in the topological
sense of the word.

A metric whose signature is (n—2) is called a Lorentz metric; the
canonical form is

Jop = diag(+1,..., +1, — 1),
| S
(n— 1) terms

With a Lorentz metric on .#, the non-zero vectors at p can be divided
into three classes: a vector X €7}, being said to be timelike, null, or
spacelike according to whether g(X, X) is negative, zero, or positive,
respectively. The null vectors form a double cone in 7, which separates
the timelike from the spacelike vectors (see figure 8). If X, Y are any
two non-spacelike (i.e. timelike or null) vectors in the same half of the
light cone at p, then g(X,Y) < 0, and equality can only hold if X and
Y are parallel null vectors (i.e. if X = aY, ¢(X, X) = 0).

Any paracompact Cr manifold admits a Cr—1 positive definite metric
(that is, one defined on the whole of .#). To see this, let {f,} be a parti-
tion of unity for a locally finite atlas {#,, ¢,}. Then one can define g by

g(X’ Y) = %fa<(¢a)* X, (¢a)* Y>’

where { , ) is the natural scalar product in Euclidean space R;
thus one uses the atlas to determine the metric by mapping the
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En

Null cone

Null vectors lie
_~ on the null cones

Spacelike vectors lie
outside the nuil cones

E.,
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Timelike vectors
lie inside the
null cones

Null cone

F1GURE 8. The null cones defined by a Lorentz metric.

Euclidean metric into .#. This is clearly not invariant under change of
atlas, so there are many such positive definite metrics on .#.

In contrast to this, a C" paracompact manifold admits a Cr?
Lorentz metric if and only if it admits a non-vanishing C™! line
element field; by a line element field is meant an assignment of a pair
of equal and opposite vectors (X, — X) at each point p of A4, i.e. a line
element field is like a vector field but with undetermined sign. To see
this, let § be a (7! positive definite metric defined on the manifold.
Then one can define a Lorentz metric g by
IX, Y)9(X,Z)

X, X)

at each point p, where X is one of the pair (X, — X) at p. (Note that as
X appears an even number of times, it does not matter whether X or
— X is chosen.) Then ¢(X, X) = — §(X, X), and if Y, Z are orthogonal
to X with respect to g8, they are also orthogonal to X with respect to
g and ¢(Y,Z) = §(Y,Z). Thus an orthonormal basis for g is also an
orthonormal basis for g. As § is not unique, there are in fact many

9(Y,Z)=9(Y,Z)-2
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Lorentz metrics on # if there is one. Conversely, if g is a given
Lorentz metric, consider the equation g,, X> = Ad,, X° where g is any
positive definite metric. This will have one negative and (n—1)
positive eigenvalues. Thus the eigenvector field X corresponding to
the negative eigenvalue will locally be a vector field determined up to
a sign and a normalizing factor; one can normalize it by g,, X2X% = — 1,
so defining a line element field on #.

In fact, any non-compact manifold admits a line element field,
while a compact manifold does so if and only if its Euler invariant is
zero (e.g. the torus T2 does, but the sphere 82 does not, admit a line
element field). It will later turn out that a manifold can be a reasonable
model of space-time only if it is non-compact, so there will exist many
Lorentz metrics on 4.

So far, the metric tensor and connection have been introduced as
separate structures on .#. However given a metric g on .#, there is
a unique torsion-free connection on .# defined by the condition: the
covariant derivative of g is zero, i.e.

Jap;e = 0. (2.25)
With this connection, parallel transfer of vectors preserves scalar
products defined by g, so in particular magnitudes of vectors are
invariant. For example if /0t is the tangent vector to a geodesic, then
g(o]et, o/ot) is constant along the geodesic.

From (2.25) it follows that

X(9(Y,Z)) = Vx(9(Y,Z)) = Vx9(Y,Z) +9(Vx Y, Z)
+9(Y,VxZ) = g(VxY,Z)+¢(Y,Vx Z)
holds for arbitrary C* vector fields X, Y, Z. Adding the similar expres-
sion for Y(g(Z,X)) and subtracting that for Z(¢(X,Y)) shows

9(Z,VxY) = {-Z(¢(X,Y)) + Y(9(Z,X)) + X(9(Y, Z))

Choosing X, Y, Z as basis vectors, one obtains the connection
components I‘abc = g(Em VE;, Ec) = Gad dec
in terms of the derivatives of the metric components g,, = ¢(E,, E;),
and the Lie derivatives of the basis vectors. In particular, on using
a coordinate basis these Lie derivatives vanish, so one obtains the
usual Christoffel relations

1-‘abc = %{agab/ ox® + agac/ axb_ agbc/ axa} (2'26)

for the coordinate components of the connection.
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From now on we will assume that the connection on .# is the unique
Cr1torsion-free connection determined by the C" metric g. Using this
connection, one can define normal coordinates (§2.5) in a neighbour-
hood of a point ¢ using an orthonormal basis of vectors at ¢. In these
coordinates the components g,, of ¢ at ¢ will be +4,, and the compo-
nents I', of the connection will vanish at ¢. By ‘normal coordinates’,
we shall in future mean normal coordinates defined using an ortho-
normal basis.

The Riemann tensor of the connection defined by the metric is a
Cr—2 tensor with the symmetry

Bipyea = 0 Bopeg = — Rypeq (2.27a)

in addition to the symmetries (2.21); as a consequence of (2.21) and
(2.27a), the Riemann tensor is also symmetric in the pairs of indices

{ab}, {cd}, i.e. Ry = Roguy. (2.27b)
This implies that the Ricci tensor is symmetric:
R, =R, (2.27¢)
The curvature scalar R is the contraction of the Ricci tensor:
R = R%, = R%59™.

With these symmetries, there are #m%n?— 1) algebraically inde-
pendent components of B, ;, where % is the dimension of M; n(n + 1)
of them can be represented by the components of the Ricei tensor. If
n =1, Ry.3=0; if n =2 there is one independent component of
R .4, which is essentially the function R. If n = 3, the Ricci tensor
completely determines the curvature tensor; if » > 3, the remaining
components of the curvature tensor can be represented by the Weyl
tensor C,p.4, defined by

2
n—2

2
Cavea = Bopea+ {9ata Bap + 9uic Bara} + "D m=2) Bgoic9as-

As the last two terms on the right-hand side have the curvature tensor
symmetries (2.21), (2.27), it follows that C,,.; also has these sym-
metries. One can easily verify that in addition,

Cabad =0,

i.e. one can think of the Weyl tensor as that part of the curvature
tensor such that all contractions vanish.
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An alternative characterization of the Weyl tensor is given by the
fact that it is a conformal invariant. The metrics g and § are said to

be conformal if g =Q (2.28)

for some non-zero suitably differentiable function Q. Then for any
vectors X, Y, V, W at a point p,

9X.Y) 9X)Y)

g(V,W) ~ §(V, Wy’

80 angles and ratios of magnitudes are preserved under conformal
transformations; in particular, the null cone structure in 7, is pre-
served by conformal transformations, since

9X,X)>0,=0, <0=>3X,X)>0, =0, <0,

respectively. As the metric components are related by

gab = ngab’ gab = Q—zgab’

the coordinate components of the connections defined by the metrics
(2.28) are related by
oQ oQ

fa,, = I+ Q- (8“b%+ aaca—x—b-gwgadg) . (2.29)
Calculating the Riemann tensor of &, one finds
Rabyy = Q2R ;4 81, Q0
where Q= 4Q-HQ), g% — 2QY), (Q1), 49°96%;

the covariant derivatives in this equation are those determined by the
metric g. Then (assuming n > 2)

by = QR+ (1= 2) QHQ ), g (1= 2) QA1) g8
arnd Oabcd = Cabcd’

the last equation expressing the fact that the Weyl tensor is con-
formally invariant. These relations imply

B =QR-2(n-1)Q%Q 0%~ (n—1)(n—4) Q4Q. Q. ,g°. (2.30)

Having split the Riemann tensor into a part represented by the
Ricci tensor and a part represented by the Weyl tensor, one can use
the Bianchi identities (2.22) to obtain differential relations between
the Ricci tensor and the Weyl tensor: contracting (2.22) one obtains

R%i;0 = Rog;c— Boe;a (2.31)
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and contracting again one obtains
Rac;a = iR ;e

From the definition of the Weyl tensor, one can (if » > 3) rewrite
(2.31) in the form

n—3 1
C%ea;a = 2n__'—2(Rb[d;c]"2(n—_1)gb[dR;c])) . (2.32)

If n < 4, (2.31) contain all the information in the Bianchi identities
(2.22), so if n = 4, (2.32) are equivalent to these identities.

A diffeomorphism ¢: .# — A will be said to be an isometry if it
carries the metric into itself, that is, if the mapped metric ¢, g is equal
to g at every point. Then the map @,:T,— Ty, preserves scalar
products, as

g(X> Y)lp = ¢* g(¢* X’ ¢* Y)'¢(p) = g(¢* X’ ¢*Y)]¢(p)'

If the local one-parameter group of diffeomorphisms ¢, generated
by a vector field K is a group of isometries (i.e. for each ¢, the trans-
formation ¢, is an isometry) we call the vector field K a Killing vector
Jield. The Lie derivative of the metric with respect to K is

.1

since § = ¢, 48 for| each ¢t. But from (2.17), Lgg,, = 2K(,. 4, s0 a
Killing vector field K satisfies Killing’s equation

K, +K,,,=0. (2.33)

Conversely, if K is a vector field which satisfies Killing’s equation,
then Lgg = 0, so

td
¢¢*glp = g|p+foa7(¢l'#g)|p s’
td
= glp +fo€9(¢‘l * ¢s #8)s0 lpdt,

=g, +J: (¢t'*((11_8¢s*g)

t
= g|p—f0 P s (Lx8|s_y) At = 8|,

¢’

p

8=0

Thus K is a Killing vector field if and only if it satisfies Killing’s equa-
tion. Then one can locally choose coordinates 2® = (2%,2) (v = 1ton—1)
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such that K¢ = dx%/ot = 69,; in these coordinates Killing’s equation
takes the form 3us] O = 0<>gup = Gunl@).

A general space will not have any symmetries, and so will not admit
any Killing vector fields. However a special space may admit
linearly independent Killing vector fields K, (@ = 1,...,7). It can be
shown that the set of all Killing vector fields on such a space forms a
Lie algebra of dimension r over R, with the algebra product given by
the Lie bracket [ , ] (see (2.16)), where 0 < r < in(n+1). (The
upper limit may be lessened if the metric is degenerate.) The local
group of diffeomorphisms generated by these vector fields is an
r-dimensional Lie group of isometries of the manifold .#. The full
group of isometries of .# may include some discrete isometries (such
as reflections in a plane) which are not generated by Killing vector
fields; the symmetry properties of the space are completely charac-
terized by this full group of isometries.

2.7 Hypersurfaces

If & is an (n — 1)-dimensional manifold and §: &~ .# is an imbedding,
the image (%) of & is said to be a hypersurface in 4. If pe.¥#, the
image of T}, in Ty, under the map 6, will be a (n — 1)-dimensional plane
through the origin. Thus there will be some non-zero form neT'*,,,
such that for any vector XeT),, (n,0, X} = 0. The form n is unique
up to a sign and a normalizing factor, and if (%) is given locally by
the equation f = 0 where df + 0 then n may be taken locally as df.
If 6(%) is two-sided in .#, one can choose n to be a nowhere zero
one-form field on 8(%). This will be the situation if & and 4 are both
orientable manifolds. In this case, the choice of a direction of n will
relate the orientations of (%) and of .#: if {x*} are local coordinates
from the oriented atlas of # such that locally 6(%) has the equation
2! = 0 and n = ada! where a > 0, then (22, ...,2") are oriented local
coordinates for 6(%).

If g is a metric on .#, the imbedding will induce a metric 6*g on &,
where if X,YeT,, 0*¢(X,Y)|, = 9(0+X,0,Y)|4p- This metric is
sometimes called the first fundamental form of . If g is positive
definite the metric 6*g will be positive definite, while if g is Lorentz,
0*g will be

(@) Lorentz if g®n,n, > 0 (in this case, (%) will be said to be a
timelike hypersurface),
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(b) degenerate if g*®n,n, = 0 (in this case, 6(<’) will be said to be a
null hypersurface),

(¢) positive definite if g%%n,n, < O (in this case, (%) will be said to
be a spacelike hypersurface).

To see this, consider the vector N® = n,g%. This will be orthogonal
to all the vectors tangent to 6(), i.e. to all vectors in the subspace
H = 0,(T,) in Ty,). Suppose first that N does not itself lie in this
subspace. Then if (E,, ..., E,) are a basis for 7, (N, 04(E,), ..., 0,(E,))
will be linearly independent and so will be a basis for Zj,. The compo-
nents of g with respect to this basis will be

_ (g(N, N) 0 ) _ (g(N, N) 0 )

o=\ 0 g0.E), 6,E)) T\ 0 0%(E,E))
As the metric g is assumed to be non-degenerate, this shows that
g(N,N) =+ 0. If g is positive definite, (N, N) must be positive and so
the induced metric #*g must also be positive definite. If g is Lorentz
and g(N, N) = g®n_n, < 0, then 0*g must be positive definite since
the matrix of the components of g has only one negative eigenvalue.
Similarly if g(N, N) = ¢*n,n, > 0, then 6*g will be a Lorentz metric.
Now suppose that N is tangent to 6(%). Then there is some non-zero
vector X €7, such that 6,(X) = N. But g(N,0,Y) = 0 for all YeT,,,
which implies 6* g(X,Y) = 0. Thus 6*g is degenerate. Also, taking
Y to be X, g(N,N) = ¢%n,n, = 0.

If g®n,n, + 0, one can normalize the normal form n to have unit
magnitude, i.e. g®n,n, = + 1. In this case the map 0%: T, > T*,
will be one—one on the (n— 1)-dimensional subspace H*y, of T'*,,,
consisting of all forms w at 6(p) such that g*nr,w, = 0, because
0*n = 0 and n does not lie in H*. Therefore the inverse (6*)~1 will be
a map 6, of T*, onto H*,,, and so into T'*,,.

This map can be extended in the usual way to a map of covariant
tensors on & to covariant tensors on 6(%) in .#; as there already is
a map 0, of contravariant tensors on & to (), one can extend @, to
amap , of arbitrary tensors on & to (). This map has the property
that 8, T has zero contraction with n on all indices, i.e.

(5*T)a'"bc.,.dna =0 and (g*T)a'"bc...dgcene =0
for any tensor T eT%(.%).
The tensor h on (%) is defined by h = §,(6*g). In terms of the
normalized form n (remember g%n,n, = + 1),

hab = Gap F Moy

since this implies *h = ¢*g and k. g%n, = 0.

https://doi.org/10.1017/cB097805 2 aMmbridge R dliRerParmigdondrivassily Press, 2009


https://doi.org/10.1017/CBO9780511524646.003

46 DIFFERENTIAL GEOMETRY [2.7

The tensor k%, = g*h,, is a projection operator, i.e. h% k%, = k%, It
projects a vector X € Ty, into its part lying in the subspace H = 0,(T,)
of Ty,, tangent to 6(),

Xo = b2 XP + nn, XO,
where the second term represents the part of X orthogonal to 8(%).
Also h%, projects a form «w €T ¥y, into its part lying in the subspace

* .
H o w, = b, w, + n,nbw,.

Similarly one can project any tensor T e T%(6(p)) into its part in
H(0(p)) = Hyp®... @ Hyp) @H} (1 ® ... @ H),
r factors s factors

i.e. its part which is orthogonal to n on all indices.

The map 6, is one—one from T, to Hy,,. Therefore one can define
a map G* from Ty, to T}, by first projecting with A%, into Hy, and then
using the inverse (6),~. As one already has a map 6* of forms on (%)
to forms on &, one can extend the definition of 6* to a map 8* of
tensors of any type on () to tensors on #. This map has the property
that §*(4,T) = T for any tensor T eT%(p) and §,(F*T) = T for any
tensor T eH%(0(p)). We shall identify tensors on & with tensors in
Hr on 6(%) if they correspond under the maps &,, 6*. In particular,
h can then be regarded as the induced metric on ().

If i is any extension of the unit normal n onto an open neighbour-
hood of (%) then the tensor  defined on 6(%) by

— d 7
Xab = hcak bnc;d

is called the second fundamental form of &. 1t is independent of the
extension, since the projections by k%, restrict the covariant deriva-
tives to directions tangent to 0(%). Locally the field i can be expressed
in the form fi = a df where f and « are functions on .# and f = 0 on
6(Z). Therefore y,, must be symmetric, since f.,;, = f5, andf,  h% = 0.

The induced metric h = 6*g on & defines a connection on &. We
shall denote covariant differentiation with respect to this connection
by a double stroke, ||. For any tensor T € Hf,

Tambc...dlle = Ti'"jk...l;mhai o hbjhkc oo By,

where T is any extension of T to a neighbourhood of §(%). This
definition is independent of the extension, as the ks restrict the
covariant differentiation to directions tangential to 6(). To see this
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is the correct formula, one has only to show that the covariant deriva-
tive of the induced metric is zero and that the torsion vanishes. This
follows because

kabllc = (gef; "_"eﬁf);aheakfbh”c =0,

and fllab = heahgbf eg = heahabf e = f iba*

The curvature tensor R’ ; of the induced metric h can be related
to the curvature tensor R%,; on 6(%) and the second fundamental
form y as follows. If Ye H is a vector field on (%), then

R, Y0 = Vo,— Y%,
Now

Y50 = (Yahe = (Yo, 10, 0%,),  ho bR,
= Ye ko bl hE, T Ye, Wm0, by he e T Y, IRy Rl B R,
and Ye, g = (YR,), hly— YR, [h7y = — YT, W',
since Yi, = 0 on (&), therefore
R'oq YO = (B k%R B g & Xpa X% F XoeX%a) YO
Since this holds for all Ye H,
R'oyq = R R RO WO R 4 & X% Xpa F X*a Xoe- (2.34)
This is known as Gauss’ equation.
Contracting this equation on @ and ¢ and multiplying by A%, one
obtains the curvature scalar B’ of the induced metric:
R’ = BT 2R,,n™n® + (X% F XX - (2.35)

One can derive another relation between the second fundamental
form and the curvature tensor R%,; on 6() by subtracting the

expressions (X% = (7%, qh%,), %
and (Xab)lla = (ﬁc;dhachde);fhfaheb:
finding X%ia= X% = Boynhe,. (2.36)

This is known as Codacci’s equation.
2.8 The volume element and Gauss’ theorem

If {E%} is a basis of one-forms, one can form from it the n-form

e=n!ELAE2A ... AE",
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If {E“}, related to {E?} by E* = ®% E9, is another basis, the n-form
€’ defined by this basis will be related to € by

€ = det (9%))e,

8o this form is not unique. However, one can use the existence of the
metric to define (in a given basis) the form

n=|glte
where g = det (g,;). This form has components
Nav..a = 1! 9|28, 0% ... 67y

The transformation law for g will just cancel the determinant,
det (®7,), provided that det (®+’,) > 0. Therefore if .# is orientable
the n-forms ) defined by coordinate bases of an oriented atlas will be
identical, i.e. given an orientation of .#, one can define a unique
n-form field v, the canonical n-form, on A.

The contravariant antisymmetric tensor

”ab...d — gaegbf . gdh”ef N
has components

gob-d = (- )9t [g|} la 80, ... 891,

where s is the signature of g (so 3(n—s) is the number of negative
eigenvalues of the matrix of metric components (g,,)). Therefore these
tensors satisfy the relations

ﬂab"‘d"le/...h = (= )Jn-9n!de, 3bf oo 8%, (2.37)

The Christoffel relations imply that the covariant derivatives of
Nab... g and 9284 with respect to the connection defined by the metric

vanish, i.e.
ab...d —_ () =
7 e 0= nab...d;e'

Using the canonical »-form, one can define the volume (with respect
to the metric g) of an n-dimensional submanifold % as %f n.
‘e

Thus n can be regarded as a positive definite volume measure on .#.
We shall often use it in this sense, and shall denote it by dv. Note that
d is not meant to represent the exterior differential operator here; dv
is simply a measure on .. If f is a function on .#, one can define its
integral over % with respect to this volume measure as

[
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With respect to local oriented coordinates {x°}, this can be expressed
as the multiple integral

f flgltdatda? .. dan,
L4

which is invariant under a change of coordinates.
If X is a vector field on .#, its contraction with v will be an (n— 1)-
form field X ., where
(X.n)s...a = Xgp...a-

This (n— 1)-form may be integrated over any (n— 1)-dimensional
compact orientable submanifold ¥". We write this integral as

1
J, et = g [ Xon

where the canonical form v is regarded as defining a measure-valued
form do, on the submanifold ¥”. If the orientation of ¥” is given by
the direction of the normal form n,, then do, can be expressed as
n,do where do is a positive definite volume measure on the sub-
manifold ¥". The volume measure do is not unique unless the normal
7, is normalized. If n, is normalized to unit magnitude in a metric g
on.#,i.e. n,n,g*® = + 1, then do is equal to the volume measure on ¥~
defined by the induced metric on ¥~ (to see this, simply choose an
orthonormal basis with n,g% as one of the basis vectors).

Using the canonical form, one can derive Gauss’ formula from
Stokes’ theorem: for any compact n-dimensional submanifold % of .4,

1 1 '
Xdo, =— | Xp=—uo—| dX.n).
s e (n—1)!faq, n (n—l)!_[,,( n)

(dX.0))a...qe = (= )" (Xyiq...a); 1
= ("' )n—l 3s[a wee 8td Juc] ”ﬂs...tX”;u

But

1 ,
= (- )("_1)_5(1‘_8),'?778"":“ Na...deNygs...t X”;u
= ﬂa...deas[s 6tt6ug]Xa;u
= n—l"’a... deXa;g’

on using relation (2.37) twice. Therefore

Xedo, = f Xo,,dv
o @
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holds for any vector field X; this is Gauss’ theorem. Note that the
orientation on % for which this theorem is valid is that given by the
normal form v such that {n, X} is positive if X is a vector which points
out of %. If the metric g is such that gobn,n, is negative, the vector
g*®®n,, will point into %.

2.9 Fibre bundles

Some of the geometrical properties of a manifold .# can be most
easily examined by constructing a manifold called a fibre bundle,
which is locally a direct product of .4 and a suitable space. In this
section we shall give the definition of a fibre bundle and shall consider
four examples that will be used later: the tangent bundle T'(.#), the
tensor bundle T%(.#), the bundle of linear frames or bases L(.#), and
the bundle of orthonormal frames O(.#).

A C* bundle over a C? (s > k) manifold .# is a C* manifold & and
a C* surjective map m: & — .#. The manifold & is called the total space,
A is called the base space and 7 the projection. Where no confusion
can arise, we will denote the bundle simply by &. In general, the
inverse image m(p) of a point p € .# need not be homeomorphic to
7~1(q) for another point ¢ €.#. The simplest example of a bundle is
a product bundle (M x o7, M, ) where 2/ is some manifold and the
projection 7 is defined by #(p,v) = pforall pe 4, ve /. For example,
if one chooses .# as the circle S and o7 as the real line R, one con-
structs the cylinder C? as a product bundle over §2.

A bundle which is locally a product bundle is called a fibre bundle.
Thus a bundle is a fibre bundle with fibre & if there exists a neighbour-
hood % of each point g of .4 such that 7=1(%) is isomorphic with % x %,
in the sense that for each point p e % there is a diffeomorphism ¢, of
7~ 1(p) onto F such that the map ¥ defined by yr(u) = (m(u), d) is
a diffeomorphism ¢: 7~Y %) > % x & . Since # is paracompact, we
can choose a locally finite covering of .# by such open sets #,. If
«, and U, are two members of such a covering, the map

(¢a, p) o (¢ﬂ, p_l)

is a diffeomorphism of F onto itself for each p € (%, n %). The inverse
images 7m~Y(p) of points pe.# are therefore necessarily all diffeo-
morphic to & (and so to each other). For example, the Mobius strip
is a fibre bundle over S* with fibre R'; we need two open sets %,, %,
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to give a covering by sets of the form % x R!. This example shows that
if a manifold is locally the direct product of two other manifolds, it is
nevertheless not, in general, a product manifold; it is for this reason
that the concept of a fibre bundle is so useful.

The tangent bundle T(.#) is the fibre bundle over a C* manifold .#

obtained by giving the set & = U 7T}, its natural manifold structure
pef

and its natural projection into .#. Thus the projection 7 maps each
point of 7}, into p. The manifold structure in & is defined by local
coordinates {24} in the following way. Let {«?} be local coordinates in
an open set % of .#. Then any vector Ve T, (for any pe#) can be
expressed as V = Vi9/ox?|,. The coordinates {z4} are defined in
7Y %) by {z4} = {«%, V2}. On choosing a covering of .# by coordinate
neighbourhoods %, the corresponding charts define a C¥-! atlas on &
which turn it into a C*-1 manifold (of dimension n?); to check this, one
needs only note that in any overlap (%, n %) the coordinates {«,} of
a point are C* functions of the coordinates {2} of the point, and the
components {V4,} of a vector field are C¥-! functions of the compo-
nents {V“ﬂ} of the vector field. Thus in 7=Y(%, N %), the coordinates
{z4,} are C*~1 functions of the coordinates {z4,}.

The fibre 771(p) is 7}, and so is a vector space of dimension n. This
vector space structure is preserved by the map ¢, ,: T, B, which
is given by ¢, ,(u) = V(u), i.e. ¢, , maps a vector at p into its com-
ponents with respect to the coordinates {z?,}. If {x%;} are another set
of local coordinates then the map (@, ,)0 (¢, ,7?) is a linear map of
R» onto itself. Thus it is an element of the general linear group
GL(n, R) (the group of all non-singular » x » matrices).

The bundle of tensors of type (r,s) over .#, denoted by T%5(.#), is

defined in a very similar way. One forms the set & = U T%(p), defines
peM

the projection 7 as mapping each point in T%(p) into p, and, for any
coordinate neighbourhood % in .#, assigns local coordinates {z4} to
7Y U) by {24} = {«t, T*--b, ,} where {x'} are the coordinates of the
point p and {T'¢--2, ;1 are the coordinate components of T (that is,
T = Te%, ;0[02*°®...®dx? ). This turns & into a C¥-! manifold of
dimension »7+st1; any point u in T%(.#) corresponds to a unique
tensor T of type (r,s) at m(u).

The bundle of linear frames (or bases) L(.#) is a C*-! fibre bundle
defined as follows: the total space & consists of all bases at all points
of A, that is all sets of non-zero linearly independent n-tuples of
vectors {E, }, E, € T, for each p € A4 (aruns from 1 ton). The projection
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7 is the natural one which maps a basis at a point p to the point p. If
{x*} are local coordinates in an open set % < .#, then

{z4} = {a*, B, Ej*, ..., E,™}
are local coordinates in 7-Y(%),-where E 7 is the jth components of the
vector E, with respect to the coordinate bases 9/dx*. The general
linear group GL(n, R) acts on L(.#) in the following way: if {E,} is
a basis at pe #, then AeGL(n, R) maps u = {p,E,} to
A(u) = {p’ Aab Eb}'

When there is a metric g of signature s on .#, one can define a sub-
bundle of L(.#), the bundle of orthonormal frames O(.#), which con-
sists of orthonormal bases (with respect to g) at all points of .#.
O(#) is acted on by the subgroup O(}(n+s), 4(n—s)) of GL(n,R).
This consists of the non-singular real matrices 4, such that

A GoeAge = Gogy
where G, is the matrix
diag(il, +1,...,+1, - 1, —-1,...,=1).
#(n+s) terms  }(n—s) terms
It maps (p,E,) € O(A#) to (p, A E,) € O(A). In the case of a Lorentz
metric (i.e. s = n— 2), the group O(n— 1, 1) is called the n-dimensional
Lorentz group.

A Cr cross-section of a bundle is a C" map ®@: # — & such that o @
is the identity map on .#; thus a cross-section is a Cr assignment to
each point p of # of an element ®(p) of the fibre 7~1(p). A cross-
section of the tangent bundle T'(.#) is a vector field on .#; a cross-
section of T(.#) is a tensor field of type (r, s) on .#; a cross-section of
L(.#) is a set of n non-zero vector fields {E,} which are linearly inde-
pendent at each point, and a cross-section of O(#) is a set of ortho-
normal vector fields on .#.

Since the zero vectors and tensors define cross-sections in 7'(.#) and
Ti(.#), these fibre bundles will always admit cross-sections. If .# is
orientable and non-compact, or is compact with vanishing Euler
number, there will exist nowhere zero vector fields, and hence cross-
sections of 7T'(.#) which are nowhere zero. The bundles L(.#) and
O(A#4) may or may not admit cross-sections; for example L(S2) does
not, but L(R") does. If L(.#) admits a cross-section, .# is said to be
parallelizable. R.P.Geroch has shown (1968c¢) that a non-compact
four-dimensional Lorentz manifold .# admits a spinor structure if
and only if it is parallelizable.
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One can describe a connection on .4 in an elegant geometrical way
in terms of the fibre bundle L(.#). A connection on .# may be regarded
as a rule for parallelly transporting vectors along any curve y(t) in .#.
Thus if {E,} is a basis at a point p = y({,), i.e. {p,E,} is a point » in
L(#), one can obtain a unique basis at any other point y(t), i.e. a
unique point ¥(¢) in the fibre 7-1(y(t)), by parallelly transporting {E}
along y(t). Therefore there is a unique curve ¥(t) in L(.#), called the
lift of y(t), such that:

(1) Y(to) = u,

(2) 77 (1) = 7(8),

(3) the basis represented by the point ¥(t) is parallelly transported
along the curve y(f) in 4.

In terms of the local coordinates {z4}, the curve %(t) is given by
@y (1)), B,i(1)}, where

dE, )

—miy Em.’i Fiaj

dz*(y(t)) _
T = 0.

ds

Consider the tangent space 7,,(L(.#)) to the fibre bundle L(.#) at
the point . This has a coordinate basis {9/024[,}. The n-dimensional
subspace spanned by the tangent vectors {(9/d¢)5)|,} to the lifts of all
curves y(t) through p is called the horizontal subspace H, of T, (L(.#)).
In terms of local coordinates,

8\ _dai(y(t) @  dE,t @
at dt  da*' dt O,

¥

_daa(y(t) [ @ 0
T W‘Em’rafm)’

so a coordinate basis of H,, is {9/0x*— E,,j I'';;9/0E,,?}. Thus the con-
nection in .# determines the horizontal subspaces in the tangent spaces
at each point of L(.#). Conversely, a connection in .# may be defined
by giving an n-dimensional subspace of T, (L(.#)) for each ue L(.#)
with the properties:

(1) If AeGL(n,R"), then the map A,: T, (L(A))> T (L(A))
maps the horizontal subspace I, into H ,;

(2) H, contains no non-zero vector belonging to the vertical sub-
space V,.

Here, the vertical subspace V, is defined as the n%-dimensional
subspace of 7,(L(.#)) spanned by the vectors tangent to curves in the
fibre m—(m(u)); in terms of local coordinates, ¥, is spanned by the
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vectors {0/0F,,'}. Property (2) implies that 7, is the direct sum of H,
and V,.

The projection map 7: L(.#)->.# induces a surjective linear map
7y TAL(AM)) > T, o( M), such that m (V) = 0 and 7, restricted to H,
is 1-1 onto T,,. Thus the inverse m,~! is a linear map of T, (.#)
onto H,,. Therefore for any vector X € T),(.#) and point « € 7~(p), there
is a unique vector X e H,, called the horizontal lift of X, such that
7.(X) = X. Given a curve y(t) in .#, and an initial point u in 7=1(y(t,)),
one can construct a unique curve y(t) in L(.#), where ¥(t) is the curve
through « whose tangent vector is the horizontal lift of the tangent
vector of y(t) in 4. Thus knowing the horizontal subspaces at each
point in L(.#), one can define parallel propagation of bases along any
curve () in .#. One can then define the covariant derivative along
v(t) of any tensor field T by taking the ordinary derivatives with
respect to f, of the components of T with respect to a parallelly
propagated basis.

If there is a metric g on .# whose covariant derivative is zero, then
orthonormal frames are parallelly propagated into orthonormal
frames. Thus the horizontal subspaces are tangent to O(.#) in L(.#),
and define a connection in O(.#).

Similarly a connection on .# defines n-dimensional horizontal sub-
spaces in the tangent spaces to the bundles T'(.#) and T%(.#), by
parallel propagation of vectors and tensors. These horizontal sub-
spaces have coordinate bases

0 0
(e VP71
and
2 o
{%e - (Tf“'bc.,, aI'%;+ (all upper indices)

—Te-b, Y, —(all lower indices))g'ﬁfT; }

respectively. As with L(.#), m, maps these horizontal subspaces
one-one onto 7,,,(.#); thus again 7, can be inverted to give a unique
horizontal lift X € 7), of any vector X € T,,,. In the particular case of
T(M), u itself corresponds to a unique vector WeT,,(-#), and so
there is an intrinsic horizontal vector field W defined on 7'(.#) by the
connection. In terms of local coordinates {x2, V*},

- 0 0
W=Vael{ — VeIV  ——
(3:1:“ Faean)-
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This vector field may be interpreted as follows: the integral curve of W
through « = (p, X) e T(.#) is the horizontal lift of the geodesic in .#
with tangent vector X at p. Thus the vector field W represents all
geodesics on 4. In particular, the family of all geodesics through
peM is the family of integral curves of W through the fibre
mYp) < T(A); the curves in .# have self intersections at least at p,
but the curves in T'(.#) are non-intersecting everywhere.
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