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Abstract

Motivated by applications to COVID dynamics, we describe a model of a branching
process in a random environment {Zn} whose characteristics change when crossing
upper and lower thresholds. This introduces a cyclical path behavior involving periods
of increase and decrease leading to supercritical and subcritical regimes. Even though
the process is not Markov, we identify subsequences at random time points {(τj, νj)}—
specifically the values of the process at crossing times, viz. {(Zτj , Zνj )}—along which the
process retains the Markov structure. Under mild moment and regularity conditions, we
establish that the subsequences possess a regenerative structure and prove that the limit-
ing normal distributions of the growth rates of the process in supercritical and subcritical
regimes decouple. For this reason, we establish limit theorems concerning the length of
supercritical and subcritical regimes and the proportion of time the process spends in
these regimes. As a byproduct of our analysis, we explicitly identify the limiting vari-
ances in terms of the functionals of the offspring distribution, threshold distribution, and
environmental sequences.
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1. Introduction

Branching processes and their variants are used to model various biological, biochemical,
and epidemic processes [1–4]. More recently, these methods have been used to model the
spread of COVID cases in communities during the early stages of the pandemic [5, 6]. As
time progressed, varying local containment efforts caused changes in the number of infected
members in each community [7, 8], leading to periods of increase and decrease. In this paper,
we describe a stochastic process model built on a branching process in random environments
(BPRE) that explicitly takes into account periods of growth and decrease in the transmission
rate of the virus.
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Specifically, we consider a branching process model initiated by a random number of ances-
tors (thought of as initiators of the pandemic within a community). During the first several
generations, the process grows uncontrolled, allowing immigration into the system. This ini-
tial phase is modeled using a supercritical branching process with immigration in random
environments, specifically independent and identically distributed (i.i.d.) environments. When
consequences of rapid spread become significant, policymakers introduce restrictions to reduce
the rate of growth, hopefully resulting in a reduced number of infected cases. The limitations
are modeled using upper thresholds on the number of infected cases, and beyond the thresh-
old the process changes its character to evolve as a subcritical branching process in random
environments. During this period—owing to strict controls—immigration is also not allowed.
In practical terms, this period typically involves a ‘lockdown’ and other social containment
efforts, the intensity of which varies across communities.

The period of restrictions is not sustainable for various reasons, including political, social,
and economic pressures leading to the easing of controls. Policymakers use multiple metrics
to gradually reduce controls, leading to an ‘opening of communities’, resulting in increased
human interaction. As a result, or because of changes undergone by the virus, the number
of infected cases increases again. We use lower thresholds in the number of ‘newly infected’
to model the period of change and let the process evolve again as a supercritical BPRE in
i.i.d. environments after it crosses the lower threshold. The process continues to evolve in
this manner, alternating between periods of increase and decrease. In this paper, we provide a
rigorous probabilistic analysis of this model.

Although we have taken the dynamics of COVID spread as a motivation for the proposed
model, the aforementioned cyclic behavior is often observed in other biological systems, such
as those modeled by predator–prey models or the susceptible–infected–recovered (SIR) model.
In some biological populations, the cyclical behavior can be attributed to a decline in fecundity
as the population size approaches some threshold [9]. Deterministic models such as ordinary
differential equations, dynamical systems, and corresponding discrete-time models are used
for analysis in the applications mentioned above [10–12]. While many of the models described
above yield good qualitative descriptions, uncertainty estimates are typically unavailable. It is
worth pointing out that the previously described branching process methods also produce rea-
sonable point estimates for the mean growth during the early stages of the pandemic. However,
these point estimates are unreliable during the later stages of the pandemic. In this paper, we
address statistical estimation of the mean growth and characterize the variance of the estimates.
We end the discussion with a plot, Figure 1, of the total number of confirmed COVID cases
per week in Italy from 23 February 2020 to 20 July 2022. The plot also includes the number
of cases estimated using the proposed model. Other examples with similar plots include the
hare–lynx predator–prey dynamics and measles cases [12–14].

Before we provide a precise description of our model, we begin with a brief description
of BPREs with immigration. Let �n = (Pn, Qn

)
be i.i.d. random variables taking values in

P ×P , where P is the space of probability distributions on N0; that is, Pn = {Pn,r}∞r=0 and
Qn = {Qn,r}∞r=0 for some non-negative integers Pn,r and Qn,r such that

∑∞
r=0 Pn,r = 1 and∑∞

r=0 Qn,r = 1. The process � = {�n}∞n=0 is referred to as the environmental sequence. For
each realization of �, we associate a population process {Zn}∞n=0 defined recursively as follows:
let Z0 take values on the positive integers, and for n ≥ 0, let

Zn+1 =
Zn∑

i=1

ξn,i + In,
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FIGURE 1. In black weekly COVID cases in Italy from February 23, 2020 to February 3, 2023. In blue
a BPRE starting with the same initial value and offspring mean having the negative binomial distribution
with predefined number of successful trials r = 10 and Gamma-distributed mean with shape parameter
equal to the mean of the data and rate parameter 1.

where, given �n = (Pn, Qn
)
, {ξn,i}∞i=1 are i.i.d. with distribution Pn and In is an indepen-

dent random variable with distribution Qn. The random variable Yn = log (Pn), where Pn =∑∞
r=0 rPn,r, plays an important role in the classification of BPREs with immigration. It is

well known that when E[Y0] > 0, the process diverges to infinity with probability one, and
if E[Y0] ≤ 0 and the immigration is degenerate at zero for all environments, then the pro-
cess becomes extinct with probability one [15]. Furthermore, in the subcritical case, that is,
E[Y0] < 0, one can identify three distinct regimes: (i) weakly subcritical, (ii) moderately sub-
critical, and (iii) strongly subcritical. The regime (i) corresponds to the case when there exists
a 0 < ρ < 1 such that E

[
Y0eρY0

]= 0, while (ii) corresponds to the case when E[Y0eY0 ] = 0.
Finally, (iii) corresponds to the case when E[Y0eY0 ] < 0 [16]. In this paper, when working with
the subcritical regime, we will assume that the process is strongly subcritical, and we will refer
to it as a subcritical process in the rest of the manuscript.

We now turn to a description of the model. Let �U = {�U
n }∞n=0, where �U

n = (PU
n , QU

n

)
,

denote a collection of supercritical environmental sequences. Here, PU
n = {PU

n,r}∞r=0 indicates
the offspring distribution and QU

n = {QU
n,r}∞r=0 represents the immigration distribution. Also,

let �L = {�L
n}∞n=0, where �L

n = PL
n = {PL

n,r}∞r=0, denote a collection of subcritical environ-
mental sequences. We now provide an evolutionary description of the process: at time zero
the process starts with a random number of ancestors Z0. Each of them lives one unit of
time and reproduces according to the distribution PU

0 . Thus, the size of the first-generation
population is

Z1 =
Z0∑

i=1

ξU
0,i + IU

0 ,

where, given �U
0 = (PU

0 , QU
0 ), the ξU

0,i are i.i.d. random variables with offspring distribution PU
0

and are independent of the immigration random variable IU
0 with distribution QU

0 . The random
variable ξU

0,i is interpreted as the number of children produced by the ith parent in the 0th
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generation, and IU
0 is interpreted as the number of immigrants whose distribution is generated

by the same environmental random variable �U
0 .

Let U1 denote the random variable representing the upper threshold. If Z1 < U1, each mem-
ber of the first-generation population lives one unit of time and evolves, conditionally on the
environment, as the ancestors independent of the population size at time one. That is,

Z2 =
Z1∑

i=1

ξU
1,i + IU

1 .

As before, given �U
1 = (PU

1 , QU
1

)
, the ξU

1,i are i.i.d. with distribution PU
1 and IU

1 has distribution

QU
1 . The random variables ξU

1,i are independent of Z1, ξU
0,i, and IU

0 , IU
1 . If Z1 ≥ U1, then

Z2 =
Z1∑

i=1

ξL
1,i,

where, given �L
1 = PL

1 , the ξL
1,i are i.i.d. with distribution PL

1 . Thus, the size of the second-
generation population is

Z2 =
⎧⎨
⎩
∑Z1

i=1 ξU
1,i + IU

1 if Z1 < U1,∑Z1
i=1 ξL

1,i if Z1 ≥ U1.

The process Z3 is defined recursively as before. As an example, if Z1 < U1, Z2 < U1 or Z1 ≥
U1, Z2 ≤ L1, for a random lower threshold L1, then the process will evolve like a supercritical
BPRE with offspring distribution PU

2 and immigration distribution QU
2 . Otherwise (that is, Z1 <

U1 and Z2 ≥ U1 or Z1 ≥ U1 and Z2 > L1), the process will evolve like a subcritical BPRE with
offspring distribution PL

2 . This dynamics continues with different thresholds (Uj, Lj), yielding
the process {Zn}∞n=0, which we refer to as a branching process in random environments with
thresholds (BPRET). The consecutive set of generations where the reproduction is governed
by a supercritical BPRE is referred to as the supercritical regime, while the other is referred
to as the subcritical regime. As we will see below, non-trivial immigration in the supercritical
regime is required to obtain alternating periods of increase and decrease.

The model described above is related to size-dependent branching processes with a thresh-
old as studied by Klebaner [9] and more recently by Athreya and Schuh [17]. Specifically, in
that model the offspring distribution depends on a fixed threshold K and the size of the previ-
ous generation. As observed in these papers, these Markov processes either explode to infinity
or are absorbed at zero. In our model the thresholds are random and dynamic, resulting in a
non-Markov process; however, the offspring distribution does not depend on the size of the
previous generation as long as they belong to the same regime. Indeed, when Uj − 1 = Lj = K
for all j ≥ 1, the immigration distribution is degenerate at zero, and the environment is fixed,
one obtains as a special case the density-dependent branching process (see for example [9, 17–
20]. Additionally, while the model of Klebaner [9] uses Galton–Watson processes as a building
block, our model uses branching processes in i.i.d. environments.

Continuing with our discussion on the literature, Athreya and Schuh [17] show that in the
fixed-environment case, the special case of a size-dependent process with a single threshold
becomes extinct with probability one. We show that this is also the case for the BPRE when
there is no immigration; the details are in Theorem 2.1. Similar phenomena have been observed
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in slightly different contexts in Jagers and Zuyev [21, 22]. The incorporation of an immigration
component ensures that the process is not absorbed at zero and hence may be useful for model-
ing stable populations at equilibrium as done in deterministic models. For additional discussion
see Section 7.

For ease of further discussion, we introduce some notation. Let YU
n := log

(
P

U
n

)
and YL

n :=
log
(

P
L
n

)
, where

P
U
n =

∞∑
r=0

rPU
n,r and P

L
n =

∞∑
r=0

rPL
n,r;

that is, P
U
n and P

L
n represent the offspring means conditional on the environments �U

n =(
PU

n , QU
n

)
and �L

n = PL
n , respectively. Also, let Q

U
n =∑∞

r=0 rQU
n,r denote the immigration mean

conditional on the environment, and let

P
U

n =
∞∑

r=0

(
r − P

U
n

)2
PU

n,r and P
L

n =
∞∑

r=0

(
r − P

L
n

)2
PL

n,r

denote the conditional variance of the offspring distributions given the environment.
From the description, it is clear that the crossing times at the thresholds (Uj, Lj) of Zn,

namely τj and νj, will play a significant role in the analysis. It will turn out that {Zτj} and
{Zνj} form time-homogeneous Markov chains with state spaces SL := N0 ∩ [0, LU] and SU :=
N∩ [LU + 1, ∞), respectively, where we take Lj ≤ LU and Uj ≥ LU + 1 for all j ≥ 1. Under
additional conditions on the offspring distribution and the environment sequence, the processes
{Zτj} and {Zνj} will be uniformly ergodic. These results are established in Section 3.

The amount of time the process spends in the supercritical and subcritical regimes, beyond
its mathematical and scientific interest, will also arise in the study of the central limit theorem

for the estimates of MU := E

[
P

U
n

]
and ML := E

[
P

L
n

]
. Using the uniform ergodicity alluded

to above, we will establish that the time averages of τj − νj−1 and νj − τj converge to finite
positive constants, μU and μL. Additionally, we establish a central limit theorem related to
this convergence under a finite-second-moment hypothesis after an appropriate centering and
scaling, that is,

1√
n

n∑
j=1

(τj − νj−1)
d−−−→

n→∞ N
(
μU, σ 2,U),

and we characterize σ 2,U in terms of the stationary distribution of the Markov chain. A similar
result also holds for νj − τj. This, in turn, provides qualitative information regarding the pro-
portion of time the process spends in these regimes. That is, if CU

n is the amount of time the
process spends in the supercritical regime up to time n − 1, we show that n−1CU

n converges

to μU
(
μU + μL

)−1; a related central limit theorem is also established, and in the process we
characterize the limiting variance. Interestingly, we show that the central limit theorem pre-
vails even for the joint distribution of the length of time and the proportion of time the process
spends in the supercritical and subcritical regimes. These results are described in Sections 4
and 5.

An interesting question concerns the rate of growth of the BPRET in the supercritical
and subcritical regimes described by the corresponding expectations, namely MU and ML.
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Specifically, we establish that the limiting joint distribution of the estimators is bivariate normal
with a diagonal covariance matrix, yielding asymptotic independence of the mean estimators
derived using data from supercritical and subcritical regimes. In the classical setting of a super-
critical BPRE without immigration, this problem has received some attention (see for instance
Dion and Esty [23]). The problem considered here is different in the following four ways: (i)
the population size does not converge to infinity, (ii) the lengths of the regimes are random,
(iii) in the supercritical regime the population size may be zero, and (iv) there is an additional
immigration term. While (iii) and (iv) can be accounted for in the classical settings as well,
their effect on the point estimates is minimized because of the exponential growth of the popu-
lation size. Here, while the exponential growth is ruled out, perhaps as anticipated, the Markov
property of the process at crossing times, namely {Zτj} and {Zνj}, and their associated regener-
ation times plays a central role in the proof. It is important to note that it is possible for both
regimes to occur between regeneration times. Hence, the proportion of time that the process
spends in the supercritical and subcritical regimes also plays a vital role in the derivation of the
asymptotic limit distribution. The limiting variance of the estimators depends additionally on

μU and μL, beyond VU
1 := V

[
P

U
0

]
, VL

1 := V

[
P

L
0

]
, VU

2 := E

[
P

U

0

]
, and VL

2 := E

[
P

L

0

]
. In the

special case of fixed environments, the limit behavior of the estimators takes a different form
compared to the traditional results, as described for example in Heyde [24]. These results are
in Section 6.

Finally, in Appendix B we provide some numerical experiments illustrating the behavior of
the model. Specifically, we illustrate the effects of different distributions on the path behavior
of the process and describe how they change when the thresholds increase. The experiments
also suggests that if different regimes are not taken into account, the true growth rate of the
virus may be underestimated. We now turn to Section 2, where we develop additional notation
and provide precise statements of the main results.

2. Main results

The branching process in random environments with thresholds (BPRET) is a supercriti-
cal BPRE with immigration until it reaches an upper threshold, after which it transitions to
a subcritical BPRE until it crosses a lower threshold. Beyond this time, the process reverts
to a supercritical BPRE with immigration, and the above cycle continues. Specifically, let
{(Uj, Lj)}∞j=1 denote a collection of thresholds (assumed to be i.i.d.). Then the BPRET evolves
like a supercritical BPRE with immigration until it reaches the upper threshold U1, at which
time it becomes a subcritical BPRE. The process remains subcritical until it crosses the thresh-
old L1; after that it evolves again as a supercritical BPRE with immigration, and so on. We now
provide a precise description of the BPRET.

Let {(Uj, Lj)}∞j=1 be i.i.d. random vectors with support SU
B × SL

B, where SU
B := N∩ [LU + 1,

∞), SL
B := N∩ [L0, LU], and 1 ≤ L0 ≤ LU are fixed integers. We denote by �U and �L the

supercritical and subcritical environmental sequences; that is,

�U = {�U
n

}∞
n=0 =

{(
PU

n , QU
n

)}∞
n=0

and �L = {�L
n

}∞
n=0 = {PL

n

}∞
n=0.

We use the notation PEU and PEL for probability statements with respect to the supercritical and
subcritical environmental sequences. As in the introduction, given the environment, the ξU

n,i are
i.i.d. random variables with distribution PU

n and are independent of the immigration random
variable IU

n . Similarly, conditionally on the environment, the ξL
n,i are i.i.d. random variables
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with offspring distribution PL
n . Finally, let Z0 be an independent random variable with support

included in N∩ [1, LU]. We emphasize that the thresholds are independent of the environmen-
tal sequences, offspring random variables, immigration random variables, and Z0. For technical
details regarding the construction of the probability space we refer the reader to Appendix A.1.

We denote by MT := E

[
P

T
0

]
, T ∈ {L, U}, and NU := E

[
Q

U
0

]
the annealed (averaged over the

environment) offspring mean and the annealed immigration mean, respectively. Throughout
the manuscript, we make the following assumptions on the environmental sequences.

Assumptions:

(H1) �T = {�T
n

}∞
n=0 are i.i.d. environments such that PT

0,0 < 1 and 0 < P
T
0 < ∞ PET -almost

surely (a.s.).

(H2) E

[
YL

0 eYL
0

]
< 0, E

[
YU

0

]
> 0, MU < ∞, and E

[
log
(
1 − PU

0,0

)]
> −∞.

(H3) PEU (QU
0,0 < 1) > 0 and NU < ∞.

(H4)
{
(Uj, Lj)

}∞
j=1 are i.i.d. and have support SU

B × SL
B, where 1 ≤ L0 ≤ MLLU and E[U1] <

∞.

The above assumptions rule out degenerate behavior of the process and are commonly used
in the literature on BPRE (see Assumption R and Theorem 2.2 of Kersting and Vatutin [16]).
Assumption (H2) states that �U

n is a supercritical environment and �L
n is a (strongly) subcriti-

cal environment. Additionally, by Jensen’s inequality it follows that ML < 1 and 1 < MU < ∞.
Assumption (H3) states that immigration is positive with positive probability and has finite
expectation NU , while (H4) states that the upper thresholds Uj have finite expectation.

We are now ready to give a precise definition of the BPRET. Let ν0 := 0. Starting from Z0,
the BPRET {Zn}∞n=0 is defined recursively over j ≥ 0 as follows:

1j. For n ≥ νj and until Zn < Uj+1,

Zn+1 =
Zn∑

i=1

ξU
n,i + IU

n . (1)

Next, let τj+1 := inf{n ≥ νj : Zn ≥ Uj+1}.
2j. For n ≥ τj+1 and until Zn > Lj+1,

Zn+1 =
Zn∑

i=1

ξL
n,i. (2)

Next, let νj+1 := inf{n ≥ τj+1 : Zn ≤ Lj+1}.
It is clear from the definition that νj and τj are stopping times with respect to the σ -algebra

Fn generated by {Zj}n
j=0 and the thresholds {(Uj, Lj)}∞j=1. Thus, Zνj , Zτj , ξU

νj,i
, ξL

τj+1,i
, and IU

νj
are

well-defined random variables.
It is also clear from the above definition that the intervals [νj−1, τj) and [τj, νj) represent

supercritical and subcritical intervals, respectively. We show below that the process {Zn}∞n=0
exits and enters the above intervals infinitely often. Let �U

j := τj − νj−1 and �L
j := νj − τj

denote the lengths of these intervals. Since a supercritical BPRE with immigration diverges
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with probability one (see Theorem 2.2 of Kersting and Vatutin [16]), it follows that τj+1 is
finite whenever νj is finite:

P

(
�U

j+1 = ∞|νj < ∞
)

= P
(∩∞

l=1

{
Zνj+l < Uj+1

}|νj < ∞)= 0. (3)

We emphasize that Assumption (H3) is required, since otherwise, if IU
0 ≡ 0, the process may

fail to cross the upper threshold and thus may become extinct (see Theorem 2.1 below). On the
other hand, since a strongly subcritical BPRE becomes extinct with probability one, �L

j+1 < ∞
whenever τj+1 < ∞; that is,

P

(
�L

j+1 < ∞|τj+1 < ∞
)

= 1. (4)

Using ν0 = 0 and induction over j, we see that �U
j+1, �L

j+1, τj+1, and νj+1 are finite a.s. We

emphasize that (4) holds whenever �L is a subcritical or critical (but not strongly critical)
environmental sequence (see Definition 2.3 in Kersting and Vatutin [16]). That is, it remains

valid if the assumption E

[
YL

0 eYL
0

]
< 0 in (H2) is weakened to E

[
YL

0

]≤ 0 and PEL
(
YL

0 �= 0
)
> 0,

which leads to the following assumption:

(H2′) E
[
YL

0

]≤ 0, PEL
(
YL

0 �= 0
)
> 0, and E

[
YU

0

]
> 0.

The next theorem shows that if immigration is zero, the process becomes extinct a.s.

Theorem 2.1. Assume (H1), (H2′), and QU
0,0 ≡ 1 a.s. Let T := inf{n ≥ 1 : Zn = 0}. Then P(T <

∞) = 1.

Theorem 1 of Athreya and Schuh [16] follows from the above theorem by taking LU = K,
Lj ≡ K, Uj ≡ K + 1, where K is a finite positive integer, and assuming that the environments
are fixed in both regimes.

2.1. Path properties of BPRET

We now turn to transience and recurrence of the BPRET {Zn}∞n=0. Notice that even though
{Zn}∞n=0 is not Markov, the concepts of recurrence and transience can be studied using the
definition given below (due to [25, 26]).

Definition 2.1. A non-negative stochastic process {Xn}∞n=0 satisfying P(lim supn→∞ Xn =
∞) = 1 is said to be recurrent if there exists an r < ∞ such that P(lim infn→∞ Xn ≤ r) = 1,
and transient if P(limn→∞ Xn = ∞) = 1.

Our next result is concerned with the path behavior of {Zn}∞n=0 and the stopped sequences{
Zνj

}∞
j=0 and

{
Zτj

}∞
j=1.

Theorem 2.2. Assume (H1)–(H4). Then

(i) the process {Zn}∞n=0 is recurrent;

(ii)
{
Zνj

}∞
j=0 and

{
Zτj

}∞
j=1 are time-homogeneous Markov chains.

We now turn to the ergodicity properties of
{
Zνj

}∞
j=0 and

{
Zτj

}∞
j=1. These rely on conditions

on the offspring distribution that ensure that the Markov chains
{
Zνj

}∞
j=0 and

{
Zτj

}∞
j=1 are

irreducible and aperiodic. While several sufficient conditions are possible, we provide below
some possible conditions:
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(H5) PEL
(∩1

r=0

{
PL

0,r > 0
})

> 0.

(H6) PEU
(∩∞

r=0

{
PU

0,r > 0
}∩ {QU

0,0 > 0
})

> 0 and PEU
(
QU

0,s > 0
)
> 0 for some

s ∈ {1, . . . , LU}.
(H7) PEU

({
PU

0,0 > 0
}∩ ∩∞

r=LU+1

{
QU

0,r > 0
})

> 0.

The condition (H5) requires that on a set of positive PEL probability, an individual can
produce zero and one offspring, while (H6) requires that on a set of positive PEU probability,
PU

0,r > 0 for all r ∈N0 and QU
0,0 > 0. Also, on a set of positive PEU probability, QU

0,s > 0 for

some s ∈ {1, . . . , LU}. Finally, (H7) states that on a set of positive PEU probability, PU
0,0 > 0

and QU
0,r > 0 for all r ≥ LU + 1. These are weak conditions on the environment sequences and

are part of the standard BPRE literature. We recall that SL is the set of non-negative integers
not larger than LU , and SU is the set of integers larger than LU .

Theorem 2.3. Assume (H1)–(H4). (i) If (H5) also holds, then
{
Zνj

}∞
j=0 is a uniformly ergodic

Markov chain with state space SL. (ii) If (H6) (or (H7)) holds, then
{
Zτj

}∞
j=1 is a uniformly

ergodic Markov chain with state space SU.

When the assumptions (H1)–(H6) (or (H7)) hold, we denote by πL = {πL
i }i∈SL and πU =

{πU
i }i∈SU the stationary distributions of the ergodic Markov chains

{
Zνj

}∞
j=0 and

{
Zτj

}∞
j=1,

respectively. While πL has moments of all orders, we show in Proposition A.1 below that
πU has a finite first moment. These distributions will play a significant role in the study of the
lengths of the supercritical and subcritical regimes, which we now undertake.

2.2. Lengths of supercritical and subcritical regimes

We now turn to the law of large numbers and central limit theorem for the differences
�U

j and �L
j . We denote by PπL (·), EπL [·], VπL [·], and CπL [·, ·] the probability, expectation,

variance, and covariance conditionally on Zν0 ∼ πL. Similarly, when πL is replaced by πU in
the above quantities, we understand that they are conditioned on Zτ1 ∼ πU . We define μU :=
EπL

[
�U

1

]
, μL := EπU

[
�L

1

]
,

σ 2,U :=VπL
[
�U

1

]+ 2
∞∑

j=1

CπL
[
�U

1 , �U
j+1

]
, and (5)

σ 2,L :=VπU
[
�L

1

]+ 2
∞∑

j=1

CπU
[
�L

1, �L
j+1

]
. (6)

In the supercritical regime, we impose the additional assumption (H8) below, to avoid need-
ing to qualify our statements with the phrase ‘on the set of non-extinction’. Assumption
(H9) below ensures that the immigration distribution stochastically dominates the upper
threshold.

(H8) PU
0,0 = 0 PEU -a.s.

(H9) E

[
U1

P(IU
0 ≥U1|U1)

]
< ∞.

Let SU
n := ∑n

j=1 �U
j and SL

n := ∑n
j=1 �L

j . We now state the main result of this subsection.
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Theorem 2.4. Assume (H1)–(H4). (i) If (H5) and (H8) hold, then

lim
n→∞

1

n
SU

n = μU a.s., and
1√
n

(
SU

n − nμU) d−−−→
n→∞ N

(
0, σ 2,U).

(ii) If (H6) (or (H7)) and (H9) hold, then

lim
n→∞

1

n
SL

n = μL a.s., and
1√
n

(
SL

n − nμL) d−−−→
n→∞ N(0, σ 2,L).

2.3. Proportion of time spent in supercritical and subcritical regimes

We now consider the proportion of time the process spends in the subcritical and supercriti-
cal regimes. To this end, for n ≥ 0, let χU

n := I∪∞
j=1[νj−1,τj)(n) be the indicator function assuming

value 1 if at time n the process is in the supercritical regime and 0 otherwise. Similarly, let
χL

n := 1 − χU
n = I∪∞

j=1[τj,νj)(n) take value 1 if at time n the process is in the subcritical regime

and 0 otherwise. Furthermore, let CU
n := ∑n

j=1 χU
j−1 and CL

n := ∑n
j=1 χL

j−1 = n − CU
n be the

total time that the process spends in the supercritical and the subcritical regime, respectively,
up to time n − 1. Let

θU
n := CU

n

n
and θL

n := CL
n

n

denote the proportion of time the process spends in the supercritical and the subcritical regime.
Our main result in this section is concerned with the central limit theorem for θU

n and θL
n . To

this end, let

θU := μU

μU + μL
and θL := μL

μU + μL
.

Theorem 2.5. Assume (H1)–(H6) (or (H7)) and (H8)–(H9). Then, for T ∈ {L, U}, θT
n con-

verges a.s. to θT . Furthermore,

√
n(θT

n − θT )
d−−−→

n→∞ N(0, η2,T ),

where η2,T is defined in (19).

We now use these results to describe the growth rate of the process in the supercritical and
subcritical regime, as defined by their expectations (that is, MU and ML).

2.4. Offspring mean estimation

We begin by noticing that Zτj ≥ LU + 1 and Zτj+1, . . . , Zνj−1 ≥ L0 are positive for all j ∈N.
However, there may be instances where Zνj , . . . , Zτj−1 could be zero. To avoid division by

zero in (7) below, we let χ̃U
n := χU

n I{Zn≥1}, C̃U
n := ∑n

j=1 χ̃U
j−1, and use the convention that

0/0 = 0 · ∞ = 0. The generalized method-of-moments estimators of MU and ML are given by

MU
n := 1

C̃U
n

n∑
j=1

Zj − IU
j−1

Zj−1
χ̃U

j−1 and ML
n := 1

CL
n

n∑
j=1

Zj

Zj−1
χL

j−1, (7)

where the last term is non-trivial whenever CL
n ≥ 1, that is, n ≥ τ1 + 1. Our assumptions will

involve first- and second-moment assumptions on the centered offspring means
(

P
T
n − MT

)
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and the centered offspring random variables
(
ξT

n,i − P
T
n

)
. To this end, we define the quan-

tities 
T,s
n,1 :=

∣∣∣PT
n − MT

∣∣∣s and 
T,s
n,2 := E

[
|ξn,1 − P

T
n |s|�T

n

]
. Next, let Mn := (

MU
n , ML

n

)�,

M := (
MU, ML

)�, and let � be the 2 × 2 diagonal matrix with elements

1

θ̃U

(
VU

1 + ÃUVU
2

μ̃U

)
and

1

θL

(
VL

1 + ALVL
2

μL

)
,

where μ̃U := EπL
[∑τ1

k=1 χ̃U
k−1

]
is the average length of supercritical regime, not taking into

account the times at which the process is zero;

θ̃U := μ̃U

μU + μL

is the average proportion of time the process spends in the supercritical regime and is positive;

ÃU := EπL

[
τ1∑

k=1

χ̃U
k−1

Zk−1

]

is the average sum of 1
Zn

over a supercritical regime, discarding the times at which Zn is
zero; and

AL := EπU

⎡
⎣ ν1∑

k=τ1+1

χL
k−1

Zk−1

⎤
⎦

is the average sum of 1
Zn

over a subcritical regime. Obviously, 0 ≤ μ̃U ≤ μU . Finally, we recall

that VT
1 =V

[
P

T
0

]
is the variance of the random offspring mean P

T
0 and VT

2 =E

[
P

T

0

]
is the

expectation of the random offspring variance P
T

0 .

Theorem 2.6. Assume (H1)–(H6) (or (H7)). (i) If μT < ∞ and if E
[


T,s
0,i

]
< ∞ for some

s > 1, where i = 1, 2 and T ∈ {L, U}, then Mn is a strongly consistent estimator of M. (ii)
If additionally for some δ > 0 E

[


T,2+δ
0,i

]
< ∞ for i = 1, 2 and T ∈ {L, U}, then

√
n(Mn − M)

d−−−→
n→∞ N(0, �).

Remark 2.1. In the fixed-environment case, P
T
0 = MT and P

T

0 = VT
2 are deterministic con-

stants. Therefore, VT
1 = 0, and � is the 2 × 2 diagonal matrix with elements

ÃUVU
2

θ̃Uμ̃U
and

ALVL
2

θLμL
.

3. Path properties of BPRET

In this section we provide the proofs of Theorems 2.1, 2.2, and 2.3, along with the required
probability estimates. The proofs rely on the fact that both the environmental sequence and
the thresholds are i.i.d. It follows that probability statements like P(Zτj+1 = k|Zνj = i, νj < ∞)
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and P(Zνj+1 = i|Zτj+1 = k, τj+1 < ∞) do not depend on the index j. This idea is made precise in

Lemma A.1 in Appendix A.2 and will lead to time-homogeneity of
{
Zνj

}∞
j=0 and

{
Zτj

}∞
j=1. As

expected, this property does not depend on the process being strongly subcritical: Assumptions
(H1) and (H2′) are more than enough. We denote by PδL

i
(·), EδL

i
[·], VδL

i
[·], and CδL

i
[·, ·] the

probability, expectation, variance, and covariance conditionally on Zν0 ∼ δL
i , where δL

(·) is the

restriction of the Dirac delta to SL. Similarly, when δL
i is replaced by δU

i in the above quantities,
we understand that they are conditioned on Zτ1 ∼ δU

i , where δU
(·) is the restriction of the Dirac

delta to SU .

3.1. Extinction when immigration is zero

In this subsection, we provide the proof of Theorem 2.1, which is an adaptation of Theorem
1 of Athreya and Schuh [17] for BPRE. Recall that for this theorem there is no immigration in
the supercritical regime, and hence the extinction time T is finite with probability one.

Proof of Theorem 2.1. For simplicity, set τ0 := −1. We partition the sample space as

� = (∪∞
j=0 {τj+1 = ∞, τj < ∞})∪ (∩∞

j=1 {τj < ∞})
and show that (i) {τj+1 = ∞, τj < ∞} ⊂ {T < ∞} for all j ∈N0 and (ii) P

(∩∞
j=1 {τj < ∞})= 0.

First, we notice that if τj < ∞, then νj < ∞ by Theorem 2.1 of Kersting and Vatutin [16].
Thus,

{τj+1 = ∞, τj < ∞} = {Zn < Uj+1 ∀n ≥ νj, τj < ∞},
where {Zn}∞n=νj

is a supercritical BPRE until Uj+1 is reached. Since Zn < Uj+1 for all n ≥ νj,
(2.6) of Kersting and Vatutin [16] yields that limn→∞ Zn = 0 a.s. and {τj+1 = ∞, τj < ∞} ⊂
{T < ∞}. Turning to (ii), since the events {τj < ∞} are nonincreasing, P

(∩∞
j=1 {τj < ∞})=

limj→∞ P(τj+1 < ∞) and P(τj+1 < ∞) = P(τj+1 < ∞|τj < ∞)P(τj < ∞). Since τj = ∞, if
Zνj−1 = 0, it follows that

P(τj+1 < ∞|τj < ∞) ≤ P
(
τj+1 < ∞|τj < ∞, Zνj−1 ∈ [1, LU]

)
≤ max

i=1,...,LU
P
(
τj+1 < ∞|τj < ∞, Zνj−1 = i

)
≤ 1 − min

i=1,...,LU
P
(
Zτj+1 = 0|τj < ∞, Zνj−1 = i

)
.

Lemma A.1 yields that for all k ∈ SU
B ,

P
(
Zτj = k|τj < ∞, Zνj−1 = i

)= PδL
i

(
Zτ1 = k|τ1 < ∞). (8)

Also, for all j ≥ 1,

P
(
Zτj+1 = 0|τj < ∞, Zτj = k

)= P
(∩k

i=1

{
ξL
τj,i = 0

}|τj < ∞)

=
∞∑

n=1

P
(∩k

i=1

{
ξL

n,i = 0
}|τj = n

)
P(τj = n)

= P
(
ξL

0,1 = 0
)k.
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Multiplying by P
(
Zτj+1 = 0|τj < ∞, Zτj = k

)
and P

(
Zτ1+1 = 0|τ1 < ∞, Zτ1 = k

)
and summing

over k ≥ LU + 1 in (8), we obtain that

P
(
Zτj+1 = 0|τj < ∞, Zνj−1 = i

)= PδL
i

(
Zτ1+1 = 0|τ1 < ∞)

=
∞∑

k=LU+1

PδL
i

(
Zτ1 = k|τ1 < ∞)P(ξL

0,1 = 0
)k.

Set p := mini=1,...,LU pi, where pi := PδL
i

(
Zτ1+1 = 0|τ1 < ∞). Since P

(
ξL

0,1 = 0
)
> 0 and

PδL
i

(
Zτ1 = k|τ1 < ∞)> 0 for some k, we have that pi > 0 and p > 0. Hence, P(τj+1 < ∞) ≤

(1 − p)P(τj < ∞). Iterating the above argument, it follows that P(τj+1 < ∞) ≤ (1 − p
)j
P(τ1 <

∞), yielding limj→∞ P(τj+1 < ∞) = 0. �

3.2. Markov property at crossing times

Proof of Theorem 2.2. We begin by proving (i). We first notice that since {Uj}∞j=1 are i.i.d.

random variables with unbounded support SU
B , lim supj→∞ Uj = ∞ with probability one. Next,

observe that along the subsequence {τj}∞j=1, Zτj ≥ Uj. Hence, lim supn→∞ Zn = ∞. On the other
hand, along the subsequence {νj}∞j=1, we have Zνj ≤ Lj. Thus, 0 ≤ lim infj→∞ Zj ≤ LU < ∞. It
follows that {Zn}∞n=0 is recurrent in the sense of Definition 2.1. Turning to (ii), we first notice
that, since Z0 ≤ LU , Zνj ≤ Lj ≤ LU , and Zτj ≥ Uj ≥ LU + 1 for all j ≥ 1, the state spaces SL

of
{
Zνj

}∞
j=0 and SU of

{
Zτj

}∞
j=1 are included in SL and SU , respectively. We now establish

the Markov property of
{
Zνj

}∞
j=0. For all j ≥ 0, k ∈ SL, and i0, i1, . . . , ij ∈ SL, we consider

the probability P(Zνj+1 = k|Zν0 = i0, . . . , Zνj = ij). By the law of total expectation, this is
equal to

E
[
P
(
Zνj+1 = k|Zν0 = i0, . . . , Zνj = ij, Lj+1, Uj+1, πL, πU)].

Now, setting Aνj,s(u) := {Zνj+s ≥ u, Zνj+s−1 < u, . . . , Zνj+1 < u}, Bνj,s,t(l) := {Zνj+t =
k, Zνj+t−1 > l, . . . , Zνj+s+1 > l}, we have that

P
(
Zνj+1 = k|Zν0 = i0, . . . , Zνj = ij, Lj+1, Uj+1, πL, πU)

=
∞∑

s=1

∞∑
t=s+1

P
(
Aνj,s(Uj+1)|Zνj = ij, Uj+1, πU)

P
(
Bνj,s,t(Lj+1)|Aνj,s, Lj+1, πL)

= P
(
Zνj+1 = k|Zνj = ij, Lj+1, Uj+1, πL, πU),

where in the second line we have used that {Zn}∞n=νj
is a supercritical BPRE with immigration

until it crosses the threshold Uj+1 at time τj+1 = νj + s, and similarly {Zn}∞n=τj+1
is a subcritical

BPRE until it crosses the threshold Lj+1 at time νj+1 = νj + t. By taking the expectation on
both sides, we obtain that

P
(
Zνj+1 = k|Zν0 = i0, . . . , Zνj = ij

)= P
(
Zνj+1 = k|Zνj = ij

)
.
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Turning to the time-homogeneity property, we obtain from Lemma A.1(iii) that

P
(
Zνj+1 = k|Zνj = ij

)= ∞∑
l=LU+1

P
(
Zνj+1 = k|Zτj+1 = l

)
P
(
Zτj+1 = l|Zνj = ij

)

=
∞∑

l=LU+1

P
(
Zν1 = k|Zτ1 = l

)
P
(
Zτ1 = l|Zν0 = ij

)

= P
(
Zν1 = k|Zν0 = ij

)
.

The proof for
{
Zτj

}∞
j=1 is similar. �

3.3. Uniform ergodicity of {Zνj}∞j=0 and {Zτj}∞j=1

In this subsection we prove Theorem 2.3. The proof relies on the following lemma.
We denote by pL

ik(j) = PδL
i
(Zνj = k), i, k ∈ SL, and pU

ik(j) = PδU
i

(Zτj+1 = k), i, k ∈ SU , the j-step

transition probability of the (time-homogeneous) Markov chains
{
Zνj

}∞
j=0 and

{
Zτj

}∞
j=1. For

j = 1, we also write pL
ik = pL

ik(1) and pU
ik = pU

ik(1). Finally, let pL
i (j) = {pL

ik(j)}k∈SL and pU
i (j) =

{pU
ik(j)}k∈SU be the j-step transition probability of the Markov chains

{
Zνj

}∞
j=0 and

{
Zτj

}∞
j=1

from state i ∈ SL (resp. i ∈ SU).

Lemma 3.1. Assume (H1)–(H4). Then (i) if (H5) also holds, then pL
ik ≥ pL > 0 for all i, k ∈ SL.

Also, (ii) if 2 (or 3) holds, then pU
ik ≥ pU

k
> 0 for all i, k ∈ SU.

Proof of Lemma 3.1. The idea of proof is to establish a lower bound on pL
ik and pU

ik using
(9) and (10) below, respectively. We begin by proving (i). Using Assumption (H5), let A be a
measurable subset of P satisfying PEL

(
�L

0 ∈ A
)
> 0 and PL

0,r > 0 for r = 0, 1 and �L
0 ∈ A. By

the law of total expectation,

pL
ik =EδL

i

[
P
(
Zν1 = k|Zτ1 , L1, πL)]. (9)

Since P
(
Zν1 = k|Zτ1 , L1, πL

)= 0 on the event {L1 < k}, it follows that

P
(
Zν1 = k|Zτ1 , L1, πL)= P

(
Zν1 = k|Zτ1 , L1, πL)I{L1≥k}.

Now, notice that on the event {L1 ≥ k}, the term P
(
Zν1 = k|Zτ1 , L1, πL

)
is bounded below by

the probability of reaching state k from Zτ1 in one step; that is,

P
(
Zν1 = k|Zτ1 , L1, πL)≥ P

(
Zν1 = k, ν1 = τ1 + 1|Zτ1 , L1, πL)I{L1≥k}.

The right-hand side of the above inequality is bounded below by the probability that the first k
individuals have exactly one offspring and the remaining Zτ1 − k have no offspring; that is,

I{L1≥k}
k∏

r=1

P
(
ξL
τ1,r = 1|�L

τ1

) Zτ1∏
r=k+1

P
(
ξL
τ1,r = 0|�L

τ1

)
.

Once again, using that, conditional on the environment �L
τ1

, the ξL
τ1,r are i.i.d., this is equal to

I{L1≥k}
(
PL

τ1,1

)k(
PL

τ1,0

)Zτ1−k.
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Since I{�L
τ1

∈A} ≤ 1 and {L1 ≥ k} ⊃ {L1 = LU} because k ≤ LU , the last term is bounded

below by
I{L1=LU}

(
PL

τ1,1

)k(
PL

τ1,0

)Zτ1−kI{�L
τ1

∈A}.

Finally, again using that the �L
n are i.i.d., and taking the expectation EδL

i
[·] as in (9), we obtain

that pL
ik ≥ pL

ik
, where

pL
ik

:= P
(
L1 = LU

)
EδL

i

[(
PL

τ1,1

)k(
PL

τ1,0

)Zτ1−kI{�L
τ1

∈A}
]
.

Notice that pL
k

is positive, because P(L1 = LU) > 0, PEL
(
�L

0 ∈ A
)
> 0, PL

0,r > 0 for r = 0, 1, and

�L
0 ∈ A, and the environments �L

n are i.i.d. Finally, since SL is finite, pL := mini,k∈SL pL
ik

> 0.
We now turn to the proof of (ii), which is similar to the proof of (i). Using (H6), let A and

B be measurable subsets of P ×P satisfying the following conditions:

(a) PEU
(
�U

0 ∈ A
)
> 0 and QU

0,0 > 0, PU
0,r > 0 for all r ∈N0 and �U

0 ∈ A; and

(b) PEU
(
�U

0 ∈ B
)
> 0 and QU

0,s > 0 for some (fixed) s ∈ {1, . . . , Lu} and �U
0 ∈ B.

Again using the law of total expectation, we obtain

pU
ik =EδU

i

[
P
(
Zτ2 = k|Zν1 , U2, πU)]. (10)

Since P
(
Zτ2 = k|Zν1 , U2, πU

)= 0 on the event {U2 > k}, it follows that

P
(
Zτ2 = k|Zν1 , U2, πU)= LU∑

z=0

P
(
Zτ2 = k|Zν1 , U2, πU)I{U2≤k}I{Zν1=z}. (11)

If U2 ≤ k and Zν1 = z > 0, then P
(
Zτ2 = k|Zν1 , U2, πU

)
is bounded below by the probability

that z individuals have a total of exactly k offspring and no immigration occurs; that is,

P
(
Zτ2 = k|Zν1 , U2, πU)I{U2≤k}I{Zν1=z}

≥P

(
z∑

r=1

ξU
ν1,r = k, IU

ν1
= 0|Zν1 , U2, πU

)
I{U2≤k}I{Zν1=z}.

The right-hand side of the above inequality is bounded below by the probability that the first
z1 := (k1 + 1)z − k individuals have k1 := � k

z � offspring and the last z2 := z − z1 individuals
have k2 := k1 + 1 offspring (indeed k1z1 + k2z2 = k) and no immigration occurs—that is, by

P
(∩z1

r=1 {ξν1,r = k1}, ∩z2
r=z1+1{ξν1,r = k2}, IU

ν1
= 0|Zν1 , U2, πU)I{U2≤k}I{Zν1=z}.

Using that, conditional on the environment, �U
ν1

, ξU
ν1,r are i.i.d., the above is equal to

(
PU

ν1,k1

)z1
(

PU
ν1,k2

)z2
QU

ν1,0I{U2≤k}I{Zν1=z}. (12)

Next, if U2 ≤ k and Zν1 = z = 0, then P
(
Zτ2 = k|Zν1 , U2, πU

)
is bounded below by the prob-

ability P
(
Zτ2 = k, τ2 = ν1 + 2|Zν1 , U2, πU

)
. Now, this probability is bounded below by the
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probability that there are s immigrants at time ν1 + 1, these immigrants have a total of exactly
k offspring, and no immigration occurs at time ν1 + 2—that is, by

P

(
IU
ν1

= s,
s∑

r=1

ξU
ν1+1,r = k, IU

ν1+1 = 0|Zν1 , U2, πU

)
I{U2≤k}I{Zν1=0}.

As before, this last probability is bounded below by the probability that s1 := (t1 + 1)s − k
individuals have t1 := � k

s � offspring and s2 := s − s1 individuals have t2 := t1 + 1 offspring.
Thus, the above probability is bounded below by

QU
ν1,s

(
PU

ν1+1,t1

)s1
(
PU

ν1+1,t2

)s2 QU
ν1+1,0I{U2≤k}I{Zν1=0}. (13)

Combining (11), (12), and (13) and using that I{�U
ν1

∈A}, I{�U
ν1+1∈A}, I{�U

ν1
∈B} ≤ 1, we obtain that

P(Zτ2 = k|Zν1 , U2, πU) is bounded below by

I{U2≤k}
LU∑
z=1

I{Zν1 =z}
(

PU
ν1,k1

)z1
(

PU
ν1,k2

)z2
QU

ν1,0I{�U
ν1

∈A}

+ I{U2≤k}I{Zν1 =0}QU
ν1,s

(
PU

ν1+1,t1

)s1
(

PU
ν1+1,t2

)s2
QU

ν1+1,0I{�U
ν1

∈B}I{�U
ν1+1∈A}.

Using that the �U
n are i.i.d. and taking the expectation EδU

i
[·] as in (10), we obtain that

pU
ik ≥ P(U1 ≤ k)

LU∑
z=0

Hk(z)PδU
i

(Zν1 = z),

where Hk : SL →R is given by

Hk(z) =
⎧⎨
⎩
E

[
QU

ν1,s

(
PU

ν1+1,t1

)s1
(

PU
ν1+1,t2

)s2
QU

ν1+1,0I{�U
ν1

∈B}I{�U
ν1+1∈A}

]
if z = 0,

E

[(
PU

ν1,k1

)z1
(

PU
ν1,k2

)z2
QU

ν1,0
I{�U

ν1
∈A}
]

if z �= 0.

Since
∑LU

z=0 PδU
i

(
Zν1 = z

)= 1, we conclude that pU
ik ≥ pU

k
, where

pU
k

:= P(U1 ≤ k) min
z∈SL

Hk(z) > 0.

This concludes the proof of (ii). If, instead of 2, 3 holds, the proof is similar: one notices
that for all z ∈ SL, on the event {U1 ≤ k} ∩ {Zν1 = z}, there is a positive probability that at time
ν1 + 1 there are k immigrants and the z individuals have no offspring. A detailed proof can be
obtained in the same manner as above. �

Before turning to the proof of Theorem 2.3, we introduce some notation. Let TL
i,0 := 0 and

TL
i,l := inf

{
j > TL

i,l−1 : Zνj = i
}
, l ≥ 1, be the random times at which the Markov chain

{
Zνj

}∞
j=0

enters state i ∈ SL when the initial state is Zν0 = i. Similarly, we let TU
i,0 := 1 and TU

i,l := inf{j >
TU

i,l−1 : Zτj = i}, l ≥ 1, be the random times at which the Markov chain
{
Zτj

}∞
j=1 enters state

i ∈ SU when the initial state is Zτ1 = i. The expected times of visiting state k starting from i are
denoted by f L

ik := EδL
i

[
TL

k,1

]
and f U

ik := EδU
i

[
TU

k,1 − 1
]
, respectively.
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Proof of Theorem 2.3. Lemma 3.1 implies that the state spaces of
{
Zνj

}∞
j=0 and

{
Zτj

}∞
j=1

are SL and SU , respectively. Next, to establish ergodicity of these Markov chains, it is
sufficient to verify irreducibility, aperiodicity, and positive recurrence. Irreducibility and ape-
riodicity follow from Lemma 3.1 in both cases. Now, turning to positive recurrence, let
IL
n (k) := {(i1, i2, . . . , in−1) : ij ∈ SL \ {k}} for k ∈ SL. Then, using the Markov property and Part

(i) of Lemma 3.1, it follows that

f L
kk =

∞∑
n=1

PδL
k

(
TL

k,1 ≥ n
)= ∞∑

n=1

PδL
k

(
∩n−1

j=1

{
Zνj �= k

})

=
∞∑

n=1

pki1

∏
IL
n (k)

pij−1ij ≤
∞∑

n=1

(
1 − pL

)n−1
< ∞.

Now from the finiteness of SL it follows that
{
Zνj

}∞
j=0 is uniformly ergodic. Next, as above, for

all k ∈ SU ,

f U
kk =

∞∑
n=1

PδU
k

(
TU

k,1 − 1 ≥ n
)≤ ∞∑

n=1

(
1 − pU

k

)n−1
< ∞.

To complete the proof of uniform ergodicity of
{
Zτj

}∞
j=1, we will verify the Doeblin condition

for one-step transition: that is, for a probability distribution q = {qk}k∈SU and every set A ⊂ SU

satisfying
∑

k∈A qk > ε,

inf
l∈SU

(∑
k∈A

pU
lk

)
> δ.

Now, taking qk := (
pU

k

)
/
(∑

k∈S pU
k

)
, it follows from Lemma 3.1(ii) that

inf
l∈SU

(∑
k∈A

pU
lk

)
≥
(∑

k∈S

pU
k

)∑
k∈A

qk.

Choosing δ = (
∑

k∈S pU
k

)ε yields uniform ergodicity of
{
Zτj

}∞
j=1. �

Remark 3.1. An immediate consequence of the above theorem is that
{
Zνj

}∞
j=0 possesses

a proper stationary distribution πL = {πL
k

}
k∈SL , where πL

k := 1/f L
kk > 0 and satisfies πL

k =∑
i∈S πL

i pL
ik for all k ∈ SL. Furthermore, limj→∞ supl∈SL‖pL

l (j) − πL‖ = 0, where ‖·‖ denotes
the total variation norm. Furthermore, under a finite-second-moment hypothesis, the central
limit theorem holds for functions of Zνj . A similar comment also holds for

{
Zτj

}∞
j=1 with L

replaced by U.

Remark 3.2. It is worth noticing that the stationary distributions πL and πU are connected
using πL

i =∑l∈SU PδU
l

(
Zν1 = i

)
πU

l for all i ∈ SL, since by time-homogeneity (Lemma A.1) we

have P
(
Zνj+1 = i|Zτj+1 = l

)= PδU
l

(
Zν1 = i

)
. Now, if we take the limit as j → ∞ in

P
(
Zνj+1 = i

)=∑
l∈SU

P
(
Zνj+1 = i|Zτj+1 = l

)
P
(
Zτj+1 = l

)
,

the above expression follows. Similarly, πU
k =∑l∈SL PδL

l

(
Zτ1 = k

)
πL

l for all k ∈ SU .
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Since the state space SL is finite, πL has moments of all orders. Proposition A.1 in Appendix
A.3 shows that πU has a finite first moment πU := ∑

k∈SU kπU
k .

4. Regenerative property of crossing times

In this section, we establish the law of large numbers and central limit theorem for the
lengths of the supercritical and subcritical regimes

{
�U

j

}∞
j=1 and

{
�L

j

}∞
j=1. To this end, we

will show that
{
�U

j

}∞
j=1 and

{
�L

j

}∞
j=1 are regenerative over the times

{
TL

i,l

}∞
l=0 and

{
TU

i,l

}∞
l=1,

respectively. In our analysis we will also encounter the random variables �
U
j := �U

j + �L
j and

�
L
j := �L

j + �U
j+1. For l ≥ 1 and i ∈ SL, let BL

i,l :=
(

KL
i,l, �L

i,l, �
L
i,l

)
, where

KL
i,l := TL

i,l − TL
i,l−1, �L

i,l :=
(

�U
TL

i,l−1+1
, . . . , �U

TL
i,l

)
and �

L
i,l :=

(
�

U
TL

i,l−1+1, . . . , �
U
TL

i,l

)
.

The triple BL
i,l consists of the random time KL

i,l required for
{
Zνj

}∞
j=0 to return for the lth time

to state i, the lengths of all supercritical regimes �U
j between the (l − 1)th return and the lth

return, and the lengths �
U
j of both regimes in the same time interval. Similarly, for l ≥ 1 and

i ∈ SU we let BU
i,l :=

(
KU

i,l, �U
i,l, �

U
i,l

)
, where

KU
i,l := TU

i,l − TU
i,l−1, �U

i,l :=
(

�L
TU

i,l−1
, . . . , �L

TU
i,l−1

)
and �

U
i,l :=

(
�

L
TU

i,l−1
, . . . , �

L
TU

i,l−1

)
.

The proof of the following lemma is included in Appendix A.4.

Lemma 4.1. Assume (H1)–(H4). (i) If (H5)also holds and Zν0 = i ∈ SL, then {BL
i,l}∞l=1 are i.i.d.

(ii) (H6) (or (H7)) holds and Zτ1 = i ∈ SU, then {BU
i,l}∞l=1 are i.i.d.

The proof of the following lemma, which is required in the proof of the Theorem 2.4, is

also included in Appendix A.4. We need the following additional notation: S
U
n := ∑n

j=1 �
U
j ,

S
L
n := ∑n

j=1 �
L
j ,

σ 2,U := VπL

[
�

U
1

]
+ 2

∞∑
j=1

CπL

[
�

U
1 , �

U
j+1

]
,

σ 2,L := VπU

[
�

L
1

]
+ 2

∞∑
j=1

CπU

[
�

L
1, �

L
j+1

]
,

C
U :=

∞∑
j=0

CπL

[
�U

1 , �
U
j+1

]
+

∞∑
j=1

CπL

[
�

U
1 , �U

j+1

]
, and

C
L :=

∞∑
j=0

CπU

[
�L

1, �
L
j+1

]
+

∞∑
j=1

CπU

[
�

L
1, �L

j+1

]
.

https://doi.org/10.1017/apr.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.26


Branching processes in random environments with thresholds 513

Lemma 4.2. Under the assumptions of Theorem 2.4, for all i ∈ SL the following hold:

(i) EδL
i

[
SU

TL
i,1

]
= (πL

i

)−1
μU and EδL

i

[
S

U
TL

i,1

]
= (πL

i

)−1(
μU + μL);

(ii) VδL
i

[
SU

TL
i,1

]
= (πL

i

)−1
σ 2,U and VδL

i

[
S

U
TL

i,1

]
= (πL

i

)−1
σ 2,U; and

(iii) CδL
i

[
SU

TL
i,1

, S
U
TL

i,1

]
= (πL

i

)−1
C

U .

The above statements also hold with U replaced by L.

Proposition A.2 in Appendix A.5 shows that σ 2,T and σ 2,T are positive and finite, and
|CT | < ∞. We are now ready to prove Theorem 2.4. The proof relies on decomposing SU

n and
SL

n into i.i.d. cycles using Lemma 4.1. Specifically, conditionally on Zν0 = i ∈ SL (resp. Zτ1 =
i ∈ SU), the random variables

{
SU

TL
i,l

− SU
TL

i,l−1

}∞
l=1

(
resp.

{
SL

TU
i,l−1

− SL
TU

i,l−1−1

}∞
l=1

)
are i.i.d.

Proof of Theorem 2.4. We begin by proving (i). For i ∈ SL and n ∈N, let

NL
i (n) :=

∞∑
l=1

I{TL
i,l≤n}

be the number of times TL
i,l is in {0, 1, . . . , n}. Conditionally on Zν0 = i, notice that NL

i (n) is a

renewal process (recall that TL
i,0 = 0). We recall that KL

i,l = TL
i,l − TL

i,l−1 and let

K∗,L
i,n := n − Ti,NL

i (n), RL
i,l := SU

TL
i,l

− SU
TL

i,l−1
, and R∗,L

i,n := SU
n − SU

TL
i,NL

i (n)

.

Using the decomposition

1

n
SU

n = NL
i (n)

n

(
1

NL
i (n)

NL
i (n)∑
l=1

RL
i,l +

1

NL
i (n)

R∗,L
i,n

)
(14)

and the fact that
{
RL

i,l

}∞
l=1 are i.i.d. and limn→∞ NL

i (n) = ∞ a.s., we obtain using the law of
large numbers for random sums and Lemma 4.2(i) that

lim
n→∞

1

NL
i (n)

NL
i (n)∑
l=1

RL
i,l =EδL

i

[
SU

TL
i,1

]
= (πL

i )−1μU a.s. (15)

Also,

lim sup
n→∞

1

NL
i (n)

R∗,L
i,n ≤ lim

n→∞
1

NL
i (n)

RL
i,NL

i (n)+1
= 0 a.s.

Finally, using the key renewal theorem (Corollary 2.11 of Serfozo [27]) and Remark 3.1, we
have

lim
n→∞

NL
i (n)

n
= 1

EδL
i
[TL

i,1]
= πL

i a.s. (16)
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Using (15) and (16) in (14), we obtain the strong law of large numbers for SU
n . Turning to the

central limit theorem, we let RL
i,l := RL

i,l − μUKL
i,l and R∗,L

i,n := R∗,L
i,n − μUK∗,L

i,n . Conditionally
on Zν0 = i, using the decomposition in (14) and centering, we obtain

1√
n

(
SU

n − nμU)=
√

NL
i (n)

n

⎛
⎝ 1√

NL
i (n)

NL
i (n)∑
l=1

RL
i,l +

1√
NL

i (n)
R∗,L

i,n

⎞
⎠ ,

where
{
RL

i,l

}∞
l=1 are i.i.d. with mean 0 and variance

VδL
i

[
SU

TL
i,1

− μUTL
i,1

]
= (πL

i

)−1
σ 2,U (17)

by Lemma 4.2. Finally, using the central limit theorem for i.i.d. random sums and (16), it
follows that √

NL
i (n)

n

⎛
⎝ 1√

NL
i (n)

NL
i (n)∑
l=1

RL
i,l

⎞
⎠ d−−−→

n→∞ N
(
0, σ 2,U).

To complete the proof notice that

| 1√
NL

i (n)
R∗,L

i,n | ≤ 1√
NL

i (n)
|RL

i,NL
i (n)+1

| p−−−→
n→∞ 0.

The proof for SL
n is similar. �

When studying the proportion of time the process spends in the supercritical and subcritical
regimes, we will need the above theorem with n replaced by a random time Ñ(n).

Remark 4.1. Theorem 2.4 holds if n is replaced by a random time Ñ(n), where limn→∞ Ñ(n) =
∞ a.s.

5. Proportion of time spent in supercritical and subcritical regimes

We recall that χU
n = I∪∞

j=1[νj−1,τj)(n) is 1 if the process is in the supercritical regime and 0

otherwise, and similarly χL
n = 1 − χU

n . Also, θU
n = 1

n CU
n is the proportion of time the process

spends in the supercritical regime up to time n − 1; the quantity θL
n is defined similarly. The

limit theorems for θU
n and θL

n will invoke the i.i.d. blocks developed in Section 4. Let SU
n :=(

SU
n , S

U
n

)�, μU := (
μU, μU + μL

)�, μL := (
μL, μU + μL

)�, and

�U :=
(

σ 2,U
C

U

C
U σ 2,U

)
, �L :=

(
σ 2,L

C
L

C
L σ 2,L

)
.

We note that while SU
n represents the length of the first n supercritical regimes, S

U
n is the total

time taken for the process to complete the first n cycles.

Lemma 5.1. Under the conditions of Theorem 2.5, 1√
n

(
SU

n − nμU
) d−−−→

n→∞ N
(
0, �U

)
, and

1√
n

(
SL

n − nμL
) d−−−→

n→∞ N
(
0, �L

)
.
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Proof of Lemma 5.1. The proof is similar to that of Theorem 2.4. We let

RL
i,l := SU

TL
i,l

− SU
TL

i,l−1
, R∗,L

i,n := SU
n − SU

TL
i,NL

i (n)

,

RL
i,l := RL

i,l − KL
i,lμ

U, R∗,L
i,n := R∗,L

i,n − K∗,L
i,n μU .

Conditionally on Zν0 = i, we write

1√
n

(
SU

n − nμU)=
√

NL
i (n)

n

⎛
⎝ 1√

NL
i (n)

NL
i (n)∑
l=1

RL
i,l +

1√
NL

i (n)
R∗,L

i,n

⎞
⎠ .

Now, by Lemma 4.1 and Lemma 4.2,
{
RL

i,l

}∞
l=1 are i.i.d. with mean 0 = (0, 0)� and covariance

matrix (πL
i )−1�U . Using the key renewal theorem, we conclude that

√
NL

i (n)

n

⎛
⎝ 1√

NL
i (n)

NL
i (n)∑
l=1

RL
i,l

⎞
⎠ d−−−→

n→∞ N
(
0, �U)

and
1√

NL
i (n)

|R∗,L
i,n | p−−−→

n→∞ 0.

The proof of (ii) is similar. �
Remark 5.1. Lemma 5.1 also holds with n replaced by a random time Ñ(n) such that
limn→∞ Ñ(n) = ∞ a.s. The next lemma concerns the number of crossings of upper and
lower thresholds, namely, ÑU(n) := sup{j ≥ 0 : τj ≤ n} and ÑL(n) := sup{j ≥ 0 : νj ≤ n}, where
n ∈N0.

Lemma 5.2. Under the conditions of Theorem 2.5,

(i) limn→∞ ÑU (n)
n+1 = 1

μU+μL and limn→∞ ÑL(n)
n+1 = 1

μU+μL a.s.;

(ii) limn→∞
CU

n+1

ÑU (n)
= μU and limn→∞

CL
n+1

ÑL(n)
= μL a.s.

Proof of Lemma 5.2. We begin by proving (i). We recall that τ0 = −1 and τj < νj < τj+1 a.s.
for all j ≥ 0, yielding that

ÑL(n) ≤ ÑU(n) ≤ ÑL(n) + 1.

Since τj and νj are finite a.s., we obtain that limn→∞ ÑU(n) = ∞ and limn→∞ ÑL(n) = ∞ a.s.
Part (i) follows if we show that

lim
n→∞

ÑL(n)

n + 1
= 1

μU + μL
a.s.

To this end, we notice that νÑL(n) ≤ n ≤ νÑL(n)+1, and for n ≥ ν1,

νÑL(n)

ÑL(n)
≤ n

ÑL(n)
≤ νÑL(n)+1

ÑL(n) + 1

ÑL(n) + 1

ÑL(n)
.
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Clearly, limn→∞ ÑL(n)+1
ÑL(n)

= 1 a.s. By Remark 4.1 with Ñ(n) = ÑU(n),

lim
n→∞

νÑL(n)

ÑL(n)
= lim

n→∞
1

ÑL(n)

ÑL(n)∑
j=1

�
U
j = μU + μL a.s.

Thus, we obtain

lim
n→∞

ÑL(n)

n + 1
= 1

μU + μL
a.s. (18)

Turning to (ii), we notice that

CU
n+1 =

n∑
j=0

χU
j =

ÑU (n)∑
j=1

�U
j +

n∑
l=νÑU (n)

1,

where
∑n

l=r = 0 for r > n. Remark 4.1 with Ñ(n) = ÑU(n) yields that

lim
n→∞

1

ÑU(n)

ÑU (n)∑
j=1

�U
j = μU a.s. and

lim sup
n→∞

1

ÑU(n)

n∑
l=νÑU (n)

1 ≤ lim
n→∞

1

ÑU(n)
�U

ÑU (n)+1
= 0 a.s.

Thus, we obtain that limn→∞
CU

n+1

ÑU (n)
= μU a.s. Similarly, limn→∞

CL
n+1

ÑL(n)
= μL a.s. �

Our next result is concerned with the joint distribution of the last time when the process is
in a specific regime and the proportion of time the process spends in that regime, under the
assumptions of Theorem 2.5. Let

�
U

:=
⎛
⎜⎝σ 2,U

(
μU + μL

) − C
U

μU+μL

− C
U

μU+μL
σ 2,U(

μU+μL
)3

⎞
⎟⎠ and �

L
:=
⎛
⎜⎝σ 2,L

(
μU + μL

) − C
L

μU+μL

− C
L

μU+μL
σ 2,L(

μU+μL
)3

⎞
⎟⎠ .

Lemma 5.3. Under the conditions of Theorem 2.5,

√
n + 1

⎛
⎝ CU

n+1

ÑU (n)
− μU

ÑU (n)
n+1 − 1

μU+μL

⎞
⎠ d−−−→

n→∞ N
(

0, �
U
)

and

√
n + 1

⎛
⎝ CL

n+1

ÑL(n)
− μL

ÑL(n)
n+1 − 1

μU+μL

⎞
⎠ d−−−→

n→∞ N
(

0, �
L
)

.
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Proof of Lemma 5.3. We only prove the statement for CU
n+1 and ÑU(n), since the other case

is similar. We write

√
ÑU(n)

⎛
⎝ CU

n+1

ÑU (n)
− μU

n+1
ÑU (n)

− (μU + μL
)
⎞
⎠

= 1√
ÑU(n)

ÑU (n)∑
j=1

(
�U

j − μU

�
U
j − (μU + μL

)
)

+ 1√
ÑU(n)

n∑
l=νÑU (n)

(
1

1

)
,

and using Lemma 5.1 and Remark 5.1 with Ñ(n) = ÑU(n), we obtain that

√
ÑU(n)

⎛
⎝ CU

n+1

ÑU (n)
− μU

n+1
ÑU (n)

− (μU + μL
)
⎞
⎠ d−−−→

n→∞ N
(
0, �U).

Next, we apply the delta method with g:R2 →R
2 given by g(x, y) = (x, 1/y) and obtain that

√
ÑU(n)

⎛
⎝ CU

n+1

ÑU (n)
− μU

ÑU (n)
n+1 − 1

μU+μL

⎞
⎠ d−−−→

n→∞ N
(
0, �U

2

)
,

where

�U
2 = Jg

(
μU)�UJg

(
μU)� =

⎛
⎜⎝

σ 2,U − C
U(

μU+μL
)2

− C
U(

μU+μL
)2

σ 2,U(
μU+μL

)4

⎞
⎟⎠

and Jg(·) is the Jacobian matrix of g(·). Using Lemma 5.2(i), we obtain that

√
n + 1

⎛
⎝ CU

n+1

ÑU (n)
− μU

ÑU (n)
n+1 − 1

μU+μL

⎞
⎠ d−−−→

n→∞ N
(

0, �
U
)

.

�
We are now ready to prove Theorem 2.5. Recall that θU

n = CU
n
n , θL

n = CL
n

n , θU = μU

μU+μL , and

θL = μL

μL+μU , and let θk,U and θk,L be the kth powers of θU and θL, respectively.

Proof of Theorem 2.5. Almost sure convergence of θT
n follows from Lemma 5.3 upon

noticing that

CT
n+1

n + 1
=
(

CT
n+1

ÑT (n)

)(
ÑT (n)

n + 1

)
.

Using Lemma 5.2 and the decomposition

√
n + 1

(
CT

n+1

n + 1
− μT

μU + μL

)

= ÑT (n)

n + 1
· √n + 1

(
CT

n+1

ÑT (n)
− μT

)
+ μT · √n + 1

(
ÑT (n)

n + 1
− 1

μU + μL

)
,
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it follows that
√

n + 1
(
θT

n+1 − θT
)

is asymptotically normal with mean zero and variance

η2,T := 1

μT

(
σ 2,TθT − 2CTθ2,T + σ 2,Tθ3,T). (19)

�
Corollary 5.1. Under the conditions of Theorem 2.4, for T ∈ {L, U},

√
ÑT (n)

(
CT

n+1

ÑT (n)
− μT

)
d−−−→

n→∞ N
(
0, σ 2,T).

Proof of Corollary 5.1. We only prove the case T = U. We write

√
ÑU(n)

(
CU

n+1

ÑU(n)
− μU

)
= 1√

ÑU(n)

ÑU (n)∑
j=1

(
�U

j − μU)+ 1√
ÑU(n)

n∑
l=νÑU (n)

1.

Taking the limit in the above equation and using Remark 4.1 yields the result. �

6. Estimating the mean of the offspring distribution

We recall that χ̃U
n = χU

n I{Zn≥1}, C̃U
n =∑n

j=1 χ̃U
j−1, and for the subcritical regime we set

χ̃L
n := χL

n and C̃L
n := CL

n . We also recall that the offspring mean estimates of the BPRET
{Zn}∞n=0 in the supercritical and subcritical regimes are given by

MU
n = 1

C̃U
n

n∑
j=1

Zj − IU
j−1

Zj−1
χ̃U

j−1 and ML
n = 1

C̃L
n

n∑
j=1

Zj

Zj−1
χ̃L

j−1.

The decomposition

MT
n = MT + 1

C̃T
n

(
MT

n,1 + MT
n,2

)
(20)

will be used in the proof of Theorem 2.6 and involves the martingale structure of MT
n,i :=∑n

j=1 DT
j,i, where

DT
j,1 :=

(
P

T
j−1 − MT

)
χ̃T

j−1 and DT
j,2 := χ̃T

j−1

Zj−1

Zj−1∑
i=1

(
ξT

j−1,i − P
T
j−1

)
. (21)

Specifically, let Gn be the σ -algebra generated by the random environments
{
�T

j

}n
j=0; Hn,1

the σ -algebra generated by Fn and Gn−1; and Hn,2 the σ -algebra generated by Fn, Gn−1,
and the offspring distributions {ξT

j,i}∞i=0, j = 0, 1, . . . , n − 1. Hence, Zn, χ̃T
n , and �T

n−1 are

Hn,1-measurable, whereas �T
n is not Hn,1-measurable. We also denote by H̃n,1 the σ -algebra

generated by Fn−1 and Gn−1, and by H̃n,2 the σ -algebra generated by Fn−1, Gn−1, and
{ξT

j,i}∞i=0, j = 0, 1, . . . , n − 1. Hence, Zn−1, χ̃T
n−1, and �T

n−1 are all H̃n,1-measurable but not

H̃n−1,1-measurable. We establish in Proposition A.3 in Appendix A.6 that{
(MT

n,1,Hn,i)
}∞

n=1 and
{(

MT
n,2,Hn,2

)}∞
n=1
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are mean-zero martingale sequences. Additionally,

E
[(

MT
n,1

)2]= VT
1 E
[
C̃T

n

]
and E

[(
MT

n,2

)2]= VT
2 E[ÃT

n ],

where

ÃU
n :=

n∑
j=1

χ̃U
j−1

Zj−1

is the sum of 1
Zj

over supercritical time steps up to time n − 1, discarding times at which Zj is
zero, and

ÃL
n := AL

n :=
n∑

j=1

χL
j−1

Zj−1

is the sum of 1
Zj

over subcritical time steps up to time n − 1. Proposition A.3 contains other

two martingales involving the terms DT
j,1 and DT

j,2 in (21) and related moment bounds, which
will be used in the proof of Theorem 2.6. As a first step, we derive the limit of the variances
E
[(

MT
n,1

)2] and E
[(

MT
n,2

)2] when rescaled by n. By Proposition A.3, this entails studying the

limit behavior of the quantities 1
n C̃T

n and 1
n ÃT

n . To this end, we build i.i.d. blocks as in Section

4. For l ≥ 1 and i ∈ SL, let B
L
i,l :=

(
KL

i,l, �̃
L
i,l, �̃

L
i,l

)
, where

KL
i,l = TL

i,l − TL
i,l−1, �̃

L
i,l :=

(
�̃U

TL
i,l−1+1

, . . . , �̃U
TL

i,l

)
, �̃

L
i,l :=

(
�̃U

TL
i,l−1+1

, . . . , �̃U
TL

i,l

)
,

�̃U
j+1 :=

τj+1∑
k=νj+1

χ̃U
k−1, �̃U

j+1 :=
τj+1∑

k=νj+1

χ̃U
k−1

Zk−1
.

The triple BL
i,l consists of the random time KL

i,l required for
{
Zνj

}∞
j=0 to return for the lth time

to state i, the lengths of all supercritical regimes �̃U
j between the (l − 1)th return and the lth

return, and the sum of Zj-inverse over supercritical regimes, disregarding the times when the

process hits zero. Similarly, for l ≥ 1 and i ∈ SU we let B
U
i,l := (

KU
i,l, �U

i,l, �U
i,l

)
, where

KU
i,l = TU

i,l − TU
i,l−1, �U

i,l =
(
�L

TU
i,l−1

, . . . , �L
TU

i,l−1

)
, �U

i,l :=
(
�L

TU
i,l−1

, . . . , �L
TU

i,l−1

)
,

�L
j :=

νj∑
k=τj+1

χL
k−1

Zk−1
.

Notice that, since C̃L
n = CL

n , Theorem 2.5 already yields that limn→∞ CL
n

n = μL

μU+μL . We need
the following slight modification of Lemma 4.1, whose proof is similar and hence omitted.

Lemma 6.1. Assume (H1)–(H4). (i) If (H5) holds and Zν0 = i ∈ SL, then
{
B

L
i,l

}∞
l=1 are i.i.d.

(H6) (or (H7)) holds and Zτ1 = i ∈ SU, then {BU
i,l}∞l=1 are i.i.d.
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Proposition 6.1. Suppose that (H1)–(H6) (or (H7)) hold and μU, μL < ∞. Then

(i) limn→∞ C̃U
n

ÑL(n)
= μ̃U and limn→∞ C̃U

n
n = μ̃U

μU+μL a.s.;

(ii) limn→∞ ÃU
n

ÑL(n)
= ÃU and limn→∞ ÃU

n
n = ÃU

μU+μL a.s.;

(iii) limn→∞ AL
n

ÑU (n)
= AL and limn→∞ AL

n
n = AL

μU+μL a.s.

Since C̃T
n

n and ÃT
n

n are non-negative and bounded by one, Proposition 6.1 implies conver-
gence in mean of these quantities.

Proof of Proposition 6.1. By Lemma 5.2(i) it is enough to show the first part of the state-
ments (i)–(iii). Since the proofs of the other cases are similar, we only prove (i). We recall that
for i ∈ SL and j ∈N,

NL
i (j) =

∞∑
l=1

I{TL
i,l≤j}

is the number of times TL
i,l is in {0, 1, . . . , j}. We define

N
L
i (n) := NL

i

(
ÑL(n)

)
, D̃L

i,l := C̃U
νTL

i,l

− C̃U
νTL

i,l−1

, and D̃∗,L
i,n := C̃U

n − C̃U
νTL

i,NL
i (n)

.

Conditionally on Zν0 = i, TL
i,0 = 0, and we write

C̃U
n

ÑL(n)
= N

L
i (n)

ÑL(n)

⎛
⎜⎝ 1

N
L
i (n)

N
L
i (n)∑

l=1

D̃L
i,l +

1

N
L
i (n)

D̃∗,L
i,n

⎞
⎟⎠ .

Lemma 6.1 implies that
{
D̃L

i,l

}∞
l=1 are i.i.d. with expectation given by

EδL
i

[
C̃U

νTL
i,1

]
= (πL

i

)−1
μ̃U,

using Proposition 1.69 of Serfozo [27]. Since limn→∞ N
L
i (n) = ∞ a.s., we obtain that

lim
n→∞

1

N
L
i (n)

N
L
i (n)∑

l=1

D̃L
i,l = (πL

i )−1μ̃U a.s. and lim
n→∞

1

N
L
i (n)

D̃∗,L
i,n = 0 a.s.,

since

D̃∗,L
i,n ≤ D̃L

i,N
L
i (n)+1

.

Finally, it holds that limn→∞ N
L
i (n)

ÑL(n)
= πL

i a.s. �
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We next establish that, when rescaled by their standard deviations, the terms MT
n,i, where

i = 1, 2 and T ∈ {L, U}, are jointly asymptotically normal. To this end, let

M
T
n :=

⎛
⎝ MT

n,1√
E
[(

MT
n,1

)2] ,
MT

n,2√
E
[(

MT
n,2

)2]
⎞
⎠

�
and Mn :=

((
M

U
n

)�
,
(

M
L
n

)�)�
.

Lemma 6.2. Under the assumption of Theorem 2.6(ii), Mn
d−−−→

n→∞ N(0, I).

Proof of Lemma 6.2. By the Cramér–Wold theorem (see Theorem 29.4 of Billingsley [28]),
it is enough to show that for tTi ∈R, where i = 1, 2 and T ∈ {L, U},

∑
T∈{L,U}

2∑
i=1

tTi
MT

n,i√
E
[(

MT
n,i

)2] d−−−→
n→∞ N

(
0,

∑
T∈{L,U}

2∑
i=1

(
tTi
)2). (22)

Using Proposition A.3, we see that

{( ∑
T∈{L,U}

2∑
i=1

tTi MT
n,i,Hn,2

)}∞

n=1

is a mean-zero martingale sequence. In particular,⎧⎨
⎩
⎛
⎝ ∑

T∈{L,U}

2∑
i=1

tTi
MT

j,i√
E
[(

MT
n,i

)2] ,Hj,2

⎞
⎠
⎫⎬
⎭

n

j=1

is a mean-zero martingale array. We will apply Theorem 3.2 of Hall and Heyde [29] with
kn = n,

Xnl =
∑

T∈{L,U}

2∑
i=1

tTi
DT

l,i√
E
[(

MT
n,i

)2] ,

Snj =∑j
l=1 Xnl, Fnj =Hj,2, and B2 =∑T∈{L,U}

∑2
i=1

(
tTi
)2; from this we will obtain (22). To

this end, we need to verify the following conditions:

(i) E
[(

Snj
)2]

< ∞,

(ii) maxl=1,...,n|Xnl| p−−−→
n→∞ 0,

(iii)
∑n

l=1 X2
nl

p−−−→
n→∞ B2, and

(iv) supn∈N E
[
maxl=1,...,n X2

nl

]
< ∞.

Using Proposition A.3 (iv), we have E
[(

MT1
j,i1

)(
MT2

j,i2

)]= 0 if either T1 �= T2 or i1 �= i2, and since

E
[(

MT
j,i

)2] are non-decreasing in j, we obtain that
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E

⎡
⎢⎣
⎛
⎝ ∑

T∈{L,U}

2∑
i=1

tTi
MT

j,i√
E
[(

MT
n,i

)2]
⎞
⎠

2
⎤
⎥⎦=

∑
T∈{L,U}

2∑
i=1

(
tTi
)2 E[(MT

j,i

)2]
E
[(

MT
n,i

)2]

≤
∑

T∈{L,U}

2∑
i=1

(
tTi
)2

< ∞,

which yields Condition (i). Using again that E
[(

DT1
l,i1

)(
DT2

l,i2

)]= 0 if either T1 �= T2 or i1 �= i2

and E
[(

MT
n,i

)2]=∑n
l=1 E

[(
DT

l,i

)2], we obtain that

E

⎡
⎢⎣ max

l=1,...,n

⎛
⎝ ∑

T∈{L,U}

2∑
i=1

tTi
DT

l,i√
E
[(

MT
n,i

)2]
⎞
⎠

2
⎤
⎥⎦≤E

⎡
⎢⎣ n∑

l=1

⎛
⎝ ∑

T∈{L,U}

2∑
i=1

tTi
DT

l,i√
E
[(

MT
n,i

)2]
⎞
⎠

2
⎤
⎥⎦

=
∑

T∈{L,U}

2∑
i=1

(
tTi
)2

,

yielding Condition (iv). Turning to Condition (ii), assuming without loss of generality that
tTi �= 0; using that⎛

⎝ ∑
T∈{L,U}

2∑
i=1

tTi
DT

l,i√
E
[(

MT
n,i

)2]
⎞
⎠

2

≤ 4
∑

T∈{L,U}

2∑
i=1

(
tTi
)2 (

DT
l,i

)2√
E
[(

MT
n,i

)2] ,
we obtain that for all ε > 0,

P

⎛
⎝ max

l=1,...,n

∣∣∣∣ ∑
T∈{L,U}

2∑
i=1

tTi
DT

l,i√
E
[(

MT
n,i

)2]
∣∣∣∣≥ ε

⎞
⎠

≤
n∑

l=1

P

⎛
⎜⎝
⎛
⎝ ∑

T∈{L,U}

2∑
i=1

tTi
DT

l,i√
E
[(

MT
n,i

)2]
⎞
⎠

2

≥ ε2

⎞
⎟⎠

≤
∑

T∈{L,U}

2∑
i=1

n∑
l=1

P

((
DT

l,i

)2 ≥
(

ε

4tTi

)2

E
[(

MT
n,i

)2]).

For i = 1, we use that χ̃T
l−1 ∈ {0, 1} and obtain

n∑
l=1

P

((
DT

l,1

)2 ≥
(

ε

4tT1

)2

E
[(

MT
n,1

)2])

≤
n∑

l=1

P

((
DT

l,1

)2 ≥
(

ε

4tT1

)2

E
[(

MT
n,1

)2]|χ̃T
l−1 = 1

)

= n

E
[(

MT
n,1

)2]E[(MT
n,1

)2]
P

((
P

T
0 − MT

)2 ≥
(

ε

4tT1

)2

E
[(

MT
n,1

)2]).
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It follows from Proposition A.3(i) and Proposition 6.1(i) that

lim
n→∞

n

E
[(

MT
n,1

)2] = 1

θ̃TVT
1

< ∞, (23)

where, for T = L, θ̃L := θL, and since VT
1 < ∞,

lim
n→∞ E

[(
MT

n,1

)2]
P

((
P

T
0 − MT

)2 ≥
(

ε

4tT1

)2

E
[(

MT
n,1

)2])= 0,

yielding that

lim
n→∞

n∑
l=1

P

((
DT

l,1

)2 ≥
(

ε

4tT1

)2

E
[(

MT
n,1

)2])= 0.

For i = 2, we use that if χ̃T
l−1 = 1 then Zl−1 ≥ 1 and obtain that

n∑
l=1

P

((
DT

l,2

)2 ≥
(

ε

4tT2

)2

E
[(

MT
n,2

)2])

≤ n sup
z∈N

P

((
1

z

z∑
i=1

(
ξT

0,i − P
T
0

))2

≥
(

ε

4tT2

)2

E
[(

MT
n,2

)2]).

Next, using Proposition A.3(ii) and Proposition 6.1(ii)–(iii), we have that

lim
n→∞

n

E
[(

MT
n,2

)2] ≤ μU + μL

VT
2 ÃT

< ∞, (24)

where ÃL := AL. Since by Jensen’s inequality

E

[∣∣∣∣1z
z∑

i=1

(
ξT

0,i − P
T
0

)∣∣∣∣
2+δ]

≤E
[


T,2+δ
0,2

]
< ∞,

using the Markov inequality, we obtain

∞∑
n=0

sup
z∈N

P

((
1

z

z∑
i=1

(
ξT

0,i − P
T
0

))2

≥
(

ε

4tT2

)2

E
[(

MT
n,2

)2])
< ∞,

which yields that

lim
n→∞ n sup

z∈N
P

((
1

z

z∑
i=1

(
ξT

0,i − P
T
0

))2

≥
(

ε

4tT2

)2

E
[(

MT
n,2

)2])= 0.

For (iii), we decompose

n∑
l=1

⎛
⎝ ∑

T∈{L,U}

2∑
i=1

tTi
DT

l,i√
E
[(

MT
n,i

)2]
⎞
⎠

2

−
∑

T∈{L,U}

2∑
i=1

(
tTi
)2
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as

∑
T∈{L,U}

2∑
i=1

(
tTi
)2∑n

l=1

(
DT

l,i

)2 −E
[(

MT
n,i

)2]
E
[(

MT
n,i

)2] +
∑

T1 �=T2 or i1 �=i2

tT1
i1

tT2
i2

∑n
l=1

(
DT1

l,i1

)(
DT2

l,i2

)
√
E
[(

MT1
n,i1

)2]
E
[(

MT2
n,i2

)2]
(25)

and show that each of the above terms converges to zero with probability one. Since
E
[(

MT
n,i

)2]=∑n
l=1 E[

(
DT

l,i

)2], we use Proposition A.3(iii) and obtain that{(
n∑

l=1

((
DT

l,i

)2 −E
[(

DT
l,i

)2])
, H̃n,i

)}∞

n=1

are mean-zero martingale sequences, and for s = 1 + δ/2,

E

[∣∣∣∣(DT
l,i

)2 −E
[(

DT
l,i

)2]∣∣∣∣
s

|H̃l−1,i

]
≤ 2s

E
[


T,2s
0,i

]
E
[
χ̃T

l−1

]
< ∞.

We use (23) and (24), and apply Theorem 2.18 of Hall and Heyde [29] with Sn =∑n
l=1

((
DT

l,i

)2 −E
[(

DT
l,i

)2]), Xl =
(
DT

l,i

)2 −E
[(

DT
l,i

)2], Fn = H̃n,i, Un =E
[(

MT
n,i

)2], and p =
s, where i = 1, 2, to obtain the convergence of the first term in (25). For the second term we
proceed similarly. Specifically, using Proposition A.3(iv) and the Cauchy–Schwartz inequality,
we obtain that

{(∑n
l=1

(
DT1

l,i1

)(
DT2

l,i2

)
, H̃n,2

)}∞
n=0 is a mean-zero martingale sequence, and for

s = 1 + δ/2,

E

[
|
(

DT1
l,i1

)(
DT2

l,i2

)
|s|H̃l−1,2

]
≤E

[


T1,s
0,i1


T2,s
0,i2

]
≤
√
E

[


T1,2+δ
0,i1

]
E

[


T2,2+δ
0,i2

]
< ∞.

Finally, we apply Theorem 2.18 of Hall and Heyde [29] with Sn =∑n
l=1

(
DT1

l,i1

)(
DT2

l,i2

)
, Xl =(

DT1
l,i1

)(
DT2

l,i2

)
, Fn = H̃n,2, Un =

√
E

[(
MT1

n,i1

)2]
E
[(

MT2
n,i2

)2], and p = s, from which we obtain

convergence of the second term in (25). �
We are now ready to prove the main result of the section.

Proof of Theorem 2.6. Using Proposition A.3(i)–(ii) and χ̃T
j−1 ≤ 1, we obtain that for i =

1, 2,
{(

MT
n,i,Hn,i

)}∞
n=1 are martingales and

∞∑
j=1

1

js
E
[∣∣DT

j,i

∣∣s|Hj−1,i
]≤E

[


T,s
0,i

] ∞∑
j=1

1

js
< ∞.

We apply Theorem 2.18 of Hall and Heyde [29] with Sn = MT
n,i, Xj = DT

j,i, where i = 1, 2 and
T ∈ {L, U}, and with Un = n, p = s, and Fn =Hn,1 for i = 1 and Fn =Hn,2 for i = 2, From
this we obtain that limn→∞ 1

n MT
n,i = 0 a.s. From this, Theorem 2.5, and Proposition 6.1(i),

we obtain that limn→∞ 1
C̃T

n
MT

n,i = 0 a.s. Using (20) we conclude that limn→∞ MT
n = MT a.s.

Turning to the central limit theorem, Lemma 6.2(iii) yields that

Mn =
⎛
⎝ MU

n,1√
E
[(

MU
n,1

)2] ,
MU

n,2√
E
[(

MU
n,2

)2] ,
ML

n,1√
E
[(

ML
n,1

)2] ,
ML

n,2√
E
[(

ML
n,2

)2]
⎞
⎠

�
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is asymptotically normal with mean zero and identity covariance matrix. Let D2
n be the 4 × 4

diagonal matrix

D2
n := Diag

⎛
⎝nE

[(
MU

n,1

)2]
(
C̃U

n

)2 ,
nE
[(

MU
n,2

)2]
(
C̃U

n

)2 ,
nE
[(

ML
n,1

)2]
(
C̃L

n

)2 ,
nE
[(

ML
n,2

)2]
(
C̃L

n

)2
⎞
⎠ .

By Proposition A.3(i)–(ii) and Proposition 6.1, DnMn is asymptotically normal with mean zero
and covariance matrix

D̃2 := Diag

(
VU

1

θ̃U
,

ÃUVU
2

θ̃Uμ̃U
,

VL
1

θL
,

ALVL
2

θLμL

)
.

Using the continuous mapping theorem, it follows that

√
n(Mn − M)

d−−−→
n→∞ N(0, �).

�

7. Discussion and concluding remarks

In this paper we have developed the BPRE with thresholds to describe periods of growth
and decrease in the population size arising in several applications, including COVID dynamics.
Even though the model is non-Markov, we identify Markov subsequences and use them to
understand the length of time the process spends in the supercritical and subcritical regimes.
Furthermore, using the regeneration technique, we also study the rate of growth (resp. decline)
of the process in the supercritical (resp. subcritical) regime. It is possible to start the process
using the subcritical BPRE and then move to the supercritical regime; this introduces only
minor changes, and the qualitative results remain the same. Finally, we note that without the
incorporation of immigration in the supercritical regime, the process will become extinct with
probability one, and hence the cyclical path behavior may not be observed.

An interesting question concerns the choice of strongly subcritical BPRE for the subcritical
regime. It is folklore that the generation sizes of moderately and weakly subcritical processes
can increase for long periods of time, and in that case the time needed to cross the lower
threshold will have a heavier tail. This could lead to a lack of identifiability of the supercritical
and subcritical regimes. Similar issues arise when a subcritical BPRE is replaced by a crit-
ical BPRE or when immigration is allowed in both regimes. Since a subcritical BPRE with
immigration converges in distribution to a proper limit law [30], we may fail to observe a clear
period of decrease. The path properties of these alternatives could be useful for modeling other
dynamics observed (see [9, 12]). Mathematical issues arising from these alternatives would
involve different techniques from those used in this paper.

We end this section with a brief discussion concerning the moment conditions in Theorem
2.6. It is possible to reduce the conditions E

[


T,2+δ
0,i

]
< ∞ to a finite-second-moment hypoth-

esis. This requires an extension of Lemma 4.1 to joint independence of blocks in BL
i,l, BU

i,l,
offspring random variables, environments, and immigration over cycles. The proof will require
the Markov property of the pair

{(
Zνj−1 , Zτj

)}∞
j=1 and its uniform ergodicity. The joint Markov

property will also yield a joint central limit theorem for the length and proportion of time
spent in the supercritical and subcritical regimes. The proof is similar to that of Theorem 2.3
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and Lemma 4.1, but is more cumbersome, with an increased notational burden. The numerical
experiments suggest that the estimators of the mean parameters of the supercritical and sub-
critical regimes are not affected by the choice of various distributions. A thorough statistical
analysis of the robustness of the estimators and an analysis of the datasets are beyond the scope
of this paper and will be undertaken elsewhere.

Appendix A. Auxiliary results

This section contains detailed descriptions and proofs of auxiliary results used in the paper.
We begin with a detailed description of the probability space for the BPRET.

A.1. Probability space

In this subsection we describe in detail the random variables used to define the BPRET, as
well as the underlying probability space. The thresholds {(Uj, Lj)}∞j=1 are i.i.d. random vec-

tors with support SU
B × SL

B, where SU
B =N∩ [LU + 1, ∞), SL

B =N∩ [L0, LU], and 1 ≤ L0 ≤ LU

are fixed integers, defined on the probability space (�B,FB, PB). Next, �L = {�L
n}∞n=0 and

�U = {�U
n }∞n=0 are subcritical and supercritical environmental sequences that are defined on

probability spaces (�EL ,FEL , PEL ) and (�EU ,FEU , PEU ). Specifically, �U
n = (PU

n , QU
n

)
and

�L
n = PL

n , where PU
n = {PU

n,r}∞r=0, PL
n = {PL

n,r}∞r=0, and QU
n = {QU

n,r}∞r=0 are probability distri-
butions in P . Let (�U,FU, PU) and (�L,FL, PL) denote probability spaces corresponding
to the supercritical BPRE with immigration and the subcritical BPRE. Hence, the environ-
ment sequence �U = {�U

n }∞n=0, the offspring sequence {ξU
n,i}∞i=1, and the immigration sequence

{IU
n }∞n=0 are random variables on (�U,FU, PU). Similarly, �L = {�L

n}∞n=0 and {ξL
n,i}∞i=1,

n ≥ 0, are random variables on (�L,FL, PL). We point out here that the probability spaces
(�U,FU, PU) and (�EU ,FEU , PEU ) are linked; that is, for all integrable functions H:�U →R,∫

H
(
z, �U)dPU

(
z, �U)= ∫ ∫ H

(
z, �U)dPU

(
z|�U)dPEU

(
�U).

Similar comments also hold with U replaced by L in the above. All of the random vari-
ables described above are defined on the probability space (�,F , P) = (�B × �U × �L,FB ⊗
FU ⊗FL, PB × PU × PL).

A.2. Time-homogeneity of {Zνj}∞j=0 and
{

Zτj

}∞
j=1

Lemma A.1. Assume (H1) and (H2′). For all i ∈ SL, k ∈ SU, and j ∈N0, the following holds:

(i) P
(
Zτj+1 = k|Zνj = i, νj < ∞)= PδL

i

(
Zτ1 = k

)
and

P
(
Zτj+1 = k|τj+1 < ∞, Zνj = i

)= PδL
i

(
Zτ1 = k|τ1 < ∞), and

(ii) P
(
Zνj+1 = i|Zτj+1 = k, τj+1 < ∞)= PδU

k

(
Zν1 = i|τ1 < ∞) and

P
(
Zνj+1 = i|νj+1 < ∞, Zτj+1 = k

)= PδU
k

(
Zν1 = i|ν1 < ∞).

If additionally (H3) holds, then (iii) τj and νj are finite a.s.,

P
(
Zτj+1 = k|Zνj = i

)= PδL
i

(
Zτ1 = k

)
, and

P
(
Zνj+1 = i|Zτj+1 = k

)= PδU
k

(
Zν1 = i

)
.
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Proof of Lemma A.1. We only prove (i) and (iii). Since P
(
Zτj+1 = k|Zνj = i, νj < ∞) is

equal to

∞∑
s=1

∞∑
u=LU+1

P
(
Zνj+s = k, Zνj+s−1 < u, . . . , Zνj+1 < u|Zνj = i, νj < ∞),

it is enough to show that for all s ≥ 1 and u ≥ LU + 1,

P
(
Zνj+s = k, Zνj+s−1 < u, . . . , Zνj+1 < u|Zνj = i, νj < ∞)

= PδL
i
(Zs = k, Zs−1 < u, . . . , Z1 < u).

(26)

To this end, we condition on �U
νj+l =

(
pU

l , qU
l

)
and �U

l = (pU
l , qU

l

)
, where l = 0, 1, . . . , s − 1.

Since, given �U
νj+l =

(
pU

l , qU
l

)
and �U

l = (pU
l , qU

l

)
, both the sequences

{
ξU
νj+l,i

}∞
i=1, {ξU

l,i}∞i=1

and the random variables IU
νj+l, IU

l are i.i.d., we obtain from (1) that

P
(
Zνj+s = k, Zνj+s−1 < u, . . . , Zνj+1 < u|Zνj = i, νj < ∞,

{
�U

νj+l

}s−1
l=0 = {(pU

l , qU
l

)}s−1
l=0

)
= PδL

i

(
Zs = k, Zs−1 < u, . . . , Z1 < u|{�U

l

}s−1
l=0 = {(pU

l , qU
l

)}s−1
l=0

)
.

By taking the expectation with respect to �U = {�U
n }∞n=0 and using that the �U

n are i.i.d., we
obtain (26). Next, we notice that

P(Zτj+1 = k|τj+1 < ∞, Zνj = i) = P
(
Zτj+1 = k|Zνj = i, νj < ∞)

P
(
τj+1 < ∞|Zνj = i, νj < ∞) , where

P
(
τj+1 < ∞|Zνj = i, νj < ∞)= ∞∑

k=LU+1

P
(
Zτj+1 = k|Zνj = i, νj < ∞)

is positive because MU > 1. It follows from Part (i) that P
(
Zτj+1 = k|τj+1 < ∞, Zνj = i

)=
PδL

i
(Zτ1 = k|τ1 < ∞). Finally, (iii) follows from (i) and (ii) using (3) and (4). �

A.3. Finiteness of πU

We show that the stationary distribution πU of the Markov chain
{
Zτj

}∞
j=1 has a finite first

moment πU .

Proposition A.1. Under (H1)–(H4), (H6) (or (H7)), and (H9), πU < ∞.

Proof of Proposition A.1. Using that πU = {πU
k }k∈SU is the stationary distribution of the

Markov chain {Zτj}∞j=1, for all k ∈ SU we write πU
k = PπU (Zτ2 = k) =E[PπU (Zτ2 = k|U2)].

Next, we notice that

PπU
(
Zτ2 = k|U2

)= ∞∑
n=3

PπU
(
Zτ2 = k|τ2 = n, U2

)
PπU

(
τ2 = n|U2

)
.

Now, using that the event {τ2 = n} is same as

{Zn ≥ U2} ∩ ∩n−1
k=ν1+1{Zk < U2} ∩ {ν1 ≤ n − 1},
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the right-hand side of the above inequality is bounded above by

max
i=0,1,...,U2−1

∞∑
n=3

P
(
Zn = k|Zn ≥ U2, U2, Zn−1 = i, ∩n−2

k=ν1+1{Zk < U2}, ν1 ≤ n − 1
)

× PπU (τ2 = n|U2).

Since BPRE is a time-homogeneous Markov chain, it follows that

P
(
Zn = k|Zn ≥ U2, U2, Zn−1 = i, ∩n−2

k=ν1+1{Zk < U2}, ν1 ≤ n − 1
)

= PδL
i
(Z1 = k|Z1 ≥ U2, U2),

where we also use the fact that the process starts in the supercritical regime. Now, using the
fact that U1 and U2 are i.i.d., it follows that

πU
k ≤E

[
max

i=0,1,...,U1−1
PδL

i
(Z1 = k|Z1 ≥ U1, U1)

]
.

Since

PδL
i
(Z1 = k|Z1 ≥ U1, U1) ≤

PδL
i
(Z1 = k)

PδL
i
(Z1 ≥ U1|U1)

,

using the Fubini–Tonelli theorem, we obtain that

πU ≤E

[
max

i=0,1,...,U1−1

∑
k∈SU kPδL

i
(Z1 = k)

PδL
i
(Z1 ≥ U1|U1)

]
≤E

[
max

i=0,1,...,U1−1

EδL
i
[Z1]

PδL
i
(Z1 ≥ U1|U1)

]
.

Now, for all i = 0, 1, . . . , U1 − 1, we have that

PδL
i
(Z1 ≥ U1|U1) ≥ P(IU

0 ≥ U1|U1).

Finally, using the assumptions (H2), (H3), and (H9), we conclude that

πU ≤E

[
(U1 − 1)MU + NU

P(IU
0 ≥ U1|U1)

]
≤E

[
U1

P(IU
0 ≥ U1|U1)

]
max

(
MU, NU)< ∞.

�

A.4. Proofs of Lemma 4.1 and Lemma 4.2

Proof of Lemma 4.1. We begin by proving (i). It is sufficient to show that for n ∈N0 and
k ∈N,

PδL
i

(
BL

i,n+1 = (k, dL, dL + dU)|BL
i,n

)= PδL
i

(
BL

i,1 = (k, dL, dL + dU)), (27)

where dL = (dL
1 , . . . , dL

k

)
, dU = (dU

1 , . . . , dU
k

)
, dL

j , dU
j ∈N, and BL

i,n := {
BL

i,l

}n
l=1. For simplic-

ity set Xj := Zνj . We recall that �
U
j = �U

j + �L
j and notice

PδL
i

(
BL

i,n+1 = (k, dL, dL + dU)|BL
i,n

)=
PδL

i

(
KL

i,n+1 = k, ∩k
j=1

{
�U

Ti,n+j = dU
j , �L

Ti,n+j = dL
j

}|XTL
i,n

= i, BL
i,n

)=
PδL

i

(
XTi,n+k = i, ∩k−1

j=1

{
XTi,n+j �= i

}
, ∩k

j=1

{
�U

Ti,n+j = dU
j , �L

Ti,n+j = dL
j

}|XTL
i,n

= i, BL
i,n

)
.

https://doi.org/10.1017/apr.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.26


Branching processes in random environments with thresholds 529

We now compute the last term of the above equation. Specifically, by proceeding as in the
proof of Lemma A.1 (involving conditioning on the environments), we obtain that for n, k ∈N,
xj ∈ SL, and x0 = i,

PδL
i

(
∩k

j=1

{
XTL

i,n+j = xj, �U
TL

i,n+j
= dU

j , �L
TL

i,n+j
= dL

j

}
|XTL

i,n
= i, BL

i,n

)

=
k∏

j=1

P

(
XTL

i,n+j = xj, �U
TL

i,n+j
= dU

j , �L
TL

i,n+j
= dL

j |XTL
i,n+j−1 = xj−1

)

=
k∏

j=1

P

(
Xj = xj, �U

j = dU
j , �L

j = dL
j |Xj−1 = xj−1

)

= P

(
∩k

j=1

{
Xj = xj, �U

j = dU
j , �L

j = dL
j

}
|X0 = i

)
.

Now, by summing over xk ∈ {i} and xj ∈ SL \ {i}, we obtain that

PδL
i

(
XTi,n+k = i, ∩k−1

j=1

{
XTi,n+j �= i

}
, ∩k

j=1

{
�U

Ti,n+j = dU
j , �L

Ti,n+j = dL
j

}|XTL
i,n

= i, BL
i,n

)
= PδL

i

(
Xk = i, ∩k−1

j=1

{
Xj �= i

}
, ∩k

j=1

{
�U

j = dU
j , �L

j = dL
j

})
.

The last term in the above is

PδL
i

(
TL

i,1 = k, ∩k
j=1

{
�U

j = dU
j , �L

j = dL
j

})= PδL
i

(
BL

i,1 = (k, dL, dL + dU)).
We thus obtain (27). The proof of (ii) is similar. �

Proof of Lemma 4.2. The first part of (i) follows from Proposition 1.69 of Serfozo [27]
with Xj = Zνj , π = πL = {πL

i }i∈SL , and Vj = �U
j+1. For the second part of (i) we use the above

proposition with Vj = �
U
j+1 and obtain that

EδL
i

[
S

U
TL

i,1

]
= (πL

i

)−1
EπL

[
�

U
1

]
= (πL

i

)−1
(
EπL

[
�L

1

]+ μU
)

.

Remark (3.2) yields that

EπL
[
�L

1

]= ∑
k∈SL

∑
l∈SU

EδU
l

[
�L

1

]
PδL

k
(Zτ1 = l]πL

k = μL.

We now prove the first part of (ii). Since, conditionally on Zν0 = i, �U
1 and �U

TL
i,1+1

have the

same distribution, using (i) we have that

VδL
i

[
SU

TL
i,1

]
=EδL

i

⎡
⎢⎣
⎛
⎜⎝

TL
i,1∑

j=1

(
�U

j+1 − μU)
⎞
⎟⎠

2⎤
⎥⎦=EδL

i

⎡
⎢⎣

TL
i,1∑

j=1

(
�U

j+1 − μU)2
⎤
⎥⎦+ 2CU

i ,

where

CU
i := EδL

i

⎡
⎢⎣

TL
i,1∑

j=1

(
�U

j+1 − μU) TL
i,1∑

l=j+1

(
�U

l+1 − μU)
⎤
⎥⎦ .
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Next, we apply Proposition 1.69 of Serfozo [27] with Xj = Zνj , π = πL = {πL
i }i∈SL , and Vj =(

�U
j+1 − μU

)2 and obtain that

EδL
i

⎡
⎢⎣

TL
i,1∑

j=1

(
�U

j+1 − μU)2
⎤
⎥⎦= (πL

i

)−1
EπL

[(
�U

1 − μU)2].

Then we compute

CU
i =EδL

i

[ ∞∑
j=1

I{TL
i,1≥j}EδL

i

[(
�U

j+1 − μU) TL
i,1∑

l=j+1

(
�U

l+1 − μU)|TL
i,1 ≥ j

]]

=EδL
i

[ ∞∑
j=1

I{TL
i,1≥j}

∑
k∈SL

I{Zνj=k}gL(k)

]

=
∑
k∈SL

gL(k)EδL
i

⎡
⎢⎣

TL
i,1∑

j=1

I{Zνj=k}

⎤
⎥⎦ ,

where gL : SL →R is given by

gL(k) =EδL
i

⎡
⎢⎣(�U

j+1 − μU) TL
i,1∑

l=j+1

(
�U

l+1 − μU)|TL
i,1 ≥ j, Zνj = k

⎤
⎥⎦

=
∞∑

l=j+1

EδL
i

[(
�U

j+1 − μU)(�U
l+1 − μU)I{TL

i,1≥l}|TL
i,1 ≥ j, Zνj = k

]
.

Using Theorem 1.54 of Serfozo [27], we obtain

EδL
i

⎡
⎢⎣

TL
i,1∑

j=1

I{Zνj=k}

⎤
⎥⎦= (πL

i

)−1
πL

k ,

which yields

CU
i = (πL

i

)−1 ∑
k∈SL

gL(k)πL
k .

Now, using Lemma 4.1, we see that, conditionally on j ≤ TL
i,1 < l,

(
�U

l+1 − μU
)

is independent

of
(
�U

j+1 − μU
)
. If Zνj ∼ πL, then using stationarity (see Remark 3.1),

E
[(

�U
l+1 − μU)|j ≤ TL

i,1 < l, Zνj ∼ πL]=E
[(

�U
l+1 − μU)|Zνl ∼ πL]= 0.
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Therefore,

∞∑
l=j+1

∑
k∈SL

πL
k EδL

i

[(
�U

j+1 − μU)(�U
l+1 − μU)I{TL

i,1<l}|TL
i,1 ≥ j, Zνj = k

]
=

∞∑
l=j+1

EδL
i

[(
�U

j+1 − μU)
E
[(

�U
l+1 − μU)|j ≤ TL

i,1 < l, Zνj ∼ πL]I{TL
i,1<l}|TL

i,1 ≥ j, Zνj ∼ πL
]

equals 0. Adding the above to
∑

k∈SL gL(k)πL
k , we conclude that

∑
k∈SL

gL(k)πL
k =

∞∑
l=j+1

∑
k∈SL

πL
k EδL

i

[(
�U

j+1 − μU)(�U
l+1 − μU)|TL

i,1 ≥ j, Zνj = k
]

=
∞∑

l=1

∑
k∈SL

πL
k EδL

k

[(
�U

1 − μU)(�U
l+1 − μU)]

=
∞∑

l=1

CπL
[
�U

1 , �U
l+1

]
.

The second part of (ii) and (iii) are obtained similarly. �

A.5. Finiteness of μT , σ 2,T , and σ 2,T

We establish positivity and finiteness of σ 2,T and σ 2,T , where T ∈ {L, U}. Lemma A.2 below
is used to control the covariance terms in σ 2,T and σ 2,T . We recall that uniform ergodicity of
the Markov chains

{
Zνj

}∞
j=0 and

{
Zτj

}∞
j=1 is equivalent to the existence of constants CT ≥ 0 and

ρT ∈ (0, 1) such that supl∈ST
‖pT

l (j) − πT‖ ≤ CTρ
j
T .

Lemma A.2. Assume (H1)–(H4).The following holds:

(i) If (H5) holds and wi ∈R, i ∈ SL, then

∞∑
j=1

∣∣∣∣ ∑
i,k∈SL

wkwiπ
L
k pL

ki(j) −
⎛
⎝∑

k∈SL

wkπ
L
k

⎞
⎠
⎛
⎝∑

i∈SL

wiπ
L
i

⎞
⎠∣∣∣∣≤ 2C1/2

L
ρ

1/2
L

1 − ρ
1/2
L

⎛
⎝∑

k∈SL

w2
kπ

L
k

⎞
⎠.

(ii) If (H6) (or (H7))holds and wk ∈R, k ∈ SU, then

∞∑
j=1

∣∣∣∣ ∑
i,k∈SU

wkwiπ
U
k pU

ki(j) −
⎛
⎝∑

k∈SU

wkπ
U
k

⎞
⎠
⎛
⎝∑

i∈SU

wiπ
U
i

⎞
⎠∣∣∣∣≤ 2C1/2

U
ρ

1/2
U

1 − ρ
1/2
U

⎛
⎝∑

k∈SU

w2
kπ

U
k

⎞
⎠.

The proof of the above lemma can be constructed along the lines of Theorem 17.2.3 of
Ibragimov and Linnik [31] with p = q = 1/2; it involves repeated use of the Cauchy–Schwarz
inequality and the stationarity in Remark 3.1.
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Proof of Lemma A.2. Since the proof of (ii) is similar, we only prove (i). We proceed along
the lines of the proof of Theorem 17.2.3 of Ibragimov and Linnik [31]. Using the Cauchy–
Schwarz inequality, we have that

∣∣∣∣ ∑
i,k∈SL

wkwiπ
L
k pL

ki(j) −
⎛
⎝∑

k∈SL

wkπ
L
k

⎞
⎠
⎛
⎝∑

i∈SL

wiπ
L
i

⎞
⎠∣∣∣∣

=
∣∣∣∣∑
k∈SL

wk
(
πL

k

)1/2 ∑
i∈SL

wi
(
pL

ki(j) − πL
i

)(
πL

k

)1/2
∣∣∣∣

≤
⎛
⎝∑

k∈SL

(wk)2πL
k

⎞
⎠

1/2
⎛
⎜⎝∑

k∈SL

πL
k

⎛
⎝∑

i∈SL

wi
(
pL

ki(j) − πL
i

)⎞⎠
2
⎞
⎟⎠

1/2

.

Using the Cauchy–Schwarz inequality again, we obtain that(∑
i∈SL

wi
(
pL

ki(j) − πL
i

))2

≤
(∑

i∈SL

|wi|
(
pL

ki(j) + πL
i

)1/2|pL
ki(j) − πL

i |1/2

)2

≤
(∑

i∈SL

(wi)
2(pL

ki(j) + πL
i

))(∑
i∈SL

|pL
ki(j) − πL

i |
)

.

Since
∑

k∈SL pL
ki(j)π

L
k = πL

i by Remark 3.1, we deduce that

(∑
k∈SL

πL
k

(∑
i∈SL

wi
(
pL

ki(j) − πL
i

))2)1/2

≤
(∑

k∈SL

πL
k

(∑
i∈SL

(wi)
2(pL

ki(j) + πL
i

))(∑
i∈SL

|pL
ki(j) − πL

i |
))1/2

≤
(

2
∑
i∈SL

(wi)
2πL

i

)1/2

sup
k∈SL

(∑
i∈SL

|pL
ki(j) − πL

i |
)1/2

.

Using that supl∈SL‖pL
l (j) − πL‖ ≤ CLρ

j
L, we obtain that

sup
k∈SL

(∑
i∈SL

|pL
ki(j) − πL

i |
)

≤ sup
k∈SL

( ∑
i∈SL : pL

ki(j)−πL
i >0

(
pL

ki(j) − πL
i

))+ sup
k∈SL

( ∑
i∈SL : pL

ki(j)−πL
i <0

(
πL

i − pL
ki(j)
))

≤ sup
k∈SL

( ∑
i∈SL : pL

ki(j)−πL
i >0

pL
ki(j) −

∑
i∈SL : pL

ki(j)−πL
i >0

πL
i

)

https://doi.org/10.1017/apr.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.26


Branching processes in random environments with thresholds 533

+ sup
k∈SL

( ∑
i∈SL : pL

ki(j)−πL
i <0

πL
i −

∑
i∈SL : pL

ki(j)−πL
i <0

pL
ki(j)

)

≤2CLρ
j
L.

We have thus shown that∣∣∣∣∣
∑

i,k∈SL

wkwiπ
L
k pL

ki(j) −
(∑

k∈SL

wkπ
L
k

)(∑
i∈SL

wiπ
L
i

)∣∣∣∣∣≤ 2C1/2
L ρ

j/2
L

(∑
k∈SL

w2
kπ

L
k

)
,

which yields that

∞∑
j=1

∣∣∣∣∣
∑

i,k∈SL

wkwiπ
L
k pL

ki(j) −
(∑

k∈SL

wkπ
L
k

)(∑
i∈SL

wiπ
L
i

)∣∣∣∣∣≤ 2C1/2
L

ρ
1/2
L

1 − ρ
1/2
L

(∑
k∈SL

w2
kπ

L
k

)
.

�
We are now ready to study the finiteness of means and variances μT , σ 2,T , and σ 2,T , where

T ∈ {L, U}.
Proposition A.2. Assume (H1)–(H4). (i) If (H5) and (H8) also hold, then μU < ∞ and 0 <

σ 2,U < ∞. (ii) Next, if (H6) (or (H7)) and (H9) hold, then μL < ∞ and 0 < σ 2,L < ∞. (iii)
Additionally, under the assumptions in (i) and (ii), we have 0 < σ 2,U, σ 2,L < ∞.

It is easy to see that Proposition A.2 implies that |CU| and |CL| are finite.

Proof of Proposition A.2. We begin by proving (i). For all i ∈ SL it holds that

EδL
i
[τ1] =

∞∑
n=1

PδL
i
(τ1 ≥ n) ≤

∞∑
n=0

PδL
i
(Z̃n < U1),

where {Z̃n}∞n=0 is a supercritical BPRE with immigration having environmental sequence
�U = {�U

n }∞n=0 and, conditionally on �U
n , offspring distributions {ξU

n,i}∞i=0 and immi-

gration distribution IU
n . Using the fact that limn→∞ Z̃n = ∞ a.s. and E[U1] < ∞,

we see that limn→∞ Z̃nPδL
i
(Z̃n < U1|Z̃n) = 0 a.s. Since limn→∞ Z̃n

(ML)n > 0, we obtain

limn→∞ (ML)n
PδL

i
(Z̃n < U1|Z̃n) = 0 a.s., which yields limn→∞ (ML)n

PδL
i
(Z̃n < U1) = 0.

Therefore, there exists C̃ such that

PδL
i
(Z̃n < U1) ≤ C̃(ML)n. (28)

Now, using the fact that SL is finite and E[U1] < ∞, it follows that

μU =
∑
i∈SL

EδL
i
[τ1]πL

i ≤
(

max
i∈SL

Ci

)
E[U1]

1 − γ
< ∞.

Turning to the finiteness of σ 2,U , replacing n by �√n� in (28), one obtains that

EδL
k

[
τ 2

1

]= ∞∑
n=1

PδL
k

(
τ1 ≥ √

n
)

≤
∞∑

n=0

PδL
k
(Z̃�√n� < U1) < ∞.
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This together with the finiteness of μU yields VπL [�U
1 ] < ∞. Turning to the covariance terms

in σ 2,U , we apply Lemma A.2(i) with wi =EδL
i
[τ1 − μU], and using

∑
i∈SL wiπ

L
i = 0, we

obtain that

∞∑
j=1

|CπL

[
�U

1 , �U
j+1

]
| =

∞∑
j=1

|
∑
k∈SL

EδL
k

[
τ1 − μU

]
πL

k

∑
i∈SL

EδL
i

[
τ1 − μU

]
pL

ki(j)|

≤ 2C1/2
L

(
ρ

1/2
L

1 − ρ
1/2
L

)(∑
k∈SL

(
EδL

k

[
τ1 − μU])2πL

k

)
< ∞.

We conclude that σ 2,U is finite. For i ∈ SU , it holds that

EδU
i

[
�L

1

]= ∞∑
n=0

PδU
i

(�L
1 > n) ≤ i

∞∑
n=0

(
ML)n = i

1 − ML
,

where the inequality follows from the upper bound on the extinction time of the process in the
subcritical regime. Hence, using Proposition A.1 it follows that μL ≤ πU

1−ML < ∞.

Next we show that σ 2,L is finite. As before, we obtain that for all i ∈ SU ,

EδU
i

[(
�L

1

)2]≤ ∞∑
n=0

PδU
i

(�L
1 > �√n�] ≤ i

∞∑
n=0

(
ML)�√n�

, (29)

yielding that

EπU
[(

�L
1

)2]≤ πU
∞∑

n=0

(
ML)�√n�

< ∞. (30)

This together with the finiteness of μL < ∞ implies that VπL
[
�L

1

]
< ∞. Turning to

covariances, we apply Lemma A.2(ii) with wi =EδU
i

[
�L

1 − μL
]
, and using the fact that∑

i∈SU wiπ
U
i = 0, we obtain that

∞∑
j=1

|CπU
[
�L

1, �L
j+1

]| ≤ 2C1/2
U

(
ρ

1/2
U

1 − ρ
1/2
U

)⎛⎝∑
k∈SU

(
EδU

k

[
�L

1 − μL])2πU
k

⎞
⎠< ∞,

yielding the finiteness of σ 2,L. Turning to (iii), we compute

VπL

[
�

U
1

]
≤ 2
(
VπL

[
�U

1

]
+VπL

[
�L

1

])
,

where, by Part (i), VπL

[
�U

1

]
< ∞, and using Remark 3.2,

VπL

[
�L

1

]
=
∑
k∈SU

∑
i∈SL

VδU
k

[
�L

1

]
PδL

i

(
Zτ1 = k

)
πL

i =VπU

[
�L

1

]
< ∞.

Turning to the covariance, we again apply Lemma A.2 (i) with wi =EδL
i

[
�

U
1 − (μU + μL

)]
and conclude that also
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∞∑
j=1

CπL

[
�

U
1 , �

U
j+1

]
≤ 2C1/2

L

(
ρ

1/2
L

1 − ρ
1/2
L

)(∑
k∈SL

(
EδL

k

[
�

U
1 − (μU + μL)])2

πL
k

)
.

The finiteness of the right-hand side yields σ 2,U < ∞. The proof that σ 2,L < ∞ is similar.
We finally establish that σ 2,U , σ 2,L, σ 2,U , and σ 2,L are positive. We first show that, condi-

tionally on Z0 ∼ δL
i and Zτ1 ∼ δU

k , �U
1 and �L

1 are non-degenerate. To this end, suppose for the
sake of contradiction that

1 = PδL
i

(
�U

1 = μU)= ∞∑
u=LU+1

PδL
i

(
ZμU ≥ u, ZμU−1 < u, . . . , Z1 < u

)
P(U1 = u).

Since U1 has support SU
B , we obtain that PδL

i
(ZμU ≥ u, ZμU−1 < u, . . . , Z1 < u) = 1 for all u ∈

SU
B . In particular,

EδL
i

[
ZμU−1

]
< u ≤EδL

i

[
ZμU

]= MU
EδL

i

[
ZμU−1

]+ NU .

By taking both u = LU + 1 and u ≥ MU(LU + 1) + NU in the above equation, we obtain that
both EδL

i
[ZμU−1] < LU + 1 and EδL

i
[ZμU−1] ≥ LU + 1. Similarly, if

1 = PδU
k

(
�L

1 = μL)= LU∑
l=L0

PδU
k

(
ZμL+τ1

≤ l, ZμL+τ1−1 > l, . . . , Zτ1+1 > l
)
P
(
L1 = l

)
,

then using that L1 has support N∩ [L0, LU], we obtain that

PδU
k

(ZμL+τ1
≤ l, ZμL+τ1−1 > l, . . . , Zτ1+1 > l) = 1 for all L0 ≤ l ≤ LU .

In particular, (
ML)μL

k ≤ l <
(
ML)(μL−1)

k.

By taking both l = L0 and l = LU , we obtain that L0 > MLLU , which contradicts (H4). We
deduce that

TL
i,1−1∑
j=0

(
�U

j+1 − μU)

is non-degenerate, and similarly,

TU
i,1−1∑
j=0

(
�L

j+1 − μL),
TL

i,1−1∑
j=0

(
�

U
j+1 − (μU + μL)), and

TL
i,1−1∑
j=0

(
�

L
j+1 − (μL + μU)

)

are non-degenerate. Using Lemma 4.2 below, we conclude that

σ 2,U = πL
i VδL

i

[
SU

TL
i,1

− μUTL
i,1

]
= πL

i EδL
i

⎡
⎢⎣
⎛
⎜⎝

TL
i,1−1∑
j=0

(
�U

j+1 − μU)
⎞
⎟⎠

2⎤
⎥⎦> 0,

and similarly σ 2,L > 0, σ 2,U > 0, and σ 2,L > 0. �
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A.6. Martingale structure of MT
n,i

We recall that MT
n,i := ∑n

j=1 DT
j,i, where

DT
j,1 =

(
P

T
j−1 − MT

)
χ̃T

j−1 and DT
j,2 = χ̃T

j−1

Zj−1

Zj−1∑
i=1

(
ξT

j−1,i − P
T
j−1

)
.

Also,

ÃT
n =

n∑
j=1

χ̃T
j−1

Zj−1
,

and for s ≥ 0,


T,s
j,1 =

∣∣∣PT
j − MT

∣∣∣s and 
T,s
j,2 =E

[∣∣∣ξT
j,i − P

T
j

∣∣∣s ∣∣∣∣�T
j

]
.

Proposition A.3. The following statements hold:

(i) For i = 1, 2, {(MT
n,1,Hn,i)}∞n=1 is a mean-zero martingale sequence, and for all s ≥ 0,

we have E
[|DT

j,1|s|Hj−1,i
]=E

[


T,s
0,1

]
χ̃T

j−1 a.s. In particular,

E
[(

DT
j,1

)2|Hj−1,i
]= VT

1 χ̃T
j−1 a.s., and E

[(
MT

n,1

)2]= VT
1 E
[
C̃T

n

]
.

(ii)
{
(MT

n,2,Hn,2)
}∞

n=1 is a mean-zero martingale sequence satisfying

E
[(

DT
j,2

)2|Hj−1,2
]= VT

2

χ̃T
j−1

Zj−1
a.s., and E

[(
MT

n,2

)2]= VT
2 E
[
ÃT

n

]
.

Additionally, for all s ≥ 1, E
[|DT

j,2|s|Hj−1,2
]≤E

[


T,s
0,2

]
χ̃T

j−1 a.s.

(iii) For i = 1, 2,
{(∑n

j=1

((
DT

j,i

)2 −E
[(

DT
j,i

)2])
, H̃n,i

)}∞
n=1 are mean-zero martingale

sequences, and for all s ≥ 1,

E
[|(DT

j,i

)2 −E
[(

DT
j,i

)2]|s|H̃j−1,i
]≤ 2s

E
[


T,2s
0,i

]
E
[
χ̃T

j−1

]
.

(iv) For all T1, T2 ∈ {L, U} and i1, i2 ∈ {1, 2} such that either T1 �= T2 or i1 �= i2, it holds
that E

[(
DT1

j,i1

)(
DT2

l,i2

)]= 0 for all j, l = 1, . . . , n and E
[(

MT1
n,i1

)(
MT2

n,i2

)]= 0. In particu-

lar,
{(∑n

j=1

(
DT1

j,i1

)(
DT2

j,i2

)
, H̃n,2

)}∞
n=0 is a mean-zero martingale sequence, and for all

s ≥ 1,
E
[|(DT1

j,i1

)(
DT2

j,i2

)|s|H̃j−1,2
]≤E

[


T1,s
0,i1


T2,s
0,i2

]
E
[
χ̃

T1
j−1χ̃

T2
j−1

]
.

Proof of Proposition A.3. We begin by proving (i) with i = 1. We notice that
(
MT

n,1,Hn,i
)

is a martingale, since MT
n,1 is Hn,1-measurable and

E
[
MT

n,1|Hn−1,1
]= MT

n−1,1 +E

[
P

T
n−1 − MT

]
χ̃T

n−1 = MT
n−1,1.

It follows that E
[
MT

n,1

]=E
[
MT

1,1

]= 0. Next, notice that for s ≥ 0,

E
[|DT

j,1|s|Hj−1,1
]=E

[|PT
j−1 − MT |s]χ̃T

j−1 =E
[


T,s
0,1

]
χ̃T

j−1 a.s.
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In particular, if s = 2, then E
[(

DT
j,1

)2|Hj−1,1
]= VT

1 χ̃T
j−1 a.s., and the martingale property yields

that

E[
(
MT

n,1

)2 =E

[
n∑

j=1

E
[(

DT
j,1

)2|Hj−1,1
]]= VT

1 E[C̃T
n ].

Finally, we notice that, since the DT
j,1 do not depend on the offspring distributions {ξT

j,i)}∞i=0,
Part (i) holds with Hn,1 replaced by Hn,2.

We now turn to the proof of (ii). We notice that MT
n,2 is Hn,2-measurable, and using that

E[ξT
n−1,i − P

T
n−1|�T

n−1] = 0, we obtain that

E
[
MT

n,2|Hn−1,2
]= MT

n−1,2 + χ̃T
n−1

Zn−1

Zn−1∑
i=1

E
[
E
[
ξT

n−1,i − P
T
n−1|�T

n−1

]]= MT
n−1,2,

yielding the martingale property. It follows that E
[
MT

n,2

]=E
[
MT

1,2

]= 0, as

E
[
MT

1,2|H0,2
]= χ̃T

0

Z0

Z0∑
i=1

E
[
E
[
ξT

0,i − P
T
0 |�T

0

]]= 0.

We now compute

E
[(

DT
j,2

)2|Hj−1,2
]= χ̃T

j−1

Z2
j−1

E

⎡
⎢⎣E
⎡
⎢⎣
⎛
⎝Zj−1∑

i=1

(
ξT

j−1,i − P
T
j−1

)⎞⎠
2

|Hj−1,2, �T
j−1

⎤
⎥⎦ |Hj−1,2

⎤
⎥⎦ .

Using that, conditionally on the environment �T
j−1, {ξT

j−1,i}∞i=1 are i.i.d. with variance P
T

j−1, we
obtain that

E

⎡
⎢⎣
⎛
⎝Zj−1∑

i=1

ξT
j−1,i − P

T
j−1

⎞
⎠

2

|Hj−1,2, �T
j−1

⎤
⎥⎦=

Zj−1∑
i=1

E

[(
ξT

j−1,i − P
T
j−1

)2|Hj−1,2, �T
j−1

]

= Zj−1P
T

j−1.

We conclude that

E

[(
DT

j,2

)2|Hj−1,2

]
= VT

2

χ̃T
j−1

Zj−1
a.s.

and

E

[(
MT

n,2

)2]=E

[
n∑

j=1

E
[(

DT
j,2

)2|Hj−1,2
]]= VT

2 E
[
ÃT

n

]
.

Additionally, Jensen’s inequality yields that for s ≥ 1,

E
[∣∣DT

j,2

∣∣s∣∣Hj−1,2
]≤E

[
χ̃T

j−1

Zj−1

Zj−1∑
i=1

∣∣ξT
j−1,i − P

T
j−1

∣∣s|Hj−1,2

]
=E

[


T,s
0,2

]
χ̃T

j−1 a.s.
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For (iii), we notice that
∑n

j=1

((
DT

j,i

)2 −E
[(

DT
j,i

)2]) is H̃n,i-measurable, and since χ̃T
n−1,

Zn−1, �T
n−1, and

{
ξT

n−1,i

}∞
i=0 are not H̃n−1,i-measurable, we have that E

[(
DT

n,i

)2|H̃n−1,i
]=

E
[(

DT
n,i

)2] and

E

[
n∑

j=1

((
DT

j,i

)2 −E
[(

DT
j,i

)2])|H̃n−1,i

]
=

n−1∑
j=1

((
DT

j,i

)2 −E
[(

DT
j,i

)2]).
Again using the convexity of the function |·|s for s ≥ 1, we get that

E
[|(DT

j,i

)2 −E
[(

DT
j,i

)2]|s|Hj−1,i
]≤ 2s−1(

E
[(

DT
j,i

)2s]+ (E[(DT
j,i

)2])s)≤ 2s
E
[(

DT
j,i

)2s].
If i = 1, then by conditioning on χ̃T

j−1 we have that E
[(

DT
j,1

)2s]=E
[


T,2s
0,1

]
E
[
χ̃T

j−1

]
. If i = 2,

then we apply Jensen’s inequality and obtain that

E
[(

DT
j,2

)2s]≤E
[


T,2s
j−1,2χ̃

T
j−1

]=E
[


T,2s
0,2

]
E
[
χ̃T

j−1

]
.

Turning to (iv), we show that for all T1, T2 ∈ {L, U} and i1, i2 ∈ {1, 2} such that either T1 �= T2

or i1 �= i2, it holds that E
[(

DT1
j,i1

)(
DT2

l,i2

)]= 0 for all j, l = 1, . . . , n. This also yields that

E
[(

MT1
n,i1

)(
MT2

n,i2

)]= n∑
j=1

n∑
l=1

E
[(

DT1
j,i1

)(
DT2

l,i2

)]= 0.

First, if l = j and T1 �= T2, then E
[(

DT1
j,i1

)(
DT2

j,i2

)]= 0 because χ̃
T1
j−1χ̃

T2
j−1 = 0. Next, if l = j and

i1 �= i2 (say i1 = 1 or i2 = 2), then by conditioning on Hj−1,1 and �
T2
j−1 and using the fact that

E

[
ξ

T2
j−1,i − P

T2
j−1|Hj−1,1, �

T2
j−1

]
= 0 a.s.

and that �
T1
j−1, χ̃

T1
j−1, χ̃

T2
j−1, and Zj−1 are Hj−1,1-measurable, we obtain that

E
[(

DT1
j,1

)(
DT2

j,2

)]=E

⎡
⎣(P

T1
j−1 − MT1

)
χ̃

T1
j−1

χ̃
T2
j−1

Zj−1

Zj−1∑
i=1

E

[
ξ

T2
j−1,i − P

T2
j−1|Hj−1,1, �

T2
j−1

]⎤⎦= 0.

Finally, if l �= j (say l > j), then by conditioning on H̃l−1,2 and using that Dj,i1 is H̃l−1,2-
measurable and E[(Dl,i2 )|H̃l−1,2] =E[Dl,i2 ] = 0, we obtain that

E
[(

Dj,i1

)(
Dl,i2

)]=E
[
Dj,i1E

[
Dl,i2 |H̃l−1,2

]]= 0.

We have that {(∑n
j=1

(
DT1

j,i1

)(
DT2

j,i2

)
, H̃n,2

)}∞n=0 is a mean-zero martingale sequence, since∑n
j=1

(
DT1

j,i1

)(
DT2

j,i2

)
is H̃n,2-measurable and

E
[(

DT1
j,i1

)(
DT2

j,i2

)|H̃j−1,2
]=E

[(
DT1

j,i1

)(
DT2

j,i2

)]= 0

if either T1 �= T2 or i1 �= i2. If T1 �= T2, then both E
[|(DT1

j,i1

)(
DT2

j,i2

)|s|H̃j−1,2
]= 0 and

E
[
χ̃

T1
j−1χ̃

T2
j−1

]= 0. Finally, if T1 = T2 and i1 �= i2 (say i1 = 1 and i2 = 2), then by Jensen’s
inequality

E
[|(DT1

j,i1

)(
DT2

j,i2

)|s|�T1
j−1,Fj−1

]≤ |(DT1
j,i1

)|sT,s
j−1,i2

χ̃
T2
j−1,

https://doi.org/10.1017/apr.2023.26 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2023.26


Branching processes in random environments with thresholds 539

which yields that

E
[|(DT1

j,i1

)(
DT2

j,i2

)|s|Fj−1
]≤E

[


T1,s
0,i1


T2,s
0,i2

]
χ̃

T1
j−1χ̃

T2
j−1

and
E
[|(DT1

j,i1

)(
DT2

j,i2

)|s|H̃j−1,2
]≤E

[


T1,s
0,i1


T2,s
0,i2

]
E
[
χ̃

T1
j−1χ̃

T2
j−1

]
.

�

Appendix B. Numerical experiments

In this section we describe numerical experiments to illustrate the evolution of the pro-
cess under different distributional assumptions. We also study the empirical distribution of
the lengths of supercritical and subcritical regimes and illustrate how the process changes
when Uj and Lj exhibit an increasing trend. We emphasize that these experiments illustrate
the behavior of the estimates of the parameters of the BPRET when using a finite number
of generations in a single synthetic dataset. In the numerical experiments 1–4 below, we set
L0 = 102, LU = 104, n ∈ {0, 1, . . . , 104}, Uj ∼ LU + Zeta(3), Lj ∼ Unifd(L0, 10L0), and we
use different distributions for Z0, IU

0 ∼ QU
0 , ξU

0,1 ∼ PU
0 , and ξL

0,1 ∼ PL
0 as follows:

Z0 − L0 IU
0 ξU

0,1 ξL
0,1

Exp. 1 Pois(1; LU − L0) Pois(I),
I ∼ Unif(0, 10),

Pois(U),
U ∼ Unif(0.9, 2.1),

Pois(L),
L ∼ Unif(0.5, 1.1),

Exp. 2 Pois(1; LU − L0) Pois(I),
I ∼ Gamma(5, 1),

Pois(U),
U ∼ Gamma(2, 1),

Pois(L),
L ∼ Gamma(0.8, 1),

Exp. 3 Nbin(1, 1; LU − L0) Nbin(RI, OI),
RI ∼ 1 + Pois(1),
OI ∼ Unif(0, 10),

Nbin(RU, OU),
RU ∼ 1 + Pois(1),
OU ∼ Unif(0.9, 2.1)

Nbin(RL, OL),
RL ∼ 1 + Pois(1),
OL ∼ Unif(0.5, 1.1)

Exp. 4 Nbin(1, 1; LU − L0) Nbin(RI, OI),
RI ∼ 1 + Pois(1),
OI ∼ Gamma(5, 1),

Nbin(RU, OU),
RU ∼ 1 + Pois(1),
OU ∼ Gamma(2, 1),

Nbin(RL, OL),
RL ∼ 1 + Pois(1),
OL ∼ Gamma(0.8, 1),

In the above description, we have used the notation Unif(a, b) for the uniform distribution
over the interval (a,b) and Unifd(a, b) for the uniform distribution over integers between a
and b. Zeta(s) is the zeta distribution with exponent s > 1. Pois(λ) is the Poisson distribution
with parameter λ, while Pois(λ;b) is the Poisson distribution truncated to values not larger
than b. Similarly, Nbin(r, o) is the negative binomial distribution with predefined number
of successful trials r and mean o, while Nbin(r, o;b) is the negative binomial distribution
truncated to values not larger than b. Finally, Gamma(α, β) is the gamma distribution with
shape parameter α and rate parameter β. In these experiments, there were between 400 and
700 crossings of the thresholds, depending on the distributional assumptions. The results of
the numerical experiments 1–4 are shown in Figure 2.

We next turn our attention to the construction of confidence intervals for the means in the

supercritical and subcritical regimes. The values of MT =E[P
T
0 ], VT

1 =V[P
T
0 ], and VT

2 =E[P
T

0 ]
in Experiments 1–4 can be deduced from the underlying distributions and are summarized
below. The values of VU

2 and VL
2 in Experiments 3–4 are rounded to three decimal digits.
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MU VU
1 VU

2 ML VL
1 VL

2

Exp. 1 1.5 0.12 1.5 0.8 0.03 0.8
Exp. 2 2 2 2 0.8 0.8 0.8
Exp. 3 1.5 0.12 2.998 0.8 0.03 1.224
Exp. 4 2 2 5.793 0.8 0.8 1.710

In the next table, we provide the estimators MU
n , CU

n /ÑL(n), C̃U
n /ÑL(n), and ÃU

n /ÑL(n) of

E

[
P

U
0

]
, μU , μ̃U , and ÃU , respectively. Notice that

VU
n,1 := 1

C̃U
n

n∑
j=1

(Zj − IU
j−1

Zj−1
− MU

n

)2

χ̃U
j−1 and

VU
n,2 := 1

C̃U
n

n∑
j=1

1

Zj−1

Zj−1∑
i=1

(
ξU

j−1,i −
Zj − IU

j−1

Zj−1

)2

χ̃U
j−1

are used to estimate VU
1 and VU

2 . As in the proof of Theorem 2.4, it is easy to see that VU
n,1

and VU
n,2 are consistent estimators of VU

1 and VU
2 . Similar comments hold when U is replaced

by L.

MU
n VU

n,1 VU
n,2 CU

n /ÑL(n) C̃U
n /ÑL(n) ÃU

n /ÑL(n)

Exp. 1 1.496 0.122 1.499 9.282 9.282 0.010
Exp. 2 2.009 2.051 2.003 10.807 10.804 0.105
Exp. 3 1.507 0.119 3.016 9.069 9.069 0.011
Exp. 4 2.018 2.157 5.929 10.899 10.893 0.112

ML
n VL

n,1 VL
n,2 CL

n/ÑU(n) C̃L
n/ÑU(n) AL

n/ÑU(n)

Exp. 1 0.799 0.031 0.800 14.063 14.063 0.009
Exp. 2 0.809 0.805 0.809 5.118 5.118 0.002
Exp. 3 0.799 0.030 1.214 14.028 14.028 0.010
Exp. 4 0.822 0.945 1.869 5.136 5.136 0.002

Using the above estimators in Theorem 2.6, we obtain the following confidence intervals for
MU

n and ML
n . We also provide confidence intervals for the estimator Mn defined below, which

does not take into account different regimes. Specifically,

Mn := 1∑n
j=1 I{Zj−1≥1}

n∑
j=1

Zj − IT
j−1

Zj−1
I{Zj−1≥1},

where IT
j−1 is equal to IU

j−1 if T = U and 0 otherwise.
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FIGURE 2. The four columns give the results of the numerical experiments 1, 2, 3, and 4. The first row shows the process Zn for n = 104 − 102, . . . , 104.

The second and third rows show the empirical probability distributions of
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}
and
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j

}
, respectively.
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95% CI using MU
n 95% CI using ML

n 95% CI using Mn

Exp. 1 (1.485, 1.507) (0.795, 0.804) (1.068, 1.085)
Exp. 2 (1.975, 2.043) (0.778, 0.840) (1.596, 1.651)
Exp. 3 (1.496, 1.518) (0.794, 0.803) (1.068, 1.085)
Exp. 4 (1.982, 2.053) (0.788, 0.855) (1.607, 1.664)

Next, we investigate the behavior of the process when the thresholds Lj and Uj increase with
j. To this end, we let L0 = 102, LU = 104, and n ∈ {0, 1, . . . , 103} and take initial distribution
Z0, immigration distribution IU

0 , and offspring distributions ξU
0,1 and ξL

0,1 as in Experiment 1.
We consider four different distributions for Lj and Uj, as follows:

Uj − LU Lj

Exp. 5 Zeta(3) Unifd(L0, 10L0)
Exp. 6 Zeta(3) Unifd(Lj,1, Lj,2), where

Lj,1 = min (L0 + 100(j − 1), LU),
Lj,2 = min (10L0 + 100(j − 1), LU)

Exp. 7 Zeta(3) + 500(j − 1) Unifd(L0, 10L0)
Exp. 8 Zeta(3) + 500(j − 1) Unifd(Lj,1, Lj,2), where

Lj,1 = min (L0 + 100(j − 1), LU),
Lj,2 = min (10L0 + 100(j − 1), LU)

The results of Experiments 5–8 are shown in Figure 3. From the plots, we see that the
number of cases after crossing the upper thresholds is between 104 and 2 · 104, whereas when
the thresholds increase they almost reach the 6 · 104 mark. Also, the number of regimes up to
time n = 103 decreases, as it takes more time to reach a larger threshold. As a consequence,
the overall number of cases also increases.
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FIGURE 3. From left to right, Experiments 5, 6, 7, and 8. The process Zn for n ∈ {0, 1, . . . , 103} (in
black), horizontal lines at L0 and LU (in red), and the thresholds Uj and Lj (in blue).
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