
1 Introduction

1 . 1 WHAT IS A MONTE CARLO
S IMULAT ION ?

In a Monte Carlo simulation we attempt to follow the ‘time dependence’ of a
model for which change, or growth, does not proceed in some rigorously
predefined fashion (e.g. according to Newton’s equations of motion) but
rather in a stochastic manner which depends on a sequence of random
numbers which is generated during the simulation. With a second, different
sequence of random numbers the simulation will not give identical results but
will yield values which agree with those obtained from the first sequence to
within some ‘statistical error’. A very large number of different problems fall
into this category: in percolation an empty lattice is gradually filled with
particles by placing a particle on the lattice randomly with each ‘tick of the
clock’. Lots of questions may then be asked about the resulting ‘clusters’
which are formed of neighboring occupied sites. Particular attention has been
paid to the determination of the ‘percolation threshold’, i.e. the critical
concentration of occupied sites for which an ‘infinite percolating cluster’ first
appears. A percolating cluster is one which reaches from one boundary of a
(macroscopic) system to the opposite one. The properties of such objects are
of interest in the context of diverse physical problems such as conductivity of
random mixtures, flow through porous rocks, behavior of dilute magnets, etc.
Another example is diffusion limited aggregation (DLA), where a particle
executes a random walk in space, taking one step at each time interval, until it
encounters a ‘seed’ mass and sticks to it. The growth of this mass may then be
studied as many random walkers are turned loose. The ‘fractal’ properties of
the resulting object are of real interest, and while there is no accepted
analytical theory of DLA to date, computer simulation is the method of
choice. In fact, the phenomenon of DLA was first discovered by Monte
Carlo simulation.

Considering problems of statistical mechanics, we may be attempting to
sample a region of phase space in order to estimate certain properties of the
model, although we may not be moving in phase space along the same path
which an exact solution to the time dependence of the model would yield.
Remember that the task of equilibrium statistical mechanics is to calculate
thermal averages of (interacting) many-particle systems: Monte Carlo
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simulations can do that, taking proper account of statistical fluctuations and
their effects in such systems. Many of these models will be discussed in more
detail in later chapters so we shall not provide further details here. Since the
accuracy of a Monte Carlo estimate depends upon the thoroughness with
which phase space is probed, improvement may be obtained by simply
running the calculation a little longer to increase the number of samples.
Unlike in the application of many analytic techniques (e.g. perturbation
theory for which the extension to higher order may be prohibitively difficult),
the improvement of the accuracy of Monte Carlo results is possible not just in
principle but also in practice.

1 . 2 A COMMENT ON THE H I STORY
OF MONTE CARLO S IMULAT IONS

The concept of Monte Carlo simulation goes back to the 18th century. The
1733 edition of Histoire de L’Académie Royale des Sciences contains a report by
Georges Louis Leclerc, Comte de Buffon, on a technique that could be used
to estimate π by throwing needles onto a floor composed of parallel boards and
measuring the fraction of the needles that fell only on top of a single board.
(The original article spoke of throwing ‘baguettes’, but this term, meaning
needles or rods, was not used to describe long, French bread until the 20th
century!) Serious development of Monte Carlo methods began at Los Alamos
National Laboratory in the 1940s as von Neumann and Ulam attempted to
model neutron transport. The first computer used for Monte Carlo simula-
tions was an analog model dubbed the ‘Fermiac’. Fig. 1.1 (left) shows Ulam
holding the only Fermiac that was ever built, and Fig. 1.1 (right) shows a
modern 0.2 Exaflop supercomputer used for Monte Carlo simulations today
for comparison.

(a) (b)

Fig. 1.1 (left) Stan Ulam holding the Fermiac (Photo courtesy of Los Alamos National Laboratory);
(right) Summit Supercomputer at Oak Ridge National Laboratory. (Photo courtesy of Oak Ridge
National Laboratory).
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1 . 3 WHAT PROBLEMS CAN WE SOLVE
WITH IT ?

The range of different physical phenomena which can be explored using
Monte Carlo methods is exceedingly broad. Models which either naturally or
through approximation can be discretized can be considered. The motion of
individual atoms may be examined directly; e.g. in a binary (AB) metallic alloy
where one is interested in interdiffusion or unmixing kinetics (if the alloy was
prepared in a thermodynamically unstable state) the random hopping of
atoms to neighboring sites can be modeled directly. This problem is compli-
cated because the jump rates of the different atoms depend on the locally
differing environment. Of course, in this description the quantum mechanics
of atoms with potential barriers in the eV range is not explicitly considered,
and the sole effect of phonons (lattice vibrations) is to provide a ‘heat bath’
which provides the excitation energy for the jump events. Because of a
separation of time scales (the characteristic times between jumps are orders
of magnitude larger than atomic vibration periods) this approach provides
very good approximation. The same kind of arguments hold true for growth
phenomena involving macroscopic objects, such as DLA growth of colloidal
particles; since their masses are orders of magnitude larger than atomic
masses, the motion of colloidal particles in fluids is well described by classical,
random Brownian motion. These systems are hence well suited to study by
Monte Carlo simulations which use random numbers to realize random walks.
The thermal properties of a fluid may be studied by considering ‘blocks’ of
fluid as individual particles, but these blocks will be far larger than individual
molecules. As an example, we consider ‘micelle formation’ in lattice models of
microemulsions (water–oil–surfactant fluid mixtures) in which each surfac-
tant molecule may be modeled by two ‘dimers’ on the lattice (two occupied
nearest neighbor sites on the lattice). Different effective interactions allow one
dimer to mimic the hydrophilic group and the other dimer the hydrophobic
group of the surfactant molecule. This model then allows the study of the size
and shape of the aggregates of surfactant molecules (the micelles) as well as
the kinetic aspects of their formation. In reality, this process is quite slow so
that a deterministic molecular dynamics simulation (i.e. numerical integration
of Newton’s second law) is very difficult, if at all feasible. This example shows
that part of the ‘art’ of simulation is the appropriate choice (or invention) of a
suitable (coarse-grained) model. Large collections of interacting classical
particles are directly amenable to Monte Carlo simulation, and the behavior
of interacting quantized particles is being studied either by transforming the
system into a pseudo-classical model or by considering permutation proper-
ties directly. These considerations will be discussed in more detail in later
chapters. Equilibrium properties of systems of interacting atoms have been
extensively studied, as have a wide range of models for simple and complex
fluids, magnetic materials, metallic alloys, adsorbed surface layers, etc. More
recently polymer models have been studied with increasing frequency; note
that the simplest model of a flexible polymer is a random walk, an object
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which is well suited for Monte Carlo simulation. Furthermore, some of the
most significant advances in understanding the theory of elementary particles
have been made using Monte Carlo simulations of lattice gauge models.
A topic which finds increasing applications is the solution of the
Schrödinger equation for many interacting quantum particles by Monte
Carlo methods.

1 . 4 WHAT D IF F ICULT IES WILL WE
ENCOUNTER ?

1.4.1 Limited computer time and memory

Because of limits on computer speed there are some problems which are
inherently not suited to computer simulation at this time. A simulation which
requires years of CPU time on whatever machine is available is simply
impractical. Similarly, a calculation which requires memory which far exceeds
that which is available can be carried out only by using very sophisticated
programming techniques which slow down running speeds and greatly
increase the probability of errors. It is therefore important that the user first
consider the requirements of both memory and CPU time before embarking
on a project to ascertain whether or not there is a realistic possibility of
obtaining the resources to simulate a problem properly. Of course, with the
rapid advances being made by the computer industry, it may be necessary to
wait only a few years for computer facilities to catch up to your needs.
Sometimes the tractability of a problem may require the invention of a new,
more efficient simulation algorithm. Of course, developing new strategies to
overcome such difficulties constitutes an exciting field of research by itself.

1.4.2 Statistical and other errors

Assuming that the project can be done, there are still potential sources of error
which must be considered. These difficulties will arise in many different
situations with different algorithms so we wish to mention them briefly at this
time without reference to any specific simulation approach. All computers
operate with limited word length and hence limited precision for numerical
values of any variable. Truncation and round-off errors may in some cases lead
to serious problems. In addition there are statistical errors which arise as an
inherent feature of the simulation algorithm due to the finite number of
members in the ‘statistical sample’ which is generated. These errors must be
estimated and then a ‘policy’ decision must be made, i.e. should more CPU
time be used to reduce the statistical errors or should the CPU time available
be used to study the properties of the system under other conditions. Lastly
there may be systematic errors. In this text we shall not concern ourselves with
tracking down errors in computer programming – although the practitioner

4 Introduction

https://doi.org/10.1017/9781108780346.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781108780346.002


must make a special effort to eliminate any such errors – but with more
fundamental problems. An algorithm may fail to treat a particular situation
properly, e.g. due to the finite number of particles which are simulated,
etc. These various sources of error will be discussed in more detail in
later chapters.

1.4.3 Knowledge that every practitioner should have

At this point it should be clear to the reader that for using this book for
practical work he/she needs to have some knowledge about computer
programming as well as experience with the use of computers to solve tasks
with computational physics methods. Since the early days of computer
simulation, this background knowledge also has been greatly expanded.
For filling any gaps in background, a rich literature is available. An example
of a useful text for students by Hartmann (2009) provides some introduction
to basic concepts of software engineering, general aspects of algorithms and
data structures, and gives hints on debugging, basic data analysis, data
plotting, data fitting, etc. In the present book, we will assume that the reader
already has such fundamental knowledge and will further increase relevant
skills in the process of implementing the algorithms described in the
following pages.

1 . 5 WHAT STRATEGY SHOULD WE FOLLOW
IN APPROACH ING A PROBLEM ?

Most new simulations face hidden pitfalls and difficulties which may not be
apparent in early phases of the work. It is therefore often advisable to begin
with a relatively simple program and use relatively small system sizes and
modest running times. Sometimes there are special values of parameters for
which the answers are already known (either from analytic solutions or from
previous, high quality simulations) and these cases can be used to test a new
simulation program. By proceeding in this manner one is able to uncover
which are the parameter ranges of interest and what unexpected difficulties
are present. It is then possible to refine the program and then to increase
running times. Thus both CPU time and human time can be used most
effectively. It makes little sense of course to spend a month to rewrite a
computer program which may result in a total saving of only a few minutes
of CPU time. If it happens that the outcome of such test runs shows that a
new problem is not tractable with reasonable effort, it may be desirable to
attempt to improve the situation by redefining the model or redirect the focus
of the study. For example, in polymer physics the study of short chains
(oligomers) by a given algorithm may still be feasible even though consider-
ation of huge macromolecules may be impossible.
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1 . 6 HOW DO S IMULAT IONS RELATE TO
THEORY AND EXPER IMENT ?

In many cases theoretical treatments are available for models for which there
is no perfect physical realization (at least at the present time). In this
situation the only possible test for an approximate theoretical solution is to
compare with ‘data’ generated from a computer simulation. As an example
we wish to mention activity in growth models, such as diffusion limited
aggregation, for which a very large body of simulation results already existed
before corresponding experiments were carried out. It is not an exaggeration
to say that interest in this field was created by simulations. Even more
dramatic examples are those of reactor meltdown or large scale nuclear
war: although we want to know what the results of such events would be,
we do not want to carry out experiments. There are also real physical
systems which are sufficiently complex that they are not presently amenable
to theoretical treatment. An example is the problem of understanding the
specific behavior of a system with many competing interactions and which is
undergoing a phase transition. A model Hamiltonian which is believed to
contain all the essential features of the physics may be proposed, and its
properties may then be determined from simulations. If the simulation
(which now plays the role of theory) disagrees with experiment, then a
new Hamiltonian must be sought. An important advantage of the simula-
tions is that different physical effects which are simultaneously present in
real systems may be isolated and, through separate consideration by simula-
tion, may provide a much better understanding. Consider, for example, the
phase behavior of polymer blends – materials which have ubiquitous appli-
cations in the plastics industry. The miscibility of different macromolecules
is a challenging problem in statistical physics in which there is a subtle
interplay between complicated enthalpic contributions (strong covalent
bonds compete with weak van der Waals forces, and Coulombic interactions
and hydrogen bonds may be present as well) and entropic effects (configur-
ational entropy of flexible macromolecules, entropy of mixing, etc.). Real
materials are very difficult to understand because of various asymmetries
between the constituents of such mixtures (e.g. in shape and size, degree of
polymerization, flexibility, etc.). Simulations of simplified models can
‘switch off’ or ‘switch on’ these effects and thus determine the particular
consequences of each contributing factor. We wish to emphasize that the
aim of simulations is not to provide better ‘curve fitting’ to experimental
data than does analytic theory. The goal is to create an understanding of
physical properties and processes which is as complete as possible, making
use of the perfect control of ‘experimental’ conditions in the ‘computer
experiment’ and of the possibility to examine every aspect of system config-
urations in detail. The desired result is then the elucidation of the physical
mechanisms that are responsible for the observed phenomena. We therefore
view the relationship between theory, experiment, and simulation to be
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similar to those of the vertices of a triangle, as shown in Fig. 1.2: each is
distinct, but each is strongly connected to the other two.

1 . 7 PERSPECT IVE

The Monte Carlo method has had a considerable history in physics. As far
back as 1949 a review of the use of Monte Carlo simulations using ‘modern
computing machines’ was presented by Metropolis and Ulam (1949). In
addition to giving examples they also emphasized the advantages of the
method. Of course, in the following decades the kinds of problems they
discussed could be treated with far greater sophistication than was possible
in the first half of the twentieth century, and many such studies will be
described in succeeding chapters. Now, Monte Carlo simulations are reaching
into areas that are far afield of physics. In succeeding chapters we will also
provide the reader with a taste of what is possible with these techniques in
other areas of investigation. It is also quite telling that there are now several
software products on the market that perform simple Monte Carlo simula-
tions in concert with widely distributed spreadsheet software on PCs.

With the rapidly increasing growth of computer power which we are now
seeing, coupled with the steady drop in price, it is clear that computer
simulations will be able to rapidly increase in sophistication to allow more
subtle comparisons to be made. Even now, the combination of new algorithms
and new high performance computing platforms has routinely allowed simu-
lations to be performed for more than 106 (in special cases exceeding 3 � 1011

(Kadau et al., 2006)) particles (spins). As a consequence it is no longer
possible to view the system and look for ‘interesting’ phenomena without
the use of sophisticated visualization techniques. The sheer volume of data
that we are capable of producing has also reached unmanageable proportions.

Fig. 1.2 Schematic view
of the relationship
between theory,
experiment, and
computer simulation.
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In order to permit further advances in the interpretation of simulations, it is
likely that the inclusion of intelligent ‘agents’ (in the computer science sense)
for steering and visualization, along with new data structures, will be needed.
Such topics are beyond the scope of the text, but the reader should be aware
of the need to develop these new strategies.
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