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BOX DIMENSION FOR GRAPHS OF FRACTAL FUNCTIONS

by GAVIN BROWN and QINGHE YIN
(Received 24th August 1995)

We calculate the box-dimension for a class of nowhere differentiable curves defined by Markov attractors
of certain iterated function systems of affine maps.

1991 Mathematics subject classification: 28 A80,58F12.

1. Introduction

Box dimension is one of the widely used fractal dimensions. Bedford [1] calculated
the box dimension of a class of self-affine curves. These curves appear as attractors of
hyperbolic iterated function systems (HIFS) of affine maps. In this paper we calculate
the box dimension of curves which can be considered as Markov attractors of HIFS
of affine maps.

A hyperbolic iterated function system (X; T;,...,7T,) is a compact metric space
together with contractive maps T; : X — X. There exists a non-empty compact subset
A of X such that

A= U T,(A).
i=1
A is called the attractor of the HIFS. A Markov transition matrix M is an nx n
irreducible 0-1 matrix. Then there exist non-empty subsets A4,, 4,,..., 4, of A such
that
4,=J T4)
MII=|

The set A, = J.., 4; is called the Markov attractor of the HIFS associated with M.
Ellis and Branton [3] and the second named author [6] estimated the Hausdorff
dimension for Markov attractors. Gibert and Massopust [S] gave the Hausdorff
dimension of a certain class of fractal curves which appear as attractors of HIFS of
affine maps.

In this paper, X will be the unit square [0, 1] x [0, 1] and T; will have the form
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()-( 2)0)+ ()

where 0 < |a;| < |¢;| < 1. Our main result is that under certain restrictions we have

dimB(A‘) =S
where s is determined by
lellay P! 0
”M K . ” = 19
0 lcalla,l!
and where || - || denotes the Perron—-Frobenius eigenvalue of the matrix.

2. The construction of curves

The metric space we employ is a rectangular subset I, x I, of R*. Without loss of
generality, we let I, =1, =1[0,1]. Use J to denote {0,1]x [0,1]). For i=1,2,...,k,
define T; : J — J by

x a 0 x X;
T, =, +1 . " )i=12,...,1L
j(}’) (bif Cif)<y) (YU)J

For n=1,+1,+---+1,, define an nxn matrix M in the following way: We use
My, to denote the (I +---+1_, +j, L +---+1,_, +v) element of M. First we let
My = 65, Furthermore, for each (ij) and each u we define M, = 1 for exactly one
ve(l,2,...,L}, and Mg, =0 for all other cases. Assume that M is irreducible.
Suppose T;;,i=1,2,...,kj=1,2,...,] satisfying the following conditions:

l.a,>0and g, +a,+---+a,=1,x,=0and x;,, =a,+---+a,i=12,..., k-1,

2. let (0, y;) be the fixed point of T;,j=1,2,...,], and (1, y)) be the fixed point of
T,;,,j=12,...,1,. We assume that there exists a y, € [0, 1] such that P,T,,(0, yj)T =¥,
if Muyap=1u#1 and P,T,(1,¥)" =y, if Mugwy =1, u#k, where P, is the
projective map to the second coordinate.

For each k-tuple (j(1),j(2),...,j(k)), where 1 <j@@i) <, let I' = UL, Ayp- Then we
have

Theorem 1. T is the graph of a continuous function ¢ : [0, 1] — R.
Proof. For each sequence ij,i,,..., by the definition of M, there exists exactly

one sequence (i,j(i;)), (ij2), . . . such that M ;yi.. ...y = 1. If the elements of the sequence
i), i, ... are not all 1 or k except finite many, then there exists exactly one point (x, y)

https://doi.org/10.1017/50013091500023774 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500023774

BOX DIMENSION FOR GRAPHS OF FRACTAL FUNCTIONS 333

X ) o
(y) lim Ty Ty - -« T (0 )
Define ¢(x) =

For the sequence i,i,...i,111... and i|i,...i, — lkkk... let

x 0
(y) = T;lj(il) RN (yj), where M(.‘,,.j,,,)(lj) =1

such that

and

x’ 1
(y’) =Tiju - T-'m—lj:..(yj{,)’ where M, _i;yu50 = 1.

By conditions 1 and 2, we can easily see that T, ; (0, yj)T =T _y (1, y,’-,)T. Hence
(x, y) = (X', ¥). Again, we define ¢(x) =

On the other hand, it is easy to see that for each x € [0, 1] there exists one (or two
for countably many) sequence i,, i,, . .. such that

T

i2j2 *

T

(9)

where P, is the projection to the first coordinate. Hence we have defined a function
¢:[0,1]1— R,

Next we show that ¢ is continuous by showing that I'" is a continuous image of
[0,1].

For x =Y o \(in — 1)/k™, i, € {1,2,..., k} define y : [0, 1] — T by letting

x =P lim T, s,

0
'//(x) - hm lu(ll)rzlz : 7;mjm (0)

where j, determined by M ; .., =1 We show that ¢ is continuous Let
« = max; {Lip(T;;)}. Given &> 0 choose N large enough such that «" < &/(2v2).
Let 6 = k™. For x = Y (im— 1)/k™ and X' =32 (u, — 1)/k", if |x —x'| <5 we
must have i, =u, i =u,,...,iy=uy or iy =u, i =u,, ..., 5, =4, i =u+1 and
igy=...=iy=1, u,=...=uy=k In the first case, it is easy to see
W(x) — Y(x') < e. In the second case, we have

. - 0
tﬁ(x) = nlllpgo ’I;'j(")rm ,,”(T )N '7;~+li~+1 T 7;,,.;',, (0),

and

https://doi.org/10.1017/50013091500023774 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500023774

334 GAVIN BROWN AND QINGHE YIN
, . N-1 0
lﬁ(x) = mh_?:o ’T;Ij(il)T;Z.iZ T ’Izl-l.vr(nv) T:‘N+l"N+I te j:lmv'u (0)

As in the above, let (0, y;) be the fixed point of Tj; and (1, y,) the fixed point of T,,.
By the second assumption we know that

0 1
()1}

Let E=T, j,(’I]j)N -y UT,-, 7,7,_,.,,,(7}",)” ~'J. Then diam(E) < 2¢"'/2, since the two
parts of the union have a common point. Therefore

lY(x) — (x| < diam(T;, 4, T,,;, - - - T, E) < o 'diam(E) < & 0

Example 1. Let k> 2 Define T, : J = J(i=1,2,...,k;j =1, 2) as follows:
x L 0o\ /x il
T; =" + * )
y 0 o/\y 1—«
x 1 0 x £l
,1;2 — k + k ,
y 0 1—-a/\y 0

where min{a, 1 —a} > ;. Let M be defined by

M _[1 if()=@)oritujv
) 0 otherwise.
When k=3
(1 0010 1\
011 010
0110 01

1 00
010110
\101001}

—
—
(=]

It is easy to check that (1) and (2) are satisfied. We let j(i) =1,i=1,2,3. The
continuous function f;,, can be defined in the following way: for x =Y . , x,/k",
x,€{0,1,...,k—1} let
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foa®) =) (1 — @) ""u,,

where 4, = 1 and

_ U, 1f xm+l =Xy
Upt =

1 —-u, otherwise

and I, =u, +u,+---+u, — 1. Figures 1 to 4 show the first four steps of iteration,
where « = 1/2. When a = 1/2 we write f;, as B, and call it a Bush function. Functions
of this kind were first considered by K. A. Bush [2] as an example of continuous
nowhere differentiable functions.

T,J T,J T,

Tdd T, J T, J

FIGURE 1 Step l(k=3,2=1/2)

FIGURE2 Step 2 (k=3,x = 1/2).
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:: T'.‘ l F | Jf

, |
i |
[ |
L |

FIGURE4 Stepd (k=3,a=1/2)

The function ¢ in Theorem 1 is usually nowhere differentiable. In some cases
it may be differentiable almost everywhere. We call this the degenerate case. In
fact if we let b, =0 for all i and y; =0 for all (i,j) then we have ¢ =0. In the
next section, we calculate the box dimension of the graph of ¢ in non-degenerate
cases.

3. Main results

In this section we calculate the box dimension of I" under certain conditions. We first
establish a more general result.
Let(J; T,,T,,..., T,) be a HIFS where T, : J — J is defined by
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x a 0 x X;
T )= +
y b, ¢ y Yi
with 0 < |a;| < ¢ < 1. Let M be an n x n Markov transition matrix. Let A4,, be the

Markov attractor of the HIFS associated with M. Let s be the number such that
leilla, 1! 0
|M =1 1
0 lealla,l!
Then we have

Proposition 2. dimg(4,) <s.

Proof. Let Y =1{1,2,...,n}". Let },, be a subset of ), which consists of all

the elements (i,i, . ..) such that M;; , = 1. Denote
leylla, [ 0
M) =M
0 lealla, !

By the Perron-Frobenius Theorem, there exists a vector p=(p,,p, ..., P,) Wwith
p; > 0 such that

M(s)p = p.

We assume that >, p, = 1. Define a probability measure on ), by letting

w([i) = pu
u(ij) =M (s)ijpj

u(liziy. .. 0]) = M(s)i,izM(s)izig s M(s)i,‘_ﬁkpl‘k!

where [i,i,...i] is the cylinder set which contains all elements which begin with
iyiy...i. Clearly, the support of p is Y_,,. Let a=min{|a] la,l,...,a,l}. Given
>0, suppose a" > >a"™"'. For each xe€ A,, there exist i, i, ...,i with
6>la,a,...a,0>a"* and M;; =1suchthat xeT,...T,J=J, ,. Let

i+ Yoorip®

C = {[i,...i}; I is the first number such that 6 > |a, a;,...a,| > ™, M =1}

ijij1
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It is easy to see that if [i,...ql[j...j]eC and [i...i]#[j,..-j], then
[i,...4)N[j;...j] = @. Therefore C is a disjoint cover of }_,,.

Now we calculate how many J§-squares (square of side length &) are needed to cover
Ay The height and width of J; , are [c;, ...c;| and |g; ...a,| < J respectively. Hence,
at most [Ic;, ...c,/a;, ... a,l] + 1 6-squares are needed to cover J; ; N Ay,.

]+1) <2 Z ... G
liy...ij)eC Q- 4
<2 Z ¢ ...c,-,](la,-l @y )’5_1

[iy...ijJeC Q... aill a?

267" -1
=— Z i - cilla, ... a,l°

fi1-..if)eC

1.1

c

[i;%ec([ a

i e Cy

i e Gy

207

<—-— Z lei, - --cillag ... a, "' p,
= s . iy iy Iy i i
a mmj{pf} fiy... ifleC

26

- ij{l’;} Z M(s)iniz v M(S)i,_li,Pi,

(5 ... ijleC
27 o
= w2 M)

(iy ... ijleC
207°
a® min,{p;}
Therefore, for any § > 0, at most 26"/a2’-minj{pj} squares are needed to cover A4,,.
Hence dimg(A,) < s.

When not all b; = 0, we need the following lemma. In the following we use [J;, ; |y
and |J;_; |w to denote the height and width of J; , respectively.

Lemma 1. There exists « > 0 such that
IJl'l...l',,,IH < Blcj] e G

<Gl

Proof. When m=1, we have |J;|,<|c,|+1b;|. Let c=max{]b]/lc;]}. Then
41w < (1 +0)lc,|. Assume that

|Ji2...i,,,+, Iy = “m|Ci2 e Cimppal

Then
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|Ji|i2...i,,,+||H = IT;,Jiz...i,,,H |H

= lcilll'liz...i,,,+||H + |b IJ;
IC,, “le cimal lH + Ibll “a

P2, iyl I
‘m+| '

.a:
< alc, | +e

- LI 'm+l

P
< (@, +cdMci, .. .ci

where d = max{|a;|/|c;|]}. Hence we can choose a,,,, = a,, + cd™. Notice that ¢, =1 +c.
Therefore,

k ———
x,, _1+ch <1+ d

Hence the number 1 4+ ¢/(1 — d) can be chosen as a. 4

Now we assume that the HIFS satisfies the following conditions:

3. for any i)i,...i, with M, =1let

ijije1
Viin.in = inf{y; (x,y) € J;;, ;, N A, for some x}
and

Viizin = SUP{y; (x, y) € Jyi, i, N Ay for some x}.

We assume that there exist § > 0 such that for any € > 0

- 1+e
Yiyinonin = Yitigein = B'Cil Ciyevn Ci,,.l’

4. for any ii,...i, with M, =1

ijija

PZ(Jlllz Lim N AM) = [yiliz...i,,.7 y:liz...im]’

is an interval; and

5. open set condition. If M;; = 1 and i # j, then TJNTJ = 0.

Theorem 3. Suppose the HIFS satisfies the above conditions. Then

dimg(4,) = s.
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Proof. We only need to show that dimg(A4,) >s. Given 0 <6 <1 assume that

a">6>a""'. For any xe A, there exist i,...i, with M, =1 and

d<la,...a) <a"? such that x e J, Given ¢ > 0, because of the assumptions 3
and 4, thcre are at least [Bc;, . I °/d] é-squares which intersect with J; ; N A,,.
Since |J;, ulw=la,...a| >0 and m view of the open set condition, each §-square
intersects at most 4 such sets. We again use C to denote all the cylinders [i,...i]
mentioned above. Again C is a disjoint cover of Y_,,. The following calculation
gives us the number at least that many J-squares are needed to cover A,,.

Z l[mc,.l...c,., ‘+‘]>1 Z Bic,, ...c,I'*
(i1,...if]eC 4 o 8 [iv....i)eC 0

B e el _ B AN |
> = - — h 0 R
=3 Z w2, y L P

.. ifleC [iy,..-ir}eC [}

B 1 —1 —1 -
Z ey eyl ™ la a1 a1

... if)eC

> §€‘z[ S uly...i)- (53)— le, -« clf
LB
=3

,eerif)€C
2(s—l) 6—s+z
Therefore, dimy(A4,,) — ¢ for any ¢ > 0. O

In the proof of Theorem 3 we can use A4, (see Section 1) to replace A4,, and get the
same result.

Corollary. Under the same assumptions as Theorem 3, we have

dimy(B) =s, i=1,...,n

Remark. The conditions 3 and 4 appear somewhat clumsy. But if a HIFS does
not satisfy 3 or 4, dimg(A4,,) = s may not be true. We give two examples.

Example 2. Let

x\ 1/3 0 X i/3 .
()=(2 ) (5) oo

and all entries of M be 1. Then A4,, is the unit interval on the x-axis. The condition 3
is not satisfied. By (1) we have
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log2

S=2—@>

Example 3. Let

T-(x)—(1/4 O)(x)+( o4 ) i=1,2,3.4 j=12
)=o)\ - ) PTRESE IERE

Let M be a 8 x 8 matrix whose entries are all 1. Then

Ay=1[0,1]xC
where C is the Cantor middle-third set. This time the condition 4 is not satisfied. By
ey
5 log3 log2 .
s_§—210g2 > 1+log3 = dimg(A,)-

Now we come back to the curve I" defined in Section 2. Since I is a curve, condition
4 is satisfied. By the definition of M and the condition 1 we can see that the open set
condition holds. We will see that in a non-degenerate case, i.e. when ¢ is nowhere
differentiable, condition 3 is satisfied.

Theorem 4. Suppose the HIFS defined in Section 2. Assume that the function ¢ is
nowhere differentiable. Then

dimg(T) = .

Proof. We need only check that condition 3 is satisfied. First we have

Lemma 2. Let C be a curve in J. Then there exists a constant K such that for any
(ilvjl)v (iz,fz)v v (imjn) we have

1T Ty - - - Tsu Gl 2 164 €y - - - €4,3,|(IC1y — KIClw)-

Proof. When n =1 by the definition of T; we get that
|7;jC|H = |C.'j||C|H - Ibij”CIW'

Then for n = 2 we have
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| i j1 12]2C|H > |Cl]]|‘(|012]2”C|H - |bi2j2”C|W) Ibl|]||| lz}zclw

bl 1By la
|c.-,,-,c.~2,-2|[|C|,,—( bl | Pus 2|)|C|w}.

ICl’zizl IC,~, vizja

In general we have

by,
I i lz)z CIH = Ic'm i2j2 * ‘n]nI{ICIH (l ==+
injn
+ Ibin—lin-l Iaiu + + Iblull iy - i, )ICIW]
Ic"n—ljn—lc'-njnl Icll.’l cte cinjnl

Hence we can choose K = max{|b;;|/|c;;1} Y v o(max{a;/lc;|})". O

Next we check that in non-degenerate cases, i.e. when A, consists of nowhere
differentiable curves, the condition 3 is satisfied.

Since A4,, consists of nowhere differentiable curves, for each pair of (ij) we can
choose a piece of curve C; from 4;; such that |C;;|,/|C;;lw > 2K. For the sequence
@ ji)G2d2) - - - () With M 56,1, = 1, we have

TN Ayly > T,, C,

I i1 lz]z IT; 9] '212 * Yinjn ln+1J'n+1|H

- Ic'l]l i2jp* lrl]n I(Icln+lln+l chln+l.’n+l I )
= 2 5le CijyCigjy =+« Cininllcl'n+|in+1 n
we complete the proof by letting g = 1/2max({|C;;l4}. O

Example 1 (continued). Use I',, to denote the graph of the function f,, defined in
Section 2. We calculate dimg(T, ). First we check that I, satisfies condition 4. Given
T PYRPU TR

Py(J 106202 i) = [, D]

where a = Z}"zl(ij —1)/K and b = a+ 1/k". By the definition of f;,, for any x € (a, b)
we have the same u;, (j=1,2,...,m) in the expression of f, ,(x). Suppose u, = 0. Let
x,=a+(n— 1Y, 1/K and x,=a+37° Ik, where 0<l<k-1 and

l#£i,— 1. Then

x€[a,b]

min f;ca(x) ﬁc u(xl) = Z a’i(l — a)i—ljuj

and
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max j;(_a(x) = j;(,a(xl)

xefa,b]

= Za"(l — ay iy, + o (1 — o)™ Zaf.
j=1 j=1

Hence we can choose f = (1 — )" in condition 3. If u,, = 1 we get the same result.
Let A =diag(a,b,a,b,...,a,b) be the 2k x 2k diagonal matrix whose diagonal
elements are a and b alternatively with a, b > 0. We have

a+b++(a—b)?+4k—1Yab

IMAL = >

Choose a = a(1/k)*™", b = (1 — a)(i/k)’™" and let |MA| = 1. We get

L log(1+ VQa = 1)* + 4k — 1)’a(1 — o) — log 2

dimy(F,,) = s = 1 oek

When o = 1/2, using I'; to denote the graph of B,, we have

. log2
dlmB(Fk) =2 - l—og—k

4. Concluding remarks

It is interesting to compare Theorem 4 with the main result of [4]. There Falconer
considered the mixing repeller for a class C° mapping f: M — M where M is an
open subset of R’. By extending the Bowen-Ruelle formula to the non-conformal
setting, he obtained an estimation for the Hausdorff dimension and box dimension
of the repeller under some conditions. When d = 2 and the repeller contains a non-
differentiable arc, this gives an exact formula for the box dimension in terms of the
singular values of the derivatives of the iterates of f.

By defining a Markov attractor using a set of linear transformations, we are
effectively working directly with derivatives. If we make the formal comparison with
(4] by considering f defined on R’ by

then Falconer’s formula, based on consideration of pressure, gives the same value for
the box dimension. However a fundamental condition in [4] is that

DN PID, Sl < 1. )
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We have no such restriction and, in our setting, (1) translates to

a} + b}, + ¢, + r(a;, by, c;) ( 2 )1/2< 1
2 at + bl + i — r(ay, by, cip) ’ )
i=1,2,...k j=12....1,

where r(a, b, ¢) = \/(a> + B2 + ¢?)? — 4a?c2.

Taking the special case b;; =0 for comparison purposes, we then have that (2) is
equivalent to c,.zj < a;. This can never be satisfied in our Example 1 for k > 4.

As our work comes from generalising concrete examples piecing together linear maps
and Falconer considers global functions in the light of thermodynamical systems, it
appears likely that the connections might repay further study. We thank the referee for
bringing [4] to our attention.

‘
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