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Abstract

We prove that if two normed-algebra-valued cosine families indexed by a single Abelian group, of which
one is bounded and comprised solely of scalar elements of the underlying algebra, differ in norm by less
than 1 uniformly in the parametrising index, then these families coincide.
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1. Introduction

A classic result, in its early form due to Cox [2], states that if A is a normed algebra
with a unity denoted by 1 and a is an element of A such that supn∈N ‖a

n − 1‖ < 1,
then a = 1. Cox’s version concerned the case of square matrices of a given size.
This was later extended to bounded operators on Hilbert space by Nakamura and
Yoshida [6], and to an arbitrary normed algebra by Hirschfeld [4] and Wallen [9].
The latter author in fact proved a stronger result, namely that ‖an − 1‖ = o(n) and
lim infn→∞ n−1(‖a − 1‖ + ‖a2 − 1‖ + · · · + ‖an − 1‖) < 1 imply a = 1, and he achieved
this by using an elementary argument.

An immediate consequence of the Cox–Nakamura–Yoshida–Hirschfeld–Wallen
theorem is that if {S (t)}t≥0 is a semigroup on a Banach space X such that

sup
t≥0
‖S (t) − IX‖ < 1,

then S (t) = IX for each t ≥ 0; here IX denotes the identity operator on X. Recently,
Bobrowski and Chojnacki [1] established an analogue of this result for one-parameter
cosine families: if a ∈ R and {C(t)}t∈R is a strongly continuous cosine family on a
Banach space X such that

sup
t∈R
‖C(t) − (cos at)IX‖ <

1
2 , (1.1)
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then C(t) = (cos at)IX for each t ∈ R. This conclusion was further refined by
Schwenninger and Zwart [7] who showed that condition (1.1) can be replaced by the
condition

sup
t∈R
‖C(t) − (cos at)IX‖ < 1.

For the case a = 0, the same authors later showed that the even weaker condition

sup
t∈R
‖C(t) − IX‖ < 2

suffices [8]. The result of Bobrowski and Chojnacki and those of Schwenninger and
Zwart rely on rather involved arguments, drawing on ideas from operator theory and
semigroup theory.

In this note we extend the first result of Schwenninger and Zwart (that is, the
result of [7]) to cover the case of cosine families that are not necessarily indexed
by real numbers, not necessarily operator-valued, and not necessarily continuous
in any particular sense. A crucial step towards proving the relevant result will be
the establishment of an analogue of the Cox–Nakamura–Yoshida–Hirschfeld–Wallen
theorem for cosine sequences. The proof of the latter result will use only elementary
means.

2. Preliminaries and results

Let A be a normed algebra, real or complex, with a unity 1. An element of A is
called scalar if it is a scalar multiple of the unity 1. A family in A is termed scalar if
every member of this family is scalar. Given a scalar λ, the symbol λ will be employed
to denote both the scalar itself and the element of A obtained by multiplying the unity
element of A by λ. In particular, if {λγ}γ∈Γ is a family of scalars, then {λγ}γ∈Γ will also
denote the corresponding family of scalar elements of A.

We recall that an A-valued family {aλ}λ∈Λ is said to be bounded if supλ∈Λ ‖aλ‖ <∞.
Let G be an Abelian group, written additively, with a neutral element 0. A family

{C(g)}g∈G in A is called a cosine family if

(i) 2C(g)C(h) = C(g + h) + C(g − h) for all g, h ∈ G (d’Alembert’s functional
equation, also called the cosine functional equation),

(ii) C(0) = 1.

With this minimum of preparation, we are ready to state the main result of the paper.

Theorem 2.1. Let A be a normed algebra with a unity 1, let G be an Abelian group, let
{c(g)}g∈G be a bounded scalar-valued cosine family, and let {C(g)}g∈G be an A-valued
cosine family such that

sup
g∈G
‖C(g) − c(g)‖ < 1.

Then C(g) = c(g) for each g ∈ G.
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We shall deduce this theorem from a seemingly weaker result presented below as
Theorem 2.2.

We continue with preliminary definitions and results. A cosine sequence is a cosine
family for which the indexing group is the additive group of integers Z. Every cosine
sequence {cn}n∈Z is even: the equality c−n = cn holds for all n ∈ Z. Furthermore, every
cosine sequence {cn}n∈Z is uniquely determined by its element indexed by 1, namely,

cn = T|n|(c1) (n ∈ Z),

where, for n ∈ N ∪ {0}, Tn(x) is the nth Chebyshev polynomial of the first kind,

Tn(x) =

[n/2]∑
k=0

(
n
2k

)
xn−2k(x2 − 1)k.

The element c1 of a cosine sequence {cn}n∈Z is commonly termed the generator of
the sequence. Every element of A generates a unique cosine sequence. The cosine
sequence generated by a ∈ A is given by cn(a) = T|n|(a) for every n ∈ Z.

For each γ ∈ C \ {0}, let {c(γ)
n }n∈Z be the C-valued cosine sequence given by

c(γ)
n =

γn + γ−n

2
(n ∈ Z).

Denote by T the unit circle in the complex plane. If γ ∈ T, then c(γ)
n = Re γn for all

n ∈ Z, so that all elements of {c(γ)
n }n∈Z are real numbers with modulus no greater than 1.

We are now ready to present the result that is the main ingredient needed to prove
Theorem 2.1.

Theorem 2.2. Let A be a normed algebra with a unity 1, let γ ∈ T, and let {cn}n∈Z be
an A-valued cosine sequence such that

sup
n∈Z
‖cn − c(γ)

n ‖ < 1.

Then cn = c(γ)
n for each n ∈ Z.

Theorem 2.2 can be viewed as a counterpart of the Cox–Nakamura–Yoshida–
Hirschfeld–Wallen theorem for cosine sequences. Its proof will be much in the spirit
of the work of Wallen, although the details will be more complicated.

3. Proof of Theorem 2.2

This section is devoted to proving Theorem 2.2. We begin by establishing a key
algebraic identity.

Let A be a normed algebra with a unity 1, let γ ∈ T, and let {cn}n∈Z be an A-valued
cosine sequence. Then

2(c(γ)
1 − c1)

n−1∑
k=0

γkck = γncn−1 − γ
n−1cn − c1 + γ−1. (3.1)
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Indeed, by the cosine functional equation,

2c1

n−1∑
k=0

γkck =

n−1∑
k=0

γkck−1 +

n−1∑
k=0

γkck+1 =

n−2∑
k=−1

γk+1ck +

n∑
k=1

γk−1ck.

On the other hand,

2c(γ)
1

n−1∑
k=0

γkck = (γ + γ−1)
n−1∑
k=0

γkck =

n−1∑
k=0

γk+1ck +

n−1∑
k=0

γk−1ck.

Hence

2(c(γ)
1 − c1)

n−1∑
k=0

γkck =

(n−1∑
k=0

−

n−2∑
k=−1

)
γk+1ck +

(n−1∑
k=0

−

n∑
k=1

)
γk−1ck

= γncn−1 − c−1 − γ
n−1cn + γ−1,

which, given that c−1 = c1, immediately yields (3.1).
We next observe that the sequence {cn}n∈Z from the statement of Theorem 2.2

is necessarily bounded, because the sequence {c(γ)
n }n∈Z from the same statement is

bounded and supn∈Z ‖cn − c(γ)
n ‖ < 1.

Lemma 3.1. Under the assumptions of Theorem 2.2, if, for each n ∈ N, we put

Pn :=
1
n

n−1∑
k=0

ck,

then Pn = 1 for each n ∈ N if γ = 1, and limn→∞ Pn = 0 if γ , 1.

Proof. Let 0 < δ < 1 be such that ‖cn − c(γ)
n ‖ ≤ δ for each n ∈ Z. We break the proof up

into three cases.

Case γ = 1. Assuming γ = 1 in (3.1), we obtain, for each n ∈ N,

2(1 − c1)
n−1∑
k=0

ck = cn−1 − cn − c1 + 1.

We can rewrite this as

(1 − c1)Pn = en with en =
1
2n

(cn−1 − cn − c1 + 1). (3.2)

Note that limn→∞ en = 0, as {cn}n∈Z is bounded. Given that c(1)
k = 1 for every k ∈ Z, we

have, for each n ∈ N,

1 − Pn =
1
n

n−1∑
k=0

(c(1)
k − ck)
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and hence

‖1 − Pn‖ ≤
1
n

n−1∑
k=0

‖c(1)
k − ck‖ ≤ δ.

Writing
1 − c1 = (1 − c1)(1 − Pn) + en,

we find that
‖1 − c1‖ ≤ δ‖1 − c1‖ + ‖en‖,

whence, letting n→∞,
‖1 − c1‖ ≤ δ‖1 − c1‖.

As δ < 1, we see that ‖1 − c1‖ = 0 and further that c1 = 1. Consequently, cn = 1 for
each n ∈ Z, and thus Pn = 1 for each n ∈ N.

Case γ = −1. Assuming γ = −1 in (3.1), we deduce that, for each n ∈ N,

2(1 + c1)
n−1∑
k=0

(−1)kck = (−1)n−1(cn + cn−1) + c1 + 1.

Letting

Qn :=
1
n

n−1∑
k=0

(−1)kck,

we see that

(1 + c1)Qn = fn with fn =
1
2n

((−1)n−1(cn + cn−1) + c1 + 1).

Clearly, limn→∞ fn = 0. Taking into account that c(−1)
k = (−1)k for every k ∈ Z, we have,

for each n ∈ N,

1 − Qn =
1
n

n−1∑
k=0

(−1)k(c(−1)
k − ck)

and hence

‖1 − Qn‖ ≤
1
n

n−1∑
k=0

‖c(−1)
k − ck‖ ≤ δ.

Writing
1 + c1 = (1 + c1)(1 − Qn) + fn,

we see that
‖1 + c1‖ ≤ δ‖1 + c1‖ + ‖ fn‖,

whence, letting n→∞,
‖1 + c1‖ ≤ δ‖1 + c1‖.
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As δ < 1, we conclude that ‖1 + c1‖ = 0 and further that c1 = −1. Consequently,
cn = (−1)n for each n ∈ Z, and thus

Pn =
1 + (−1)n−1

2n
for each n ∈ N, which immediately yields limn→∞ Pn = 0.

Case γ < {−1, 1}. In this case Im γ , 0, and, as |c(γ)
1 | = |Re γ| =

√
1 − (Im γ)2, we have

|c(γ)
1 | < 1. Let ε > 0 be such that δ + ε < 1. Choose l ∈ N sufficiently large so that
|c(γ)

1 |
l < ε. It is readily proved by induction that

cl
1 =

1
2l−1

(l−1)/2∑
k=0

(
l
k

)
cl−2k

if l is odd, and

cl
1 =

1
2l

(
l
l
2

)
+

1
2l−1

(l/2)−1∑
k=0

(
l
k

)
cl−2k

if l is even, with similar formulae holding for (c(γ)
1 )l (see [3, formulae 1.320, 5 and

1.320, 7]). Hence

‖cl
1 − (c(γ)

1 )l‖ ≤
1

2l−1

(l−1)/2∑
k=0

(
l
k

)
‖cl−2k − c(γ)

l−2k‖ ≤ δ

if l is odd, and

‖cl
1 − (c(γ)

1 )l‖ ≤
1

2l−1

(l/2)−1∑
k=0

(
l
k

)
‖cl−2k − c(γ)

l−2k‖ ≤

(
1 −

1
2l

(
l
l
2

))
δ < δ

if l is even. In either case ‖cl
1 − (c(γ)

1 )l‖ ≤ δ. It follows that ‖cl
1‖ ≤ ‖c

l
1 − (c(γ)

1 )l‖ + |c(γ)
1 |

l ≤

δ + ε. At this stage, we shall exploit (3.2) once again. Multiplying both sides of
(1 − c1)Pn = en by 1 + c1 + · · · + cl−1

1 , we get

(1 − cl
1)Pn = (1 + c1 + · · · + cl−1

1 )en,

or equivalently,
Pn = cl

1Pn + (1 + c1 + · · · + cl−1
1 )en.

Hence
‖Pn‖ ≤ (δ + ε)‖Pn‖ + l max{1, ‖c1‖

l−1}‖en‖,

and, as limn→∞ en = 0,

lim sup
n→∞

‖Pn‖ ≤ (δ + ε) lim sup
n→∞

‖Pn‖.

Remembering that δ + ε < 1, we conclude that lim supn→∞ ‖Pn‖ = 0, whence
limn→∞ Pn = 0. �
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We now proceed to the proof of Theorem 2.2 proper.

Proof of Theorem 2.2. By the cosine functional equation,

c2
k = 1

2 (1 + c2k) and (c(γ)
k )2 = 1

2
(
1 + c(γ)

2k
)

for every k ∈ Z. Hence, for each n ∈ N,

(c1 − c(γ)
1 )

n−1∑
k=0

(ck − c(γ)
k )2 = (c1 − c(γ)

1 )
n−1∑
k=0

(c2
k + (c(γ)

k )2 − 2c(γ)
k ck)

= (c1 − c(γ)
1 )

[
n +

1
2

n−1∑
k=0

c2k +
1
2

n−1∑
k=0

c(γ)
2k − 2

n−1∑
k=0

c(γ)
k ck

]
. (3.3)

As a first step in exploiting the above relation, we replace γ by γ−1 in (3.1), whereupon,
taking into account that c(γ)

1 = c(γ−1)
1 , we find that

2(c(γ)
1 − c1)

n−1∑
k=0

γ−kck = γ−ncn−1 − γ
1−ncn − c1 + γ

for each n ∈ N. Adding this identity to (3.1) and dividing by 2 yields

2(c(γ)
1 − c1)

n−1∑
k=0

c(γ)
k ck = c(γ)

n cn−1 − c(γ)
n−1cn − c1 + c(γ)

1 .

Hence, as both {cn}n∈Z and {c(γ)
n }n∈Z are bounded,

lim
n→∞

c1 − c(γ)
1

n

n−1∑
k=0

c(γ)
k ck = 0. (3.4)

Next, we apply Lemma 3.1 to the cosine sequences {c2n}n∈Z and {c(γ)
2n }n∈Z = {c(γ2)

n }n∈Z,
obtaining

lim
n→∞

1
n

n−1∑
k=0

c2k =

1 if γ2 = 1,
0 otherwise.

By applying Lemma 3.1 to two copies of {c(γ)
2n }n∈Z, or, alternatively, by taking into

account that

n−1∑
k=0

c(γ)
2k =

1
2

[n−1∑
k=0

γ2k +

n−1∑
k=0

γ−2k
]

=


1 if γ2 = 1,

1 − γ2n

2(1 − γ2)
+

1 − γ−2n

2(1 − γ−2)
otherwise,

we also get

lim
n→∞

1
n

n−1∑
k=0

c(γ)
2k =

1 if γ2 = 1,
0 otherwise.
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Hence

lim
n→∞

c1 − c(γ)
1

n

[
n +

1
2

n−1∑
k=0

c2k +
1
2

n−1∑
k=0

c(γ)
2k

]
=

2(c1 − c(γ)
1 ) if γ2 = 1,

c1 − c(γ)
1 otherwise.

If we now combine the above relation with (3.3) and (3.4), we find that

lim
n→∞

c1 − c(γ)
1

n

n−1∑
k=0

(ck − c(γ)
k )2 =

2(c1 − c(γ)
1 ) if γ2 = 1,

c1 − c(γ)
1 otherwise.

Hence

lim
n→∞

∥∥∥∥∥c1 − c(γ)
1

n

n−1∑
k=0

(ck − c(γ)
k )2

∥∥∥∥∥ ≥ ‖c1 − c(γ)
1 ‖.

On the other hand, if 0 < δ < 1 is such that ‖ck − c(γ)
k ‖ ≤ δ for every k ∈ Z, then

∥∥∥∥∥c1 − c(γ)
1

n

n−1∑
k=0

(ck − c(γ)
k )2

∥∥∥∥∥ ≤ ‖c1 − c(γ)
1 ‖

n

n−1∑
k=0

‖ck − c(γ)
k ‖

2 ≤ δ2‖c1 − c(γ)
1 ‖

for each n ∈ N. Therefore,

‖c1 − c(γ)
1 ‖ ≤ δ

2‖c1 − c(γ)
1 ‖,

which implies ‖c1 − c(γ)
1 ‖ = 0 and further c1 = c(γ)

1 . Hence, finally, cn = c(γ)
n for all

n ∈ Z. �

4. Proof of Theorem 2.1

Here we finally deduce Theorem 2.1 from Theorem 2.2.

Proof of Theorem 2.1. Fix g ∈ G arbitrarily and define two sequences {cn}n∈Z and
{c̃n}n∈Z by

cn = C(ng) and c̃n = c(ng)

for every n ∈ Z. By a result of Kannappan [5], there exists γ ∈ C \ {0} such that c̃n = c(γ)
n

for all n ∈ N. Now, γ has unit modulus, for otherwise, should |γ| , 1 hold, γn + γ−n

would diverge in modulus to infinity as n→ ∞, contradicting the boundedness of
{c(g)}g∈G. Clearly,

sup
n∈Z
‖cn − c(γ)

n ‖ < 1,

so we can apply Theorem 2.2 to conclude that cn = c(γ)
n for all n ∈ Z. In particular,

C(g) = c1 = c(γ)
1 = c(g). As g was chosen arbitrarily, the theorem is established. �
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