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1. Introduction. In his paper [12], Klyachko proved a beautiful result about
tesselations of the 2-sphere. There were two things that made this result so enticing.
First, the context is easily accessible. Very roughly, this result states that a system
of cars driving continuously along a connected graph of one-lane roads on a sphere
can not avoid collisions. As Klyachko suggests, this fact would be appropriate “as a
problem for a school mathematical tournament” [12]. Secondly, the result leads to the
proof of the Weak Kervaire Conjecture for torsion-free groups. That is to say, if G is
a non-trivial torsion-free group and e ∈ G ∗ 〈t〉, then 〈G, t | e〉 is not trivial. (It is not
hard to see that this question is only interesting in the case where t has exponent sum 1
in e.)

Since Howie used relative diagrams in [11] to prove that all length three equations
are solvable over all groups, it has become standard to apply results about tesselations
of the 2-sphere to the study of equations over groups. This was Klyachko’s approach:
to translate his geometric result into a group-theoretic theorem. He assumed there was
a relative diagram that gave a counter-example to the Weak Kervaire conjecture for
the equation e over the group G. He then organized a motion for a set of cars on this
relative diagram. A collision point, whose existence is assured by his geometric result,
established a relation of the form ak in the group G, whereby G must have torsion.

Since Klyachko’s paper in 1995, several authors have generalized his results by
generalizing his methods. Fenn and Rourke ([7] and [8]) organized motions for more
complicated equations. They named the class of equations to which they applied their
methods amenable equations. The precise definition of amenable is quite complicated.
However, amenable equations are those that have an eventual derivative of the form
at−1btm or [

∏k
i=1(ait−1bit)]tn for some positive integers m, k and n.

Independently, Richard Goldstein and the author reached similar results in [4].
The objects of study here were relative pictures, the duals of relative diagrams, in
which regions yield group relations. Consistent regions were defined to be those which
gave relations of the form ak. An equation is said to be type K if any relative picture
for that equation has at least two consistent regions. It follows immediately from
Howie’s original work that type K equations are solvable over torsion-free groups. To
show that consistent regions exist on relative pictures for certain equations, discrete
criteria for acceptable simple closed paths were defined. (These paths coincided with
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transverse paths used in Klyachko’s original proof.) A minimal acceptable path was
the boundary of a consistent region. While the flavor seemed a little different, the set
of equations for which the techniques in [4] were applicable was precisely the amenable
equations defined by Fenn and Rourke. This begs the following question: Are there
type K equations which are not amenable?

In this note, we answer this in the affirmative. For example, we show that
the equation e0 = a1t3a2t−1a3ta4t−2a5ta6t−1a7t3a8t−2 is type K. This equation is not
amenable as its derivatives are of the form e′

0 = AT2BT−1CT2DT−1 and e′′
0 = AT2.

In fact, we show that e0 satisfies a stronger condition which implies that every relative
picture for e0 has a two consistent regions which yield relations of the form aa−1. Such
relative pictures are not reduced in the sense of Sieradski [16]. So, for any group G,
〈G, t | e0〉 is relatively aspherical as defined in [1]. It follows that e0 is solvable over all
groups.

We end this discussion saying that the geometric results found in this article follow
from those found in [3] and feel like the discrete techniques used in [4]. It would be
interesting to know if it is possible to recapture these results using Klyachko’s car-crash
methods.

2. Definitions. An equation in the variable t with coefficients S = {ai|1 ≤ i ≤ k}
is a string of the form e = a1tr1 a2tr2 . . . aktrk . We will always assume that no coefficient
occurs more than once in a given equation, although different coefficents might
eventually represent the same element of some group. The exponent sum σ (e) and
the length |e| are defined by σ (e) = r1 + r2 + . . . + rk and |e| = |r1| + |r2| + . . . + |rk|
respectively. We will assume that the equations discussed throughout this article satisfy
σ (e) ≥ 0.

The shape of e is the element φ(e) = tr1 tr2 . . . trk of the free monoid M[t, t−1].
(Here, there is no cancellation.) In what follows, we will need to discuss specific classes
of shapes of words and subwords. We list them here for convenience.

If φ(e) is the empty string in M = M[t, t−1], we say that e has the empty shape.
If φ(e) = tm for some m > 0 we say e has a positive shape of degree m; if φ(e) = t−m

for some m > 0 we say that e has a negative shape of degree m.
If e has a shape which is positive, negative or empty we will say that e is stable.
If φ(e) = (tt−1)m for some m > 0, then e has a positively alternating shape of degree

m; if φ(e) = (t−1t)m we say that e has a negatively alternating shape of degree m.
If φ(e) = W m for some non-empty shape W in M and some m ≥ 2, then we say

that the shape of e is a proper power.
We consider e as an equation over the group G by assigning group elements to the

coefficients. That is to say, an equation over G is a pair (e, α) where e = a1tr1 a2tr2 . . . aktrk

is an equation and α: S → G is a function satisfying: for all i (modulo k), if ri−1ri < 0,
then α(ai) 
= 1. Such a function is called a proper assignment. For ease of notation,
define gi = ai and ê = g1tr1 g2tr2 . . . gktrk . We say (e, α) is solvable over G if the
cannonical homomorphism G → [G ∗ 〈t〉]/N(ê) is injective. We refer to this factor
group by the relative presentation 〈G, t | ê〉. More generally, we say e is solvable over G
if (e, α) is solvable over G for every proper assignment α.

A basic question in the study of equations over groups is: Which equations e are
solvable over which groups G ? Most of this work is driven by two conjectures. Levin’s
conjecture predicts that if G is a torsion-free group, then every equation is solvable
over G. The Kervaire-Laudenbach-Howie conjecture states that if σ (e) 
= 0, then e is
solvable over any group.
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Figure 1

3. General results. In [11], Howie used relative diagrams to show that equations
satisfying |e| = 3 are solvable over all groups. Since then, many authors have used
relative diagrams, and the dual notion of relative pictures, to investigate equations over
groups. Bogley and Pride give a thorough treatment of this approach in [1]. We will
assume the reader has some familiarity with these techniques and limit ourselves to a
brief explanation.

Given an equation e, an e-graph is a connected, directed graph embedded in S2

some of whose corners are labeled with the coefficients of e and their inverses. We
require that as one reads counter-clockwise around any vertex v from a preferred
corner, reading t for each edge emanating from v, reading t−1 for each edge directed
toward v and reading the appropriate coefficient for each corner, one either reads the
equation e (in which case v is a positive vertex) or (some conjugate of) e−1 (when v is
a negative vertex). Figure 1 shows an e1-graph where e1 = at3bt−2ct3dt−2f tgt−1.

If Γ is an e-graph and ∆ is a region of Γ , then we get a word ω(∆) by reading
clockwise around the corners of ∆. Similarly, if we read counter-clockwise around
the corners of ∆, we get another word ω∗(∆). These are well-defined up to cyclic
conjugation. If the coefficients of e represent elements of the group G, then we will
refer to the corresponding elements of G as ωG(∆) and ω∗

G(∆).
We now translate Howie’s Thoerem into the context of relative pictures.

THEOREM 1 (Howie). Let e be an equation over the group G. Then e is not solvable
over G if and only if there exists an e-graph Γ with a specified region ∆0 satisfying:

(1) ω∗
G(∆0) 
= 1;

(2) if ∆ 
= ∆0, then ωG(∆) = 1; and
(3) for any region ∆, every cyclic conjugate of ω(∆) is freely reduced.

An e-graph that does not satisfy the third item in the above theorem, is said to
be reducible. In the language of Bogley and Pride, such cancellation corresponds to a
dipole. In [1], it is proven that if every e-graph has a dipole, then e is solvable over any
group G.
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We note that if (e, α) is an equation over the group G and Γ is an e-graph satisfying
the above theorem, the only region which might have degree one is ∆0. This is because
α is proper.

If Γ is an e-graph, a region ∆ is said to be a consistent region if its boundary
is consistently directed and there is some coefficient a of e so that each corner of ∆

is labeled either a or a−1. As an example, the e-graph in Figure 1 has two consistent
regions labeled g2 and g−2. We see that if e is an equation over the group G and ∆ is
a consistent region then ωG(∆) = ak for some a ∈ G and some integer k. We assume a
proper labeling, so a 
= 1 in G. Therefore, either G has torsion; or, k = 0 whence Γ is
reducible. We say that e is type K if every e-graph has at least two consistent regions.
This discussion proves the following, found in [4]:

FACT 1. If e is a type K equation, then e is solvable over every torsion-free group.

We now define a new condition, stronger than type K. Let Γ be an e-graph and
let ∆ be a region of Γ . We say that ∆ is dipolar if it is a consistent region with exactly
two corners, one of which is adjacent to a positive vertex and one of which is adjacent
to a negative vertex. We see that if ∆ is dipolar, then ω(∆) = aa−1 for some coefficient
a of e.

We say that the equation e is type K∗ if every e-graph has at least two distinct
regions each of which is either degree one or dipolar. Since both dipolar regions and
degree one regions are consistent, we see that if e is type K∗, then it is type K.

Moreover, we see that if e is type K∗, then there are no reduced proper e-graphs.
The following fact follows immediately.

FACT 2. If e is type K∗, then e is solvable over every group.

4. Magnus derivatives. In this section we discuss Magnus derivatives. An
algebraic discussion of derivatives can be found in [13]. We will prefer to follow the
more geometric approach presented in [4].

An equation e is said to be in standard form if its shape φ(e) = tr1 tr2 . . . trk satisfies
if k ≥ 2, then r1 > 0, rk < 0 and riri+1 < 0. Every equation is conjugate to one in
standard form. That is to say, for an equation e whose shape is not stable, there are
positive integers m1, m2, . . . , ml and n1, n2, . . . nl so that e is conjugate to an equation
whose shape is tm1 t−n1 tm2 t−n2 . . . tml t−nl . We say that the derivative of e, e′ is an equation
whose shape is Tm1−1T−(n1−1)Tm2−1T−(n2−1) . . . Tml−1t−(nl−1). In the case where e is
stable, we establish the convention that e′ has the same shape as e.

We have defined derivatives in terms of shapes of equations (as opposed to just
equations) and up to cyclic conjugacy in order to simplify the discussion. If some of
the exponents in e are 1 or −1, then the corresponding occurences of T in e′ do not
appear. After computing the shape of e′, we fill in coefficients as necessary. We have
also changed variables from t to T when passing to the derivatives. This is a notational
convenience.

Let us look at an example. Let e0 = a1t3a2t−1a3ta4t−2a5ta6t−1a7t3a8t−2. It is in
standard form and has shape φ(e0) = t3t−1tt−2tt−1t3t−2. Therefore, the derivative
of e0 has shape T2T−1T2T−1. We may then take the derivative of e0 to be e′

0 =
ATBTCT−1DTETFT−1.

It turns out that we will not be interested in coefficients of an equation e between
like powers of the variables. The corresponding corners on e-graphs are either sink
corners or source corners. These corners will not appear in consistent regions which
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Figure 2

Figure 3

have consistently directed boundaries. So, we will leave these coefficients out of the
derivative. There will be no loss of generality in doing so. In our example then, we
would take e′

0 = AT2BT−1CT2DT−1.
Let us look at what the remaining coefficients of the derivative represent. This

is most easily seen geometrically. As an example, let us revisit the equation e0 =
a1t3a2t−1a3ta4t−2a5ta6t−1a7t3a8t−2. Assume that we have some e0-graph Γ . Then every
vertex of Γ looks like the star graph in Figure 2 or its inverse.

We add dotted edges to these star graphs as follows: in each source corner, we add
a dotted edge directed away from the center; in each sink corner, we add a dotted edge
directed toward the center.

If we now remove the original edges and add coefficient labels to corners, we get
star graphs corresponding to the derivative of e0. So, we see that the new coefficients
of e′

0 correspond to maximal alternating shaped subwords of (cyclic conjugates of ) e0.
Specifically: A ≡ t−1a1t; B ≡ ta2t−1a3ta4t−1; C ≡ t−1a5ta6t−1a7t; and D ≡ ta8t−1.

This generalizes to the following.

REMARK. Let e′ be a derivative of e. If e′ contains a subword of the form TAT−1,
then the coefficient A corresponds to a subword of e with a positively alternating shape.
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If e′ contains a subword of the form T−1BT , then the coefficient B corresponds to a
subword of e with a negatively alternating shape.

Next, we note how length and exponent sum behave under derivatives. We shall
state this as a lemma whose proof is left to the reader.

LEMMA 1. If e′ is a derivative of e, then σ (e′) = σ (e). Also, |e′| ≤ |e| with equality
holding if and only if e is stable.

Every non-stable equation has an eventual derivative that is stable. The height,
h(e), of e is defined recursively: if e is stable, then h(e) = 0; and, if e is not stable, then
h(e) = h(e′) + 1. If h(e) = 1, then e is said to be pre-stable.

We spend the remainder of this section describing the possible shapes of a pre-
stable equation e. Note that e is pre-stable exactly when e has occurences of both t and
t−1 and no cyclic conjugate of e has consecutive occurences of t−1.

Let e be a pre-stable equation e with σ (e) = k > 0. Then there exists γ =
(r1, r2, . . . , rk), a k-tuple of non-negative integers not all of which are zero, so that the
shape of e is conjugate to (t−1t)r1 t(t−1t)r2 t . . . (t−1t)rk t. We call the pre-stable equation
with this shape eγ . Moreover, if e is an equation with height h and eγ is a (h − 1)-th
derivative of e we say that γ is the pre-stable form of e. This is well defined up to cyclic
conjugation of the coordinates of γ .

If σ (e) = 0 and e is pre-stable, then e has shape conjugate to φ(e) = (t−1t)r for
some r > 0. We will denote such an equation e[r]. If e[r] is the eventual derivative of e
then we will say that [r] is the pre-stable form of e.

With this new terminology, we classify amenable equations as precisely those
whose prestable forms are either: γ = (r1, 0, 0, . . . , 0) for some r1 > 0 or [1].

5. Inscribing e′-graphs on e-graphs. In this section, we will discuss how we can
use an e-graph to create an e′-graph and how we can use the resulting e′-graph to learn
something about the original e-graph. This will help us in two ways. First, we will be
able to prove that if e′ is type K∗, then e is type K∗. Secondly, this is the technique
that we will exploit to prove the main result of this paper: that there are type K∗

equations which are not amenable. We recommend that the interested reader compare
this discussion with those of [3], [4] and [5].

Let e be an equation with derivative e′ and let us assume that |e′| ≥ 2. Let Γ be an
e-graph. As described in section 2 of [4], we may create an e′ graph using the vertices of
Γ as follows. In each region whose boundary is not consistently directed, there are as
many source corners as sink corners. We add a dotted edge directed from each source
corner to a sink corner. We do this in such a way that every source corner and each
sink corner is used exactly once and so that the added edges do not cross.

If we then delete all of the original edges from Γ and label the corners with
appropriate coefficients, we have what might be an e′-graph with the caveat that it
might not be connected. For what follows, we will not delete the old edges and instead
make use of the new graph Γ ′ which has both solid edges (corresponding to occurences
of t in e) and dotted edges (corresponding to occurences of T in e′). Every vertex of Γ ′

is adjacent to both solid and dotted edges.
The dotted edges of Γ ′ divide the ambient 2-sphere into subsets which we call

meta-regions. So, there are no vertices interior to a meta-region. In fact, the only parts
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of Γ ′ in the interior of a meta-region are the interiors of solid edges. If a meta-region
is topologically equivalent to a disk, we call it a meta-disk.

Note that, if D is a meta-disk whose boundary is consistently directed, then D
properly contains regions of Γ each of whose boundaries is consistently directed. We
will say that a meta-disk is consistent if it corresponds to a consistent region of Γ ′ when
viewed as an e′-graph. Similarly, we will say that a meta-disk is dipolar if it corresponds
to a dipolar region of Γ ′.

The following fact was the key to the proof in [4] that if e′ is a type K equation,
then so is e.

FACT 3. Every consistent meta-disk of Γ ′ properly contains a consistent region of Γ .

In fact, in the specific case where the meta-disk is degree one (when it is bounded
by a dotted loop), then it must contain a consistent region of degree one.

Along the same vein, we will prove the following.

FACT 4. Let D be a dipolar meta-disk of Γ ′. Then either D contains at least two
regions of Γ which are degree one; or, every region of Γ which is contained in D is dipolar.

Proof. Since D is dipolar, it is adjacent to two vertices of Γ ′, one positive and one
negative. Let us call them v and w respectively. Moreover, there is some subword of e′

of the form TAT−1, so that the corner of D at v would be labeled A and the corner
of D at w would be labeled A−1. As described in the remark in the last section, A
corresponds to some subword of e whose shape is alternating of degree k say. So, each
corner of D contains 2k solid edges alternating with respect to their direction. There
are only two such corners. It is easy to see that if it is not the case that every edge is
adjacent to both v and w creating 2k − 1 dipolar regions of Γ , then there must be at
least two loops.

FACT 5. Let e be an equation and let e′ be a derivative of e. If e′ is type K∗, then e is
type K∗.

Proof. Let Γ be an e-graph. We create a new graph Γ ′ as above. Since e′ is type K∗,
there are at least two meta-disks each of which is either dipolar or degree one. Each
of these contains either a dipolar region of Γ or a degree one region of Γ . The result
follows.

6. Type K∗ equations of exponent sum 2. In this section, we define a class of
equations that are not amenable and prove that they are type K∗. As usual, we need
only describe their shape. We begin by defining certain subshapes:

For any positive integer k, define αk to be the positively alternating shape αk =
(tt−1)k.

For any positive integer l, define βl to be the negatively alternating shape βl =
(t−1t)l.

Fix an even positive integer m. Let Z1 = (r1, r2, . . . , rm) and Z2 = (s1, s2, . . . , sm)
be two m-tuples of positive integers.

We then define the equation e(Z1,Z2) to have shape:

φ
(
e(Z1,Z2)

) = αr1βr2 . . . αrm−1βrm tαs1βs2 . . . αsm−1βsm t

We see that for any (Z1, Z2), σ (e(Z1,Z2)) = 2.
Before we introduce the main theorem of this section, let us look at our

example equation, e0 = a1t3a2t−1a3ta4t−2a5ta6t−1a3
7a8t−2. We see that the shape of e0,
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φ(e0) = t3t−1tt−2tt−1t3t−2 is conjugate to (tt−1)2(t−1t)2t(tt−1)(t−1t)t which is the shape
of e(Z1,Z2) where m = 2 and Z1 = (2, 2) and Z2 = (1, 1).

The article [3] investigated pre-stable equations of the form:

ε(n,n) = A1T−1A2TA3T−1A4T . . . An−1T−1AnTxTB1T−1B2T . . . Bn−1T−1BnTyT

We see that, taking n = m/2, ε(n,n) is a derivative of e(Z1,Z2). Moreover, we see from the
remark in section 4 that for each odd i, Ai corresponds to the positively alternating
subword of e(Z1,Z2) whose shape is αri ; and, Bi corresponds to a subword shaped αsi .
Similarly, for even i, Ai and Bi correspond to negatively alternating subwords shaped
βri and βsi respectively.

We wish to apply the geometric results found in [3] to the current situation. To do
so, let us point out that the derivative of ε(n,n) has shape T2. So, if Γ is an ε(n,n)-graph
and Γ ′ is obtained from Γ by adding dotted edges corresponing to the derivative, then
the added edges form a finite collection of disjoint simple closed curves in S2. At least
two of the meta-regions must be meta-disks. The following lemma, adapted from [3],
shows that each meta-disk must properly contain specific degree-two regions of Γ .

LEMMA 2. Let n be a positive integer. Define

ε(n,n) = A1T−1A2T . . . Am−1T−1AmT2B1T−1B2T . . . Bm−1T−1BmT2.

Let Γ be an ε(n,n)-graph. Let Γ ′ be obtained by adding a set of dotted edges corresponding
to occurrences of the variable in ε′

(n,n). Let D be a meta-disk of Γ ′. Assume that D contains
no loops of Γ . Then there exists some j with 0 ≤ j ≤ m + 1 and a family of regions ∆i,
i = 1, 2, . . . , m of Γ contained in D so that for i 
= j each ∆i has exactly two corners, one
adjacent to a positive vertex, one adjacent to a negative vertex. Moreover, exactly one of
the following is true:

(1) for all i < j, ω(∆i) = AiA−1
i ; or,

(2) for all i < j, ω(∆i) = BiB−1
i ; or,

(3) for all i < j, ω(∆i) = AiB−1
i ; or,

(4) for all i < j, ω(∆i) = BiA−1
i ;

and, exactly one of the following is true:
(5) for all i > j, ω(∆i) = AiA−1

i ; or,
(6) for all i > j, ω(∆i) = BiB−1

i ; or,
(7) for all i > j, ω(∆i) = AiB−1

i ; or,
(8) for all i > j, ω(∆i) = BiA−1

i .

Proof. Consider the two cyclic subwords X = TA1T−1A2T . . . Am−1T−1AmT and
Y = TB1T−1B2T . . . Bm−1T−1BmT of ε(n,n).

Let C be the dotted simple closed curve that bounds D. As we go around C, we
alternately reach positive and negative vertices. If v is a positive vertex on C, then
those edges adjacent to v contained in D correspond either to the subword X or Y . We
will say that v is a positive X-vertex in the former case and a positive Y -vertex in the
latter. Similarly, each negative vertex on C is either a negative X-vertex or a negative
Y -vertex.

We measure the distance between vertices as the distance along C. So, if C runs
through more than 2 vertices, given any vertex v, there are exactly two vertices which
are distance 1 from v. The vertex which is immediately clockwise from v along C we
call v−; the other we call v+.
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Figure 4

Two vertices v and w are adjacent if there is an edge of Γ contained in D which is
adjacent to both v and w. The spread of a vertex v is the maximum distance from v to
all vertices to which v is adjacent. There must be a vertex v whose spread is minimal.
Since there are no loops in D, v must have spread 1.

Without loss of generality, we will assume that v is a positive X vertex, as the other
three cases follow similarly. Now, each edge which is adjacent to v is also adjacent to
either v− or v+. Since v is a positive vertex, both v− and v+ are negative vertices.

If there is a corner at v inside D which is interior to a region of Γ of degree greater
than 2, there is exactly one such corner. In this case we pick j so that this corner is
labeled Aj. Otherwise, either all edges adjacent to v are also adjacent to one of v− or
v+. In these cases, we set j = 0 or j = m + 1 respectively.

Now, for each i = 1, 2, . . . , m, we let ∆i be the region of Γ adjacent to v containing
the corner labeled Ai. The other corner of ∆i is adjacent to v− if i > j and is adjacent
to v+ if i < j. So, if i 
= j, ∆i has exactly two corners, one adjacent to a positive vertex
and one adjacent to a negative vertex.

Moreover, if v+ is a negative X-vertex, for all i < j, ω(∆i) = AiA−1
i ; if v+ is a

negative Y -vertex, for all i < j, ω(∆i) = AiB−1
i . Similarly, if vi is a negative X-vertex,

for all i > j, ω(∆i) = AiA−1
i ; if v− is a negative Y -vertex, for all i < j, ω(∆i) = AiB−1

i .
We are now ready to prove the main result of this section.

THEOREM 2. Fix a positive even integer m and pick two m-tuples of positive
integers: Z1 = (r1, r2, . . . , rm−1, rm) and Z2 = (s1, s2, . . . , sm−1, sm). Let e(Z1,Z2) have
shape φ(e(Z1,Z2)) = αr1βr2 . . . αrm−1βrm tαs1βs2 . . . αsm−1βsm t. Assume there are k and l with
1 ≤ k, l ≤ m and k 
= l so that rk 
= sk and rl 
= sl. Then e(Z1,Z2) is type K∗.

Proof. Let Γ be a e(Z1,Z2)-graph. As before, add dotted edges corresponding to the
derivative, e′

(Z1,Z2) to get another graph Γ ′. If, for the time being, we ignore the edges
and labels from Γ we can consider Γ ′ to be an e′

(Z1,Z2)-graph. As per the previous
lemma, we may add more dotted edges corresponding to the second derivative, e′′

(Z1,Z2)
to obtain Γ ′′. Clearly, Γ ′′ has at least two meta-disks. It remains to show that each of
these meta-disks contains either a degree one region or a dipolar region of Γ .

Let D be one of these meta-disks. Let j be the number and {∆i} be the family of
degree two regions of Γ ′ whose existence is assured to us by the previous lemma. Now,
at least one of k and l is different than j. Without loss of generality, we will assume
k 
= j.
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Now, look at the meta-region ∆k of Γ ′ and call the positive vertex to which it is
adjacent v and the negative vertex w. We know ω(∆k) is one of AkA−1

k , BkB−1
k , AkB−1

k ,
or BkA−1

k . If ω(∆k) = AkA−1
k or ω(∆k) = BkB−1

k , then ∆k is a dipolar region of Γ ′. So
by Fact 4, ∆k contains either two loops or a dipolar region of Γ . If ω(∆k) = AkB−1

k or
ω(∆k) = BkA−1

k , then since the number of edges of Γ in ∆k adjacent to v is different
than the number adjacent to w, ∆k must contain a loop of Γ .

The result follows.

It remains to point out that these equations are new type K equations. Let e(Z1,Z2)

be as described in the statement of Theorem 2. Then the derivatives of e(Z1,Z2) have
shapes φ(e′

(Z1,Z2)) = ((T−1T)mT)2 and φ(e′′
(Z1,Z2)) = T2. So, e(Z1,Z2) has pre-stable shape

γ = (m/2, m/2). It follows that these equations are not amenable and are therefore the
first examples of non-amenable type K equations.

7. Type K∗ equations of larger exponent sum. In this section, we prove that if
k ≥ 6 and if the k-tuple γ = (r1, r2, . . . , rk) consists of distinct positive integers, then
the pre-stable equation eγ is type K∗. Again, we note that pre-stable amenable equations
are of the form eγ where γ = (r1, 0, 0, . . . , 0). It follows that the equations described
in the following theorem are non-amenable.

THEOREM 3. Fix k ≥ 6 and let r1, r2, . . . , rk be distinct positive integers. Let e =

k

i=1[(
ri
s=1aist−1bist)cit]. Then e is type K∗.

Proof. Let Γ be an e-graph embedded in S2.
As before we add dotted edges corresponding to the derivative to get the graph Γ ′

which has both solid and dotted edges. If for the moment, we ignore the solid edges of
Γ ′, we have a graph embedded in S2 each vertex of which has degree k. Since k ≥ 6,
there must be at least two meta-disks of Γ ′, that are degree at most two. Let D be a
meta-disk of Γ ′ whose degree is at most 2. If D has degree 1, then D must contain a
degree one region of Γ .

If D has degree 2, then there are two vertices on the boundary of D: one positive, say
v; and one negative, say w. The corner of D adjacent to v contains corners and germs
of edges of Γ corresponding to some subword t(
ri

s=1aist−1bist) for some 1 ≤ i ≤ k; the
corner of D adjacent to w contains corners and germs of edges of Γ corresponding to
some subword [t(
rj

s=1ajst−1bjst)]−1 for some 1 ≤ j ≤ k.
If i 
= j, then ri 
= rj. So, the number of germs of edges in D at v is different than

the number of germs at w. So, D must contain a degree one region of Γ . If i = j, then
either D contains a degree one region of Γ or every region of Γ contained in D is
dipolar.

It follows that e is type K∗.

We remark that in the case where exactly one of the ri = 0, the above proof can be
adapted to show that e is solvable over all groups. However, we would not be able to
draw the stronger conclusion that e is type K∗.

8. Most equations are type K∗. In this section, we give a heuristic argument that
allows us to make the assertion that most equations are solvable over all groups.

In section 5, it was proved that if e′ is type K∗, then e is type K*. So, if all stable
equations were type K∗, then all equations would be type K∗. Unfortunately, no stable
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equations are type K∗ although they are all solvable over all groups as proved in [14].
It remains to look at pre-stable equations.

In the last section, we proved that if k ≥ 6 and the k-tuple γ = (r1, r2, . . . , rk)
consists of distinct positive integers, then the pre-stable equation eγ is type K∗. It
follows that any equation that has a pre-stable form γ satisfying these conditions is
also type K∗.

Almost all non-negative integers k satisfy k ≥ 6. Moreover, most k-tuples of
non-negative integers have k distinct positive entries. Now, since most equations are
non-stable and every non-stable has an eventual derivative which is pre-stable, we
conclude that most equations are type K∗. It follows that most equations are solvable
over all groups.

We acknowledge that the above argument assumes a non-standard partial ordering
on the set of equations. However, it can be argued that this partial ordering follows
naturally from our line of inquiry: organizing equations first by exponent sum and
then by height.

9. Equations that are not type K∗. In this section we discuss some equations which
are not type K∗. We begin with a rather obvious example.

Let e be an equation whose shape is a proper power in M. Then there is an e-graph
that has two vertices in which every region has degree two and no region is consistent.
Therefore, such an e is not type K and so is not type K∗.

In Theorem 1, we assumed that there were at least two different i’s so that ri 
= si. If
for all i, we have ri = si, then the equation e(Z1,Z2) has shape φ(e(Z1,Z2)) = (αr1 . . . βrm )2.
In this case, e(Z1,Z2) is neither type K nor type K∗.

What if we have exactly one i so that ri 
= si? For m = 2, Z1 = (1, 1) and Z2 = (1, 2)
consider the equation e(Z1,Z2). It is conjugate to e1 = at3bt−2ct3dt−2f tgt−1. Figure 1
shows an e1-graph which proves that e1 is not type K∗. We do note that this relative
picture for e1 has two consistent regions. It is not clear whether or not this must be the
case for every e1-graph. That is to say, it is not known whether e1 is type K. This would
be included in the following conjecture:

CONJECTURE. If σ (e) = 2 and the shape of e is not a proper power, then e is type K.

To put this conjecture into context, recall that we know if σ (e) = 1 and |e| > 1,
then e is type K ([12], [4]). So, we see that this conjecture holds for exponent sum 1
equations.

How about equations of higher exponent sum? Let e2 = at2bt−1ct3dt−1. Note that
the shape of e2 is not a proper power and σ (e2) = 3. In fact, e2 is a prestable equation
conjugate to e(1,1,0). In [4] it was shown that there is an e2-graph without any consistent
regions. Therefore, we know that e2 is not type K (and therefore, not type K∗). So, we
see that we should not expect this conjecture to hold for general equations of higher
exponent sum.

In his Ph.D. thesis [2], Aaron Clark has defined a different class of equations
that are type K and non-amenable. These include equations that have pre-stable shape
γ = (r1, r2) where r1 
= r2. (It is not clear which of these equations are also type K*.)
Therefore, the only outstanding cases for this conjecture are those equations whose
shapes are not proper powers but that have eventual derivatives whose shapes are of
the form [(t−1t)r]2. Theorem 2 of section 6 describes a class of equations that have this
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property. The simplest equation for which this conjecture has not been verified is the
equation e1 = at3bt−2ct3dt−2f tgt−1 described above.
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