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Abstract. The present state of modelling radiatively driven stellar winds from 
rapidly rotating stars is reviewed. Various processes affecting the actual, still con­
troversial wind structure are highlighted, in particular non-radial line-forces and 
gravity darkening, and useful scaling relations are provided. The importance of ac­
counting for consistent NLTE line-forces depending both on the actual density struc­
ture and radiation field (as function of latitude and radius) is stressed, and some 
independent test calculations confirming earlier numerical results are reported. 

1 Geometry and basic assumptions 

In the following, we consider a spherical co-ordinate system with unit vectors 
(eg, e ,̂, e r) , where the polar unit vector eg is directed towards the equator 
(right-handedness). The co-ordinate 6 denotes the co-latitute, i.e., 9 = 0 
at the pole. Our basic assumption concerns the symmetry of the system, 
which we require to be axisymmetric. Thus, all derivatives with respect to cp 
vanish identically in the equations of continuity and momentum (comprising 
gravity and radiation forces) and the hydrodynmical variables (p, vg,vj,, vr,p) 
become a function of (8, r, t) only. The plasma is considered as isothermal at 
temperature Te{{, which closes the system (5 variables, 5 equations) if the 
appropriate boundary conditions including stellar rotation are specified. 

2 1-D solution in equatorial plane 

The basic effects of rotation on a radiation driven wind can be studied most 
simply by considering only particles in the equatorial plane (cf. Friend & 
Abbott 1986 and Pauldrach, Puis & Kudritzki (PPK) 1986). With the as­
sumption of a purely radial line acceleration, the angular momentum re­
mains conserved (only central forces), and the rotational speed is given by 
v${r) = vTOt{R*)R*/r. Thus, the usual equation of motion is modified by the 
centrifugal acceleration only, which leads to an effective gravity of GM(1 — 
r)/r2(l — i?2i?*/r), where r accounts for the Thomson-acceleration and Q is 
the ratio of rotational speed at the surface vrot(R*) to the break-up velocity 
^crit = vesc/y/2, with veBC the photospheric escape velocity. 

Without rotation, the mass-loss rate of radiation driven stellar winds 
scales as (cf. PPK, Kudritzki et al. 1989, Puis et al. 1996) 
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Fig. 1. Influence of rotation on M and Vex, for particles in the equatorial plane. 
Stellar model: "generic OfV star" (cf. PPK) with vcrit = 690 km/s. Fully drawn: 
exact solutions; asterisks: scaling relation for M (Eq. 2); dashed: new scaling re­
lation for Woo (Eq. 4, j3 = 0.8); diamonds: simple scaling relation for Voa (Eq. 3); 
triangles: scaling relation for Woo by Friend & Abbott (1986) 

M oc (kL)1/a' (M (1 - rj)l~l,a', a' =a-6 (1) 

with luminosity L and the usual force-multiplier parameters (k,a,S). Since 
the critical point of the equation of motion (determining M) remains close 
to the stellar surface if the so-called "finite disk correction factor" is included 
into the radiation force (PPK), i.e., R*/rcr;t » 1, the only difference induced 
by rotation is the modification of the effective mass by roughly a factor of 
(1 — fi2). Thus, we expect the mass-loss rate to scale with 

M{Q) = M(0)(1 - / 2 2 ) 1 - 1 / a ' (2) 

A comparison with the "exact" solution obtained from the code developed 
by PPK confirms the validity of this expression (Fig. 1). Since the scaling 
law for the terminal velocity (without rotation) suggests a proportionality 
Voo ex vesc oc (M(l — .T))1/2, the most simple idea to include rotation is 

W o o ( ^ ) = « o o ( 0 ) ( l - t t 2 ) " (3) 

A slightly more refined investigation accounting for the change of M and 
the decreasing influence of the centrifugal support in the outer wind leads 
to a more complicated expression, where x = voo(Q)/voo(0) results from the 
solution of the non-linear equation 
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- ( 1 « ) ( 1+ 2 ^ ( 0 ) ) 2 ^ ( 0 ) , (4) 

which collapses to Eq. 3 for small values of uesc/woo(0) and 6. (/3 « 0 .7 . . . 1.3 
is the exponent of the typical velocity law valid for radiation driven winds). 
A comparison of both relations with the exact solution as well as with the 
expression provided by Friend & Abbott (1986) is given in Fig. 1. 

3 Wind compressed disks and zones 

The details of rotationally induced wind compressed disks (WCDs) and wind 
compressed zones (WCZs) (Bjorkman & Cassinelli 1993) are reviewed by J. 
Bjorkman elsewhere in this volume. The basic idea follows again from the 
assumption of purely radial line forces. Thus, the specific angular momentum 
is conserved not only for particles in the equatorial plane, but for all parti­
cles, and their motion is restricted to the orbital plane to which they belong 
(tilted by an angle of co-latitude #o from which they start). Furthermore, 
pressure forces are negligible in the supersonic region, and the free flow of 
the particles can be simulated by a corresponding 1-D treatment as above, 
however, of course, with a centrifugal acceleration modified for the actual 
azimuthal velocity in the orbital plane, v^r) = v^,(0 = 7r/2,r)sin#o- Thus, 
the mass-loss rates and terminal velocities for particles starting at do follow 
the same scaling relations as above, however with fi2 replaced by (J?sin#0)2: 

M increases and VOQ decreases towards the equator! In the course of the par­
ticles' motion, their azimuthal angle #'(r) in the orbital plane is changing, 
and they are deflected towards the equator. If # ' becomes larger/equal n/2, 
the particles would cross the equator, where they collide supersonically with 
particles from the other hemisphere: finally, a wind compressed disk is formed 
by this process. (For further consequences, cf. Bjorkman, this volume.) If we 
assume a /3-law for the radial velocity component, vr(r) = i>oo(l — b/r)@ with 
b derived from the minimum velocity at r = i?„, we find for the asymptotic 
azimuthal angle 

*(r - oo) = - J - ^ ( y ^ ( l - I)1"*, (5) 
(J - 1 0 l>oo(0o) -fl* 

which immediately suggests that disk formation or a significant compression 
towards the equator can occur only under the following conditions (#' has to 
be large): large i;rot, small i>oo! flat velocity field, i.e., large j3. It is important 
to realize that models with a typical velocity law (/? = 0.7. . . 0.8) give rise to 
only weak compression factors unless the ratio i>oo/urot is extremely low. 

Using the same assumptions as outlined above (radial line force), Owocki, 
Cranmer & Blondin (1994) confirmed the analytical WCD model by perform­
ing time-dependent hydrodynamical simulations. Their results were, except 
from some interesting details, in good agreement with the predictions by 
Bjorkman & Cassinelli. In order to obtain a compressed disk, however, they 
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had to use a fairly small value of a' = 0.35, (a = 0.51,8 = 0.16), since for 
larger values the radial velocity gradient became too large to lead to disk 
formation, in agreement with the above constraints. 

4 Non-radial line forces 

All results derived so far rely on the assumption of purely radial line-forces, 
implying the conservation of angular momentum. The line acceleration, how­
ever, is a vector quantity, defined per line by (in the Sobolev limit and ac­
counting for an optically thin continuum) 

_rad/ (r) = —TT / M n ) n ; x—dw; TS(r,n) = , , (6) 
W ) JWc TS(r,n) | n -V(nv( r ) ) | 

where \L is the frequency integrated line-opacity, uc the solid angle sub­
tended by the stellar disk, i* the stellar intensity, rs the Sobolev optical 
depth and the denominator of TS contains the directional derivative of the 
local velocity field. Prom Eq. 6, it is obvious that non-radial components of 
grad are present under two conditions: either the stellar intensity depends on 
direction (next section), or rs depends on direction. Note, that in the latter 
case for J* = const only optically thick lines induce non-radial components, 
which are then proportional to asymmetries in the derivative. Speaking in 
physical terms, the resulting accelerations depend on the differences in both 
intensities and optical depths along the various contributing lines of sight. 

Let us first consider the azimuthal component g^. For this quantity, the 
directional derivative can be written as fr + s i n y / ( ^VgJr'), where fr is the 
usual symmetric radial component, and sin ip is proportional to the azimuthal 
component of n (defined in the same sense as #). Thus, the direction of the 
resulting azimuthal acceleration depends only on the sign of d(v$/r)/dr, 
which is negative in all cases of rotational laws slower than solid rotation. As 
a result, even for a symmetric core intensity (i.e., only radial fluxes), optically 
thick lines induce an acceleration antiparallel to e$, i.e., a spin-down of the 
wind and loss of angular momentum. This effect was firstly investigated by 
Grinin (1978). For a further discussion, see Owocki et al. (1997) and Owocki, 
this volume. 

With respect to g@, the argumention is analogous. The decisive term 
in the velocity gradient inducing the required asymmetry is given here by 
T g / r ' + f§Q, where the second term is the important one. As long as 
the radial velocity law at the equator is slower than in polar regions - an 
almost inevitable consequence of rotation due to the reduced escape velocity 
oc (1 — Q2 sin2 0 ) 1 / 2 -, this gradient is negative, implying a larger total 
directional derivative (including the symmetric radial component) towards 
the pole than towards the equator: Again, g@ is anti-parallel to eg! Note, 
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that this direction could be only reversed if the radial expansion at the pole 
were slower than at the equator. 

Finally, by summing up the contribution of all lines (via folding with 
the line-strength distribution function), a polewards acceleration is created 
which is sufficient to stop the equatorwards motion predicted by WCD/WCZ-
models and actually reverses its direction. This result (for details see the 
"stopping length analysis" by Owocki et al. 1997) is the so-called "inhibi­
tion effect" (Owocki et al. 1996, Bjorkman, this volume), which inhibits the 
formation of a wind-compressed disk due to the reversal of the (supersonic) 
velocities w@, which are directed towards the equator only under the assump­
tion of purely radial line-forces. 

5 Distortion of the surface and gravity darkening 

Because of the centrifugal acceleration oc sin<9, the surface of the star be­
comes distorted. The degree of deformation can be calculated by using an ap­
propriate Roche potential (Collins 1963, Collins & Harrington 1966). Some 
applications are given by Cranmer & Owocki (1995) and Petrenz & Puis 
(1996). Moreover, von Zeipel's theorem may be used (for a discussion, see A. 
Maeder, this volume), which relates the flux and thus the effective temper­
ature with the effective gravity as function of 0 . In consequence, the poles 
become hotter and the equator cooler than the average Teff appropriate for 
the stellar luminosity. This change in the radiation field has a number of 
consequences: at first, the ionization/excitation balance becomes a function 
of co-latitude due to the varying radiation field (next section). Second, the 
polar wind plasma is irradiated by a larger flux compared to the equatorial 
one, which enhances the radiative acceleration and thus the expected mass-
loss from this region. For a wind with typical exponent a' = 0.5 illuminated 
by a uniformly bright disk, the mass-flux varies as 

M(@) oc (1 - Q2 sin2 0)~l a' = 0.5, uniform disk (7) 

(cf. Eqs. 1, 2), i.e., increases from pole to equator. If one accounts for gravity 
darkening, however, Llla' -> (JF(0)i?2(6>))1/a' ~ {g^{9)Rl{e))lla\ an 
additional dependence on [Meff(l — Q2 sin2 0)]l/a is created. In total, we 
find 

M{&) oc (1 - f22 sin2 6>)+1 with gravity darkening (8) 

(cf. Owocki et al. 1997, 1997a). Thus, the inclusion of gravity darkening 
(increased polar radiation flux) can reverse the situation and leads to a larger 
polar mass-flux. 

Finally, the absorbing lines at mid-latitudes are irradiated by an asym­
metric intensity, where the polar contribution is stronger and hotter than 
the equatorial one. This effect partially counteracts the optical depth effect 
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Fig. 2. Radiation driven wind models for a rapidly rotating B-star (see text). 
Model paramters (mean values): Tes — 20,000 K, \ogg = 4.1, R, = 4RQ, 
vesc = 690 km/s, i>rot = 350 km/s, line force parameters: k = 0.61, a = 0.51, 
(5 = 0.16 -> M = 3-10-10Mo/yr. 
Hydrodynamics: ZEUS-2D (Stone & Norman 1992). Lower boundary: rotationally 
distorted, stair-casing (Owocki et al. 1994) plus "no slip boundary condition". 

(cf. Eq. 6) and leads to a meridional acceleration g& being smaller than in 
the uniformly bright disk case, however still sufficiently large to induce a 
polewards directed velocity. 

As a brief summary and as an independent confirmation of the various 
numerical models published so far, Fig. 2 shows three different wind models 
for a rapidly rotating B-star calculated by one of us (P.P.) using the ZEUS-
2D-code (Stone & Norman 1992), accounting for rotational distortion of the 
surface (for details, see caption). The first one (left) displays the formation 
of a wind-compressed disk, if only radial line-forces are accounted for. The 
second one (middle) demonstrates the inhibition effect, if non-radial forces are 
included and a uniformly bright stellar disk is assumed. This model shows 
the largest mass-flux still at the equator (Eq. 7). Model 3 (right) accounts 
additionally for gravity darkening: Now, the mass-flux is highest at the poles 
(Eq. 8), and the polar velocities (arrows, on scale) are smaller than for Model 
2, in agreement with our reasoning from above. 
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6 Outlook - Consistent NLTE line forces 

In all calculations performed so far, the total line force was calculated within 
the force-multiplier concept, where the corresponding parameters were as­
sumed to be constant throughout the wind, i.e., independent both of r and 6 
and taken from tables designed to cope with the 1-D situation. One has to 
remember, however, that these parameters are (or more precisely: should be) 
the result of consistent NLTE-calculations, which are affected by at least two 
processes: i) The ©-dependence of both density and illuminating radiation 
field can have a significant effect on the ionization stratification, which in 
turn leads to a variation of the force-multiplier parameters with respect to 
co-latitude. As an example, Fig. 3 displays the ionizing radiation field for the 
rapidly rotating B-star wind model discussed above, when gravity darkening 
is included. The differences with respect to © are largest (« 5000 K) close 
to the surface, where the ionization is controlled by the local radiation field 
oc Teff((9). At larger distances from the surface, the plasma "sees" radiation 
from all angles between pole and equator, so that the radiation temperatures 
converge to similar values for r —>• oo. ii) Second, the assumption of constant 
force-multiplier parameters as function of r is rather questionable even for 
a uniformly bright disk (cf. Kudritzki et al. 1997). Fig. 4 displays the be­
haviour of a for a spherical wind in dependence on the optical depth variable 
t oc p/(dv/dr) and different "mean densities" \ogne/W. The overall trend of 
a becoming smaller for decreasing t reflects the decreasing influence of opti­
cally thick lines on the acceleration, if the wind plasma becomes thinner in 
the course of its outward trajectory. The reader may note, however, that the 
specific behaviour of a(t) varies strongly with spectral type and mean wind 
density (i.e., in concert with the dominant ions): one finds also cases with a 
increasing with decreasing t at first, before this behaviour is finally reversed. 

Presently, incorporation of these effects into a consistent 2-D description is 
under way in our working group. A number of simulations for rapidly rotating 
O-star winds with significant mass-loss have been performed, to demonstrate 
operation of the basic algorithms. Before specific results can be published, 
however, some final test calculations have to be undertaken. Especially in 
those cases as displayed in Fig. 4, when a is decreasing with t, a number 
of interesting effects are to be expected, since then the acceleration of the 
outer wind (low a) can become too small for the mass-loss rate created at 
the wind base (larger a).- Hopefully, the final simulations will help to answer 
the question concerning the "real" wind structure of rapidly rotating winds as 
function of spectral type and luminosity class. Note, however, that magnetic 
fields if present with sufficient strength (cf. Mathys, this volume) could again 
alter the conclusions. 

One of our final goals is the incorporation of continuum optical depth ef­
fects which in the B-supergiant domain can induce the so-called "bi-stability" 
mechanism (Pauldrach & Puis 1990). The decisive quantity which controls 
this behaviour is the optical depth in the Lyman continuum, which - for 
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Fig. 3. Ionizing radiation temperature for a rapidly rotating B-star wind model (cf. 
Fig. 2) including gravity darkening, averaged over illuminating disk, as function of 
© and height over surface. 

Fig. 4. NLTE-force multiplier parameter a as function of optical depth variable 
t oc p/(dv/dr) for a one-dimensional wind with Teff = 20000 K and different "densi­
ties" logrie/W = 11.5 (asterisks), 11.0,10.5,10.0, 9.5 (triangles). Illuminating pho-
tospheric spectrum from Kurucz fluxes (Kudritzki & Springmann, priv. comm.). 

rotating stars and accouting for gravity darkening - depends sensitively on 
rotationally induced variations of wind density and radiation temperature 
and thus becomes a strongly varying function of 0 (Lamers & Pauldrach 
1991; Lamers, this volume, however also Owocki et al. 1997). Due to this 
behaviour, the bi-stability effect is thought to be responsible for the B[e] 
phenomenon (Lamers & Pauldrach 1991) if the star rotates close to break-up 
and has a rather large (undisturbed) polar mass-loss. It has to be seen if the 
observed bimodal B[e] wind structure (e.g. Zickgraf et al., this volume) can 
be actually explained by simulations accounting for consistent line-forces. 
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Discussion 

N. Langer: The von Zeipel theorem is based on assumptions which do not 
hold for the luminous stars you consider. It should not be applied to these 
stars. 
J. Puis: We are well aware of this problem. In our present philosophy, how­
ever, we regard the temperature difference we obtain from the von Zeipel 
theorem as a sort of maximum effect which has to be investigated. 
A. Maeder: Corrections to the von Zeipel theorem due to the non-cylindrical 
rotation and the fact that real stars are not barotropic are leading to still 
higher polar flux; thus this would even reinforce the polar mass flux. 
J. Puis: So, we even have to correct our previous maximum temperature 
difference argument. In this case, the resultant structure would be even more 
elongated in the polar direction. 

Joachim Puis, Gloria Koenigsberger and Wolfgang Glatzel 
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