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Introduction. A problem which has generated considerable interest during 
the past couple of decades is that of characterizing abstractly systems of real-
valued continuous functions with various algebraic or topological-algebraic 
structures. With few exceptions known characterizations are of systems of 
bounded continuous functions on compact or locally compact spaces. Only 
recently have characterizations been given of the systems C{X) of all real-
valued continuous functions on an arbitrary completely regular space X (1). 
One of the main objects of this paper is to provide, by using certain special 
techniques, a characterization of C(X) for a particular class of (not necessarily 
compact) completely regular spaces. 

Generally speaking, one of the primary difficulties in characterizing all of 
C(X) is that of obtaining conditions which insure that a subsystem is, in fact, 
all of C(X). Sets of conditions of two different types have evolved. The first, 
for X compact, uses the completeness of C(X) in its usual norm and the 
Stone-Weierstrass Theorem. (For example, see (10) and (13).) The second 
uses the fact that C(X) is, in a sense, maximal in a certain class of algebraic 
systems (cf. (1, 6). The first of these appears to be applicable only in situa
tions where C(X) possesses a norm or a suitable family of pseudo-norms. The 
second, although it applies in more general situations and is algebraic in 
nature, has the slight drawback of the ' 'external" character of the maximality 
condition. 

In this paper we characterize C(X) as a vector lattice, as an /-ring, and as 
an algebra1 for the case in which X is a P-space (7). A feature of special 
interest in these characterizations is that we appeal to neither of the afore
mentioned methods for obtaining all of C(X) ; rather we use, for X a P-space, 
a simple property of certain "fixed" subsets of C{X). En route to obtaining 
these results we also characterize M(X, S3), the set of all real-valued measurable 
functions on a total measurable space, as a vector lattice and as an /-ring. 

In two recent papers, Brainerd ((4) and (5)) has also given characterizations 
of C(X), X a P-space, and M{X, 33) as /-algebras. The characterizations of 
C(X) by Brainerd as an /-algebra and by us as an /-ring, although obtained 
independently, use essentially the same techniques. 

Received April 5, 1958. Presented to the American Mathematical Society June 20, 1958. 
1For the theory of vector lattices and /-rings see Birkhoff (2), Birkhoff and Pierce (3), and 

Nakano (11). Our notation will be that of (2) except that V and A will be used to denote 
lattice join and meet, respectively. By an algebra we shall always mean an algebra over the 
real field. 
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1. P r e l i m i n a r i e s . If X is a set, denote by F(X) the set of all real-valued 
functions on X . If 33 is a Boolean c-algebra of subsets of X, then we say 
t h a t the pair (X, 93) is a total measurable space and denote by M(X, 93) the 
set of a l l / £ F(X) measurable 93. If £ is a base for a topology on X, then we 
denote by C(X, X), or in unambiguous cases simply C(X) , the set of all 
/ Ç F(X) cont inuous with respect to X. 

For each / Ç F(X) set Z(f) = {x 6 X;f(x) = 0}. A subset Z Ç I i s a 
measurable zero set in case Z G S3, or equivalently, in case Z = Z ( / ) for some 
/ £ Af(X, 93). A subset Z Ç X is a continuous zero set in case Z = Z ( / ) for 
s o m e / G C(X) . 

A subset 7 Ç F(X) is jîxed in case Pi { Z ( / ) ; / £ 7}, also wri t ten H Z(7 ) , 
is non-empty. Let A Ç F(X). A set I Q A is a maximal fixed subset of .4 if 
and only if 7 = {/ Ç A ; / (x ) = 0} for some x (E X . In general, different points 
in X do not give rise to different maximal fixed subsets of A ; if, however, A 
separates points ( tha t is, x 9e y in X implies 0 = f(x) 9^ f(y) for s o m e / e .4), 
then the mapping 7 —» P\ Z(7) is one-one from the maximal fixed subsets of 
A onto X . 

Let .4 Ç F(X). Then for each J Ç 4 , set 

a(7) = { / Ç . 4 ; X - n Z ( 7 ) Ç Z ( / ) î . 

T h u s / £ a(7) if and only if for every x G X and every g Ç 7, f(x)g{x) = 0. 
We say t h a t 7 Ç 4̂ is Z-convex (in vl) provided t h a t 

7 = {/<E 4 ; n Z ( J ) C Z ( / ) ) . 

I t is clear then t h a t for each 7 Ç ^4, if 7 = a (a (7)), then 7 is Z-convex. The 
converse in general is false; for example, every maximal fixed subset 7 of A 
is Z-convex, b u t it need not satisfy 7 = a (a (7)). If J^ i s the collection of maximal 
fixed subsets of A, then it is clear t h a t 7 Ç 4̂ is Z-convex if and only if 

A topological space X ( = (X, X)) is a P-space (7) provided tha t X is 
completely regular and t h a t every G^-set in X is open. In such a space X the 
family of continuous zero sets of X is an open base for the topology, is a 
Boolean o--algebra of subsets of X , and coincides with the family of closed-open 
subsets of X . Conversely, if (X, 93) is a to ta l measurable space which separates 
points of X ( tha t is, x 9^ y in X implies x G E and y (jf E for some £ r 93), 
then 93 is an open base for a topology on X relative to which X is a P-space. 
Moreover, it is clear t h a t in this case M(X, 93) ^ C(X, 93). We now prove 
a test for equali ty.2 

L E M M A 1.1. Let X be a F-space, let 93, a Boolean a-algebra of subsets of X, be 
an open base for the topology of X , and let ff he the set of maximal fixed subsets 
of il7(X, 93). Then M(X, 93) = C(X, 93) if and only if for every Z-convex set 
I Ç M(X, 93), if N £ y implies I Çj_ N or a(I) (J_ N, then I = a(f) for some 
f € M(X, S8). 

2See also (5, Theorem 1) for a variation of this result. 
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Proof. Let 7 Ç M(X, 33) be Z-zoncvx. We shall prove first that the two 
conditions 

(1) I (Z N or a(I) (t N for all N G &\ 
(2) C\Z(I) is a continuous zero set; 

are equivalent. Assume (1). Then 7\ = C\ Z(I) and F2 = P\Z(ct(7)) are 
disjoint. For let x G X and let 

#* = {/G M(X, « ) ; / (* ) = 0 } . 

Since TVa: is Z-convex, we have x G 7\ if and only if 7 Ç Nx, and x G P2 if 
and only if a (J) Ç #*. Thus, by (1), F1C\F2 = 0. Since M(X, 33) Ç C(X, 33), 
we conclude that Fi and F2 are closed. Since 33 is an open base, if x G X, then 
{x} = H Z(Ag. Therefore if x $ 7\ and if/ G M(X, 33), then {x} = C\ Z(NX) 
<^X - FxQZif) implies/ G iV*. That is, a (7) Q NXJ so that x G F2. Hence 
X = Fi \J F2. We have then that 7\ is both closed and open, and therefore 
Fi = Pi Z(7) is a continuous zero set. Conversely, assume (2). Then since X 
is a P-space, F = C\ Z(I) is closed and open. Since 33 is an open base, if 
x G F, then there is a n / G M(X} 33) such t h a t / 0 ) ^ 0 and X - FQZ(f); 
that is, / G a (7) and / $ Nx. Hence 7 Ç Nx implies a (7) <£ #*. Thus (1) and 
(2) are equivalent. 

We now easily prove the "only if" portion of the lemma. For suppose that 
M(X, 33) = C(X, 33) and that 7 C M(X, 33) satisfies (1). Then F = H Z(7) 
is closed and open so that the characteristic function/ of F is in M(X, 33). It 
is evident then that 7 = a(l — / ) . 

Conversely, let g G C(X, 33) and let a be a real number. Set Z = {x G X; 
g(x) ^ a}. Then Z = Z ( ( a - g ) V 0 ) is a continuous zero set. Let 

/ = {/É M ( X , S ) ; Z Ç Z ( / ) } . 

Then 7 is Z-convex and C\ Z(I) = Z. Therefore 7 satisfies (2) and hence 
(1). Thus, if M(X, 33) satisfies the condition of the lemma, 7 = ct(f) for some 

/ G il7(X, 33). We claim that Z = X - Z(J). Certainly X - Z(f) Ç Z. Sup
pose then that x G Z(/) . Since/ G Af(X, 33) Ç C(X, 33), Z(/) is a continuous 
zero set, and therefore, since X is a P-space, Z(/) is open. Now 33 is an open 
base, so there is an h G M{X, 33) such that hix) ^ 0 and X - Z(J) ÇI Z(h). 
Then h G 7 and Z = C\ Z(J) Q Z(h). Hence x (£ Z, and we have the desired 
reverse inclusion X — Z(f) 2 Z. Now Z(/) is measurable since/ G M(X, 33), 
and therefore its complement Z is measurable. Consequently, since a was 
arbitrary, we conclude that g is measurable 33 and hence that g G M(X, 33). 
Thus M(X, 33) = C(X, 33) and the lemma is proved. 

2. Vector lattices of functions. In this section we characterize M(X, 33) 
and C(X, X) abstractly as vector lattices where (X, 33) is a total measurable 
space and (X, £) is a P-space. 

Let A be a vector lattice. For/ , g Ç i we wri te / _L g in case |/| A |g| = 0. A 
countable set {fn} of elements of A is a o^-seJ in case fn ^ 0 (« = 1 ,2 . . . ) 

https://doi.org/10.4153/CJM-1960-029-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1960-029-3


356 F. W. ANDERSON 

and for each n ^ ni, fn _L fm. We say that A is a±-complete in case every 
(71-set {fn} in .4 has a least upper bound, Vw/W, in A.z 

LEMMA 2.1. Let A be a vector sublattice of F(X) which separates points of X 
and contains the constant function 1. Then A = M(X, 33) for some point separat
ing (j-algebra 33 of subsets of X if and only if A is a^-complete and a-cornplete. 

Proof. The necessity of these conditions follows readily from the fact that 
if A = M(X, 33), then the desired countable spurema are simply the "point-
wise" suprema. 

Conversely, let A satisfy the stated conditions. If \fn] Ç A wi th / = Vw/nG A , 
then we claim that f(x) = Vn[fn(x)] for each x ^ I . For suppose, on the 
contrary, that there is an x G X with f(x) > Wn[fn(x)]. Without loss of 
generality, we may assume that, for all n, 0 < fn S fn+i < 1 a n d fn{pc) = 0, 
and tha t / (x ) = 1. Now define sequences {gn}, {hn}, and {en\ in A by 

g! = 2 / i M and gn = 2( / n V gn-i) A 1 for n > 1; 

*n = (2gn - ^n+l) + ; 
and 

£i = ^i, 2̂ = 2h2, and en = w(Aw — Aw_2) for n > 2. 

Also, for each «, set 

Yn = {y £ X;ga(y) = 1}. 

Then one easily shows that, for each n, 0 ^ hn S hn+i ^ 1, hn(Yn) = 1, and 
hn(X — Yn+i) = 0. From these it follows that 0 S en S n, en{x) = 0, 
*W(FW - 7w_i) = «, and 

X - Z{en) ç Fn + 1 - Fn_2, 

where F_i = F0 = 0. This implies that if \m — n\ > 2, then em J_ e„; hence 
each of the sets {ezn}, {e3w_i}, and {^-2} is a cr-L-set in ^4. Therefore, since A 
is o-^-complete, 

2 / » \ » 

e = V I V 03n-i J = V ŵ 
î = 0 \ w = l / 72 = 1 

is in A. Now if/w(;y) > 0, then 2%(y) ^ 1 for some k; therefore, since 

gn+*(y) ^ [2%(y)] A 1 = 1, 

we have y £ Yn+k. That is, if 
CO 

P={J (X - Z(fn)), 

then 
PQ U 7 » = U ( F „ - F_! ) . 

w = l w=0 

3Other, possibly less descriptive, terminology for this notion includes cr-full (2) and complete 
(11). 
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T h u s we have t h a t e ^ 1 on P, and consequently, t ha t / ^ e on X. Hence 
there is an integer k ^ 2 such t h a t e(x) S k — 1. Set 

e' = y V itejve. 

Then e'(3/) ^ fe for all y G P a n d e ' ( x ) g e(x) g &. Therefore 0 ' - & + 1 ) + ^ 1 
on P and, as a result, / ^ (ef — k + 1)+ . This is a contradict ion since 
(e' — k + l ) + ( x ) = 0. We conclude then t h a t / ( x ) = 0, and therefore count
able suprema in A, when defined, are defined pointwise. 

For each / G A, set ef = Vn (\nf\ A 1) ; then, by the result of the preceding 
paragraph, ef is the characteristic function of X — Z{f). T h u s A contains 
ef and 1 — ez the characteristic functions of X — Z(f) and Z(f), respectively. 
Now let 33 = {Z(f)\f G A}. Then 33 is an algebra of subsets of X; for 
Z(f) U Z(g) = Z ( | / | A |g|) and X - Z(f) = Z ( l - e,). Since 4 is^ point 
separating, it is clear t h a t 33 also is point separating. Moreover, 33 is a a-
algebra; for, using the result of the first paragraph and the (^-completeness 
of A, we have 

r\nz(jn) = r\nz(efn) = z(vnefn) G 33. 
We show next t h a t A C M(X, 33). Let / G 4̂ and let a be real. Then 

{xtX;f(x) ^a] = Z ( ( * - / ) + ) G 33, 

so t h a t / G M(Xj 33). On the other hand, 4̂ contains all measurable charac
teristic functions, and so, since A is c-complete, A contains all bounded 
/ G M ( X , 33). (Cf. (8, Theorem 20.B).) T o complete the proof we need only 
show t h a t A contains all non-nega t ive / G M(X, 33). So l e t / ^ 0 in M(X, S3). 
For each w = 1, 2, . . . , set 

En = {x G X; n - 1 g / ( x ) < »} 

and let /w G PC^O be denned by fn = f on P„ and fn = 0 on X — En. Then 
obviously fn G Af(X, 33) and is bounded; hence fn G A for all w. Bu t \fn) is 
a o-L-set, so t h a t / = Vw/W G ^4. T h u s the proof of the lemma is complete. 

I t is interesting to note t ha t neither o^-completeness nor cr-completeness 
alone is adequate to insure t h a t A = M(X, 33). For example, if X is uncount
able, then the set of all / G F(X) with f(X) countable is a vector sublatt ice 
of F(X) which is o-^-complete bu t not o--complete. Next let X be the Stone-
Cech compactification of an infinite discrete space and let A = C(X). Then A 
is a vector sublatt ice of F(X) which is a-complete bu t not a -'--complete ; in 
fact, there exist bounded sequences {fn} in A such t h a t Z(\/nfn) ^ r\nZ{fn). 

Let A be a vector lattice. An element e G A is a weak order unit in case 
for all / G A, | / | A \e\ = 0 implies / = 0. A subset I ÇZ A is an ideal of A in 
case / is a linear subspace such t h a t / G / and |g| S \f\ implies t h a t g G L 

T H E O R E M 2.2. 4̂ sector lattice A is isomorphic to the vector lattice M(X, 33) for 
some total measurable space (X, 33) ^/ am/ ow/3; if A is a^complete, a-complete, 
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has a weak order unit, and C\^ — 0 where ^ is the set of maximal ideals of A. 
In fact, when A satisfies the stated conditions, A is isomorphic to Af(^33) , 
where 33 is a point separating a-algebra of subsets of ^ 

Proof. Since the family *S of fixed maximal ideals ( = maximal fixed ideals) 
of M(X, 33) satisfies C\ S = 0, the necessity of the conditions is obvious. 

Conversely, let A satisfy the stated conditions. Let e Ç A be a weak order 
unit for A; we may assume that e ^ 0. We claim that if ^~ = {N £ */\ 
e i N\, then H ^ = 0. For if / Ç H ^ then, for every N Ç ^ either 
/ Ç N or e G xV. Thus (|/| A ^ H ^ s o that |/| A e = 0. Since g is a weak 
order unit, this implies / = 0. That is, Pi ^ = 0. By a familiar technique 
(1) we can define an isomorphism of A onto a point-separating vector sub-
lattice A* of F( ^ ) such that e is mapped onto the constant function 1. Appeal
ing to Lemma 2.1 we have that A* = M(^, 33) for some (r-algebra 33 of 
subsets of y. 

To complete the proof it will suffice to show that £f = ^, and for this 
it will suffice to show that if (X, 33) is a total measurable space, then no 
maximal ideal of M(X, 33) contains 1. Suppose, on the contrary, that N is 
a maximal ideal of M(X, 33) and that 1 G N. Then since N is proper, there 
is an / è 0 with / $ N. Since N is maximal and since f2 > f is in M{X, 33), 
there is a real number a such that f2 — af G iV\ Let 0 = \{a + l)2 . Since 
1 £ X, it follows that /3, and hence f2 — of + /3, belongs to Ar. But 

/2 - af + (I = [/ - è(* + l)]2 + / è /, 

contrary to / $ xY. Thus the assumption 1 £ .¥ is untenable and the proof is 
complete. 

Let A be a vector lattice and let / Ç ^4. We set 

I±= {fZA;f±g for all g € I} . 

Then clearly, / ç /J-1-. If - ^ is a family of ideals of A, then an ideal I of 4̂ 
is -^-complemented in case / = 7±J-, and for each iY Ç <£f either / (^ iY or 
/^ (Z A7. 

THEOREM 2.3. Let A be a vector lattice and let ^ be the set of all maximal 
ideals of A. Then A is isomorphic to the vector lattice C(X) for some completely 
regular P-space X if and only if A is a^-complete, a-complete, P\ ^ = 0, and 
for each ^complemented ideal I of A, I = {/}L for some f Ç A. 

Proof. To prove the necessity we may assume that X is a <2-space (9); for 
if X is a P-space, then so is vX, and, of course, C(X) and C(vX) are iso
morphic. With this assumption the maximal ideals of C(X) coincide with the 
maximal fixed subsets of C(X). Moreover, if / ÇZ C(X), then I1- coincides 
with the set a (I) defined in § 1. These observations combine with Lemma 1.1 
and Theorem 2.2 to establish the necessity of the conditions in the present 
theorem. 
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Conversely, let A satisfy the s ta ted conditions. Since the zero ideal of A 
is clearly ^ c o m p l e m e n t e d , it follows t h a t A has a weak order unit . Therefore, 
by Theorem 2.2, A is isomorphic to M{X, 33) for some total measurable 
space {X, 33) where, in fact, the maximal ideals ^ c o r r e s p o n d to the maximal 
fixed ideals of M{X, 33). A Z-convex set I* of M(X, 33) is then the image of 
some I = H [N £ &, I Q N} in A, and therefore is an ideal of M{X, 33). 
Since we clearly have a( /*) = ( /*) x , it follows from Lemma 1.1 t h a t 
M{X, 33) = C{X, 33), and the proof is complete. 

3. / - r i n g s of f u n c t i o n s . In this section we characterize M{X, 93) and 
C{X, X), {X, 93) and {X, X) as before, as / - r ings . Although these characteriza
tions still require ^-completeness, we are able to dispense with the full force 
of the cr-'--completeness requirement. In its place we use ring regularity and a 
condition of countbable character on certain ideals. These characterizations 
are slightly sharpened versions of those given in (4 and 5) . 

Recall t h a t a n / - r i n g (3) is a lattice-ordered ring A with the property t h a t 
for all / , g, h G A, f A g = 0 and A ^ 0 together imply hf A g = fh A g == 0. 
Clearly M{X, 33) and C{X, X) are /-r ings. 

A ring A is regular (12) in case for each f £ A, there is an f £ A such 
t h a t / / ' / = / . I t is known (7) t h a t a completely regular space X is a P-space 
if and only if C{X), as a ring, is regular. Concerning regular / - r ings we prove 
the following result which may be of independent interest. 

L E M M A 3.1. Let A be a regular f-ring. Then 
(1) For all f,g£ A, \f\ A \g\ = 0 if and only if fg = 0. 
(2) If A has a weak order unit, A has an identity. 

Proof. Since A has no non-zero nilpotent elements, the /-radical of A is 
zero (3). Therefore (1) follows from (3, Corollary 1, p. 57) and (3, Corollary 
2, p. 63). Next let e ^ 0 be a weak order unit for A and let ee' e = e. Then , 
by (1), / A ee' = 0 implies fee'e = fe = 0 which implies | / | A e = 0 and thus 
/ = 0. T h a t is, the idempotent e" = ee' is also a weak order unit . L e t / € A ; 
then {fe" — f)e" = 0 implies \fe" — / [ A e" = 0. Therefore, since e" is a weak 
order unit, fe" = f. Similarly, e"f = / , which establishes (2). 

An ideal I of a ring A is c-closed in case for every countable set {fn\ C I 
there is an / Ç A with ffn = fnf = fn for all n. 

T H E O R E M 3.2. Let A be an f-ring and let ^ be the set of a-closed maximal 
ring ideals of A. Then A is isomorphic to the f-ring M{X, 33) for some total 
measurable space (X, 33) if and only if A is regular, a-complete, has a weak order 
unit, and C\ &* = 0. Moreover, if A satisfies these conditions, the space {X, 33) 
and the isomorphism of A onto M{X, 33) may be so chosen that the set S is 
mapped one-one onto the maximal fixed subsets of M{X, 33). 

Proof. T h e necessity of the conditions is easily proved; we omit the details. 
Conversely, let A satisfy the s ta ted conditions. Then , by Lemma 3.1, A has 
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a ring identity e. Moreover, since A is or-complete, it is Archimedean (2, p. 
229), and therefore A is commutative (3, Theorem 13). Since the regular 
a--complete subring of A generated by e is isomorphic to the ordered field R 
of real numbers, we may regard A as a regular /-algebra over R (that is, A 
is a regular F-r'mg in the sense of (4)). Now let A7 £ ^ and {fn} CZ A7 such 
that Vnfn G A. Since A7 is cr-closed, there is an / £ A with /fw = fn for all w. 
By the regularity of A we may assume that / is idempotent. Then (11, 
Theorem 25.1), \Znfn = Vnffn =/(V re/W) G A7. Therefore /I satisfies the 
conditions required in Brainerd's characterization (4, p. 682). Thus there 
exist a total measurable space (X, 93) and an isomorphism of A onto M(X, 33) 
with the desired properties. 

Let i b e a ring. For I Q A, set a (I) = {/ G A;fg = 0 for all g £ / } . In 
general a(7) is a left ideal of A ; if 4̂ is commutative or if A is a regular/-ring, 
then a (I) is a two-sided ideal.4 A left ideal / of A is a-principal in case I = a{f) 
for some f £ A. 

If ^ i s a family of ideals of a ring A, then an ideal / of A is ^-complemented 
in case J = a (a (7)) and for each N 6 «̂ f either J (£ A7 or a (7) (2 A7. 

THEOREM 3.3. Le/ 4̂ &e a^ f-ring and let ^ be the set of a-closed maximal 
ring ideals of A. Then A is isomorphic to the f-ring C(X) for some P-space X 
if and only if A is regular, a-complete, C\ ^ = 0, and every -^-complemented 
ideal of A is a-principal. 

Proof. To prove the necessity, we may assume that X is a Q-space. Then 
an application of Theorem 3.2 and Lemma 1.1 completes this portion of the 
proof. 

Conversely, since the zero ideal of A is ^complemented, it is a-principal. 
But from {0} = a (J) and Lemma 3.1 we conclude that |/| is a weak order 
unit for A. Therefore, by Theorem 3.2 and Lemma 1.1, we have that A is 
isomorphic to M(X, 93) and that M(X, 93) = C(X, 33) where (X, 93) is a 
P-space. 

4. The algebra C(X). With no assumptions concerning order properties 
it seems to be difficult to obtain a reasonably simple characterization of the 
algebras M(X, 93). It is possible, however, to characterize the algebra C(X), 
X a P-space, and it is the object of this section to present such a characteriza
tion. 

Let A be a ring and let £f be a family of ideals of A. A set {/«} Ç A is a 
discrete ^-cover in case a ^ 13 implies fafp = 0 and the set {/«} is contained 
in no member of *$f We say that A is ^regular in case for each discrete 
«5-cover {fa} in A there is an / G A such that faff a = fa for all a. 

The condition of ^-regularity provides the means by which we avoid order 
assumptions in the characterizations of C(X). In general, however, it is not 

4If A is a subring of F(X), then Ct(7) as denned here coincides with Ct(J) as denned in §1. 
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suitable for a characterization of M(X, 33). For example, let X be uncountable 
and let 33 be the algebra of countable sets and their complements. If ^ is 
the set of maximal fixed ideals of the algebra M(X, 33), then M(X, 33) is not 
^ r e g u l a r . In fact, there is no algebra M(X, 33) Ç A C F(X) other than 
F{X) itself which is ^ r e g u l a r relative to its set ^ o f maximal fixed ideals. 

T H E O R E M 4.1 . Let A be an algebra and let ^ be the family of a-closed real 
ideals5 of A. Then A is isomorphic to the algebra C(X) for some P-space X if and 
only if A is -^-regular, C\ Sf = 0, and each ^-complemented ideal of A is 
^-principal. 

Proof. Let X be a P-space. Again we may assume t h a t X is also a Q-space; 
hence every real ideal of C(X) is fixed. As before one easily proves t h a t each 
such ideal is cr-closed. Thus , clearly, C\ ^ = 0. If {fa} Ç C{X) is a discrete 
^ c o v e r , then the family {X — Z(fa)\ is a disjoint open cover of X; hence 
/ = Zafa is in C{X). Since C(X) is regular, there is a n / ' G C(X) w i t h / 7 2 = / . 
Now an obvious pointwise a rgument shows t h a t / % 2 = fa for each a; therefore 
C(X) is ^ r e g u l a r . T h a t C(X) satisfies the final condition follows from 
Lemma 1.1. 

Conversely, let A satisfy the s tated conditions. Then, as a subdirect sum 
of fields, A is commuta t ive . Since the zero ideal of A is ^ c o m p l e m e n t e d , 
there is a n / G A such t ha t {0} = a (J). If / £ N for some N £ ^ then, since 
A7 is cr-closed, there is a g £ N with/'g = / . Let h G A ; then / (A - gh) = 0. Bu t 
{0} = a ( / ) , so we have h = gh Ç N\ t h a t is, A = N. This contradiction shows 
t h a t {/} is a discrete ^-cover. Then since A is ^ r e g u l a r , ff2 = f for some 
/ ' £ A. T h u s {0} = a(e) for some idempotent e (= ff) in A ; in fact, e is easily 
seen to be an identi ty for A. Therefore (cf. (1)) we may assume t h a t A is 
(isomorphic to) a subalgebra of C(X) for some completely regular space X 
and t h a t (i) the maximal fixed subsets of A are the members of '<>f and (ii) for 
each x £ X and each neighbourhood U of x, there is an / G -4 such t h a t 
/ ( x ) = 0 and /(;y) ^ 1 for all y $ [/. I t therefore remains to prove t h a t X is 
a P-space and t h a t A = C(X). So let U = r\nUn be a Gg-set in X , let x £ [/, 
and let 

A^ = {/<E 4 ; / ( * ) = 0 } G X 

By (ii), there is, for each n, an /w £ A^ such t h a t / n (y) è 1 for all 3; $ £4. 
Since A7^ is a-closed, there is a n / G Nx such that/fw = /w for all n. I t is clear 
t h a t f(x) = 0 and t ha t f(y) = 1 for all y (£ U. Consequently U is a neigh
bourhood of x. This establishes t h a t X is a P-space. 

Now let Z Ç J be a continuous zero set; t h a t is, Z is closed and open 
in X. For each x £ X — Z, there is an / Ç A^ such t h a t / ( Z ) = 1. Therefore 
g = 1 - / £ A and g(x) = 1 and g(Z) = 0. We have from this t h a t / = {/ £ A ; 
^ ^ Z( / )} is Z-convex and C\ Z(I) = Z. Then with essentially the same argu-

5An ideal N of A is real if ^4/iV is isomorphic to the real field. 
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ment as that used in the proof of Lemma 1.1, we conclude that I is ^-com
plemented. Therefore I = a(J) for some f G A * thus, using the fact that X 
is a P-space, it follows that Z = Z(f) for some / G A. Since X — Z is also a 
continuous zero set, X — Z = Z(g) for some g (z A. This clearly implies that 
{/, g} is a discrete ^cover ; hence fg2 = g for some/ ' Ç ^4. Thus (fg) (Z) = 1 
and (fg) {X — Z) = 0. We have proved then that A contains the characteristic 
function of each continuous zero set of X. 

To complete the proof it will suffice to prove that A contains every strictly 
positive function in C(X), for if/ G C{X), t h en / = [( /V 0) + 1] - [ - (/A 0) 
+ 1]. So l e t / £ C(X) be strictly positive and for each positive real number 
a, set Za = {x G X;f(x) = a}. Then each Za is a continuous zero set; let 
ea Ç A be the characteristic function of Za. Since {Za} is a disjoint cover of 
X, it follows that {aea} is a discrete ^cover in ,4. Therefore there is an 
/ ' Ç A such that (aea)

2f = aea for each a. Then for each x £ Za, 

/ ' (*) = a - i = [/(x)]-*. 

Since {Za} covers X, it follows that {/'} is a discrete ^cover in A. Thus 
there is a n / " G ^ with (/ ,)2/ , / = / r . Clearly then / " - ( f ) " 1 = / and / G .4 
as desired. 

REFERENCES 

1. F. W. Anderson and R. L. Blair, Characterizations of the algebra of all real-valued continuous 
functions on a completely regular space, Illinois J. Math., 3 (1959), 121-133. 

2. G. Birkhoff, Lattice theory (rev. éd., New York, 1948). 
3. G. Birkhoff and R. S. Pierce, Lattice-ordered rings, An. Acad. Brasil. Ci., 28 (1956), 41-69. 
4. B. Brainerd, On a class of latttice-ordered rings, Proc. Amer. Math. Soc , 8 (1957), 673-683. 
5. F-rings of continuous functions I, Can. J. Math., 11 (1959), 80-86. 
6. K. Fan, Partially ordered additive groups of continuous functions, Ann. Math., 51 (1950), 

409-427. 
7. L. Gillman and M. Henriksen, Concerning rings of continuous functions, Trans. Amer. 

Math. Soc , 77 (1954), 340-362. 
8. P. R Halmos, Measure theory (New York, 1950). 
9. E. Hewitt, Rings of real-valued continuous functions. I, Trans. Amer. Math. Soc , 64 (1948), 

45-99. 
10. S. Kakutani, Concrete representation of abstract (M)-spaces, Ann. Math., 4% (1941), 994-

1024. 
11. H. Nakano, Modern spectral theory (Tokyo, 1950). 
12. J. von Neumann, Regular rings, P roc Nat. Acad. Sci. U.S.A., 22 (1936), 707-713. 
13. M. H. Stone, A general theory of spectra. II, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 

83-87. 

University of Oregon 

https://doi.org/10.4153/CJM-1960-029-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1960-029-3

