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Abstract 

The analysis of ‘moderation’, ‘interaction’, ‘mediation’, and ‘longitudinal growth’ is widespread in the human 
sciences, yet subject to confusion. To clarify these concepts, it is essential to state causal estimands,  
which requires specifying counterfactual contrasts for a target population on an appropriate scale. Once causal 
estimands are defined, we must consider their identification. I employ causal directed acyclic graphs (causal DAGs) 

and Single World Intervention Graphs to elucidate identification workflows. I show that when multiple treatments 
exist, common methods for statistical inference, such as multi-level regressions and statistical structural equation 
models, cannot typically recover the causal quantities we seek. By properly framing and addressing causal questions 
of interaction, mediation, and time-varying treatments, we can expose the limitations of popular methods and guide 
researchers to a clearer understanding of the phenomena that animate our interests. 
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Introduction 

The young Charles Darwin was a keen fossil hunter and amateur geologist. In August 1831, he accompanied the 

geologist Adam Sedgwick to the Glyderau mountain range in northern Wales. 

We spent many hours in Cwm Idwal, … but neither of us saw a trace of the wonderful glacial 

phenomena all around us; we did not notice the plainly scored rocks, the perched boulders, the 

lateral and terminal moraines. Yet these phenomena are so conspicuous that … a house burnt down 

by fire did not tell its story more plainly than did this valley. If it had still been filled by a glacier, the 

phenomena would have been less distinct than they now are. (Darwin, 1887: p.25) 

This ‘striking instance of how easy it is to overlook phenomena, however conspicuous’ (Darwin, 1887: p.25) is 

cited in cultural evolution to emphasise the importance of theory for organising observations (Wilson, 2008). 

However, the importance of theory to scientific discovery carries broader relevance: it applies to the statistical 
methods scientists routinely apply to the data they collect. Without a clear framework that relates statistical 

models to observations, the understanding we seek from our data remains elusive. 

Across many human sciences, we apply statistical models to data and report ‘moderation’, ‘interaction’, 

‘mediation’, and ‘longitudinal growth’. How are we to interpret the results of these models? It is often unclear. 

The confidence with which investigators report findings does not make interpretation any clearer. The problem 

is that investigators are typically interested in causal questions. However, lacking the associations we obtain from 

our statistical models may hallucinate true causal association and their signs (Westreich & Greenland, 2013). As 
such, it is often unclear whether the associations we obtain from our statistical models are evidence for 

association, much less causation. 
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There is good news. Progress in the health sciences, computer science, and economics has led to a common 

vocabulary and robust workflows that enable investigators to formulate causal questions addressable with data. 

These advancements allow for the evaluation of assumptions necessary for obtaining consistent estimates, the 

construction of valid statistical estimators, and the application of statistical models at the end of the workflow. 
This conceptual framework, grounded in mathematical proofs, enables investigators to clarify, communicate, 

and evaluate causal questions using observational data. The consensus that has emerged in causal inference 

over the past several decades is, in my view, as transformative for the human sciences as the theory of glaciation  

was for geology, or as Darwin’s theory of evolution was for biology. By reformulating questions of interaction, 

mediation, and time-varying treatments as causal questions, I aim to clarify the framework’s interest, 

relevance, and power. 

Several excellent resources are available that clarify workflows for causal inference, from stating causal questions 
to communicating results (Hernan & Robins, 2024; Laan et al., 2023; Montgomery et al., 2018; Morgan & 

Winship, 2014; Neal, 2020; Pearl, 2009; Tibshirani et al., 2024; VanderWeele, 2015). 

Here, my ambition is modest. 

Part 1 considers how to ask causal questions when our interest is in comparing effect magnitudes between 

groups (effect modification). 

Part 2 considers how to ask causal questions when our interest is in evaluating the joint effects of two 

independent interventions (interaction). 

Part 3 considers how to ask causal questions when our interest is in evaluating the joint effects of two dependent 

interventions (mediation analysis). 

Part 4 considers how to ask causal questions when our interest is in evaluating two or more sequential 

treatments of the same kind (time-varying treatments). 

I begin with a brief introduction to key concepts and terminology. 

Fundamental Assumptions for Causal Inference  

Consider indicators 𝐴 and 𝑌 measuring states of the world. Let 𝐴 denote the ‘treatment’ or ‘exposure’ and 𝑌 the 

‘outcome’. For unit 𝑖, we say that 𝐴𝑖 causes 𝑌𝑖 if changing 𝐴𝑖 from one level, say 𝐴𝑖 = 𝑎∗, to another level, 𝐴𝑖 = 𝑎, 
leads to a different outcome for 𝑌𝑖. We assume 𝐴𝑖 occurs before 𝑌𝑖. To compare these outcomes, we use the 

notation 𝑌𝑖(𝑎̃), which represents the outcome for unit 𝑖 under the treatment level 𝐴𝑖 = 𝑎̃. To determine whether  

𝑌𝑖(𝑎̃) quantitatively differs under two treatment levels on the difference scale, we would compute the contrast 

𝑌𝑖(𝑎∗) − 𝑌𝑖(𝑎). If 𝑌𝑖(𝑎∗) − 𝑌𝑖(𝑎) ≠ 0, we would say there is a causal effect of 𝐴 on 𝑌 for individual 𝑖. 

Note that, for any given application of 𝐴 for unit 𝑖, we can only observe one level of treatment. Therefore, we 
refer to 𝑌𝑖(𝑎∗) − 𝑌𝑖(𝑎) ≠ 0 as a counterfactual contrast, or equivalently, as a contrast of potential outcomes. 

Because an individual may only receive one of two treatments at any given time, individual causal effects cannot 

generally be observed. However, when certain assumptions are satisfied, we may compute average treatment 

effects by aggregating individual observations under different treatment conditions. For a binary treatment, the 

difference in the average of the potential outcomes under two different treatment levels for the population from 

which a sample is drawn may be expressed as the difference in mean outcomes: 𝔼[𝑌(1)]−𝔼[𝑌(0)] or equivalently 

as the average of the differences of the potential outcomes: 𝔼[𝑌(1) − 𝑌(0)]. 

This counterfactual contrast represents the quantity obtained from an ideally conducted randomised controlled 

trial, where any common cause of the treatment and the outcome would occur only by chance. There are three 

fundamental assumptions for computing average treatment effects that, although generally satisfied in an 

ideally randomised experiment, may not be satisfied in observational or ‘real world’ data: 
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1. Causal Consistency: Treatment levels remain consistent within the treatment arms to be compared. 

There must be at least two arms. 

2. (Conditional) Exchangeability: Covariates that might affect outcomes under treatment are balanced 

across all arms (implied by randomisation). 

3. Positivity: Each covariate that might affect treatment in the target population has a non-zero probability 

of being observed within each treatment condition (refer to Westreich & Cole (2010); Bulbulia et al. 

(2023)). 

Note that we speak of an ‘ideal’ experiment because real-world experiments may fail these assumptions 

(Bulbulia, 2024c; Hernán et al., 2017). Our interest here is restricted to observational or ‘real world’ data. 

Schematic Workflow for Inferring Causal Effects from Real-World Data Before Stating Statistical Estimators 

and Performing Statistical Analysis 

In causal inference, we do not apply statistical models to data until after we have stated a causal question and 

considered whether and how the question may be identified from the data. We take the following steps before 

considering a statistical estimator or estimation: 

1. State a well-defined treatment. Clearly define the treatment (or equivalently exposure) that states the 

hypothetical intervention to which all population members will be exposed. For example, the treatment 

‘weight loss’ is a vaguely stated intervention because there are many ways one can lose weight – exercise, 
diet, depression, cancer, amputation, and others (Hernan & Robins, 2024). The intervention ‘weight loss 

by at least 30 minutes of vigorous exercise each data’ is more clearly defined (Hernán et al., 2008). 

2. State a well-defined outcome. Specify the outcome measure so that a causal contrast is interpretable. For 

example, ‘well-being’ is arguably a vaguely stated outcome. However, the outcome, ‘psychological distress 
measured one year after the intervention using the Kessler-6 distress scale (Kessler et al., 2002)’ is more 

clearly defined. 

3. Clarify the target population. Define the population to whom the results will generalise. The eligibility 

criteria for a study will define the source population from which units in the study are sampled. However, 

sampling from the source population may yield a study population that differs from the source population 

in variables that modify the effects of treatment (Bulbulia, 2024b; Dahabreh et al., 2019; Dahabreh & 
Hernán, 2019; Stuart et al., 2018). Investigators may also seek to generalise beyond the source population, 

which requires additional assumptions and may require additional knowledge (Bareinboim & Pearl, 2013; 

Dahabreh & Hernán, 2019; Deffner et al., 2022; Pearl & Bareinboim, 2022; Westreich et al., 2017). 

4. Evaluate whether treatment groups, conditional on measured covariates, are exchangeable. The 

potential outcomes must be independent of treatments conditional on measured covariates (Angrist & 

Pischke, 2009; Hernan & Robins, 2024; Morgan & Winship, 2014; Neal, 2020). 

5. Ensure treatments to be compared satisfy causal consistency. The versions of treatments over which a 

causal effect is estimated must be independent of the potential outcomes to be compared conditional on 

measured covariates (Hernan & Robins, 2024; VanderWeele & Hernan, 2013, 2013). 

6. Check if the positivity assumption is satisfied. There must be a non-zero probability of receiving each 

treatment level at every level of covariate required to satisfy the conditional exchangeability assumption, 
and if there are many versions of treatment, to satisfy the causal consistency assumption (Westreich & 

Cole, 2010). 

7. Ensure that the measures relate to the scientific questions at hand. In particular, evaluate structural 

features of measurement error bias (Bulbulia, 2024b; Hernan & Robins, 2024; VanderWeele & Hernán, 

2012). 
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8. Consider strategies to ensure the study group measured at the end of the study represents the target  

population. If the study population differs in the distribution of variables that modify the effect of a 
treatment on the outcome at both the beginning and end of treatment, the study will be biased when 

there is a treatment effect; as such, investigators must develop strategies to address attrition, non-

response, and structural sources of bias from measurement error (Bulbulia, 2024b; Hernán et al., 2004; 

Hernán, 2017; Hernán et al., 2017). 

9. Clearly communicate the reasoning, evidence, and decision-making that inform steps 1-8. Provide 
transparent and thorough documentation of the decisions in steps 1-8. This includes detailing 

investigators’ causal assumptions and any disagreements about these assumptions (Ogburn & Shpitser, 

2021). 

Conventions Used in This Article 

Table ?? reports our variables. Table ?? describes our graphical conventions. Here, we use two types of 
graphical tools to clarify causal questions: causal directed acyclic graphs and Single World Intervention Graphs. 

(Refer to supplementary materials S1 for a glossary for commonly used causal inference terms). 

Throughout, for clarity, we repeat our definitions and graphical conventions as they are used. To begin, we define 

the following: 

• Node: or equivalently a ‘variable,’ denotes properties or characteristics of units within a population. In 

causal directed acyclic graphs, we draw nodes with respect to features in a target population, which is 
the population for whom we seek causal inferences (Suzuki et al., 2020). A time-indexed node, 𝑋𝑡, allows 

us to index measurements within time intervals 𝑡 ∈ 1 … 𝑇, denoting relative chronology. If relative timing 

is not known, we may use 𝑋𝜙𝑡. The directions of arrows on a causal directed acyclic graph imply 

causation, and causation implies temporal order. 

• Arrow ( ): Denotes a causal relationship from the node at the base of the arrow (a ‘parent’) to the 

node at the tip of the arrow (a ‘child’). In causal directed acyclic graphs, we refrain from drawing an 
arrow from treatment to outcome to avoid asserting a causal path from 𝐴 to 𝑌. Our purpose is to 

ascertain whether causality can be identified for this path. All other nodes and paths, including the 

absence of nodes and paths, are typically assumed. 

• Boxed Variable 𝑋 : Denotes conditioning or adjustment for 𝑋. 

Judea Pearl demonstrated that causal dependencies in a directed acyclic graph could be evaluated using 

observable probability distributions according to rules known as ‘d-separation’ (Pearl, 1995, 2009). 

The rules, presented in Table ??, are as follows: 

a) Fork rule (𝐵 𝐶): 𝐵 and 𝐶 are independent when conditioning on 𝐴: (𝐵 ∐ 𝐶 ∣ 𝐴). 

b) Chain rule (𝐴 𝐶): Conditioning on 𝐵 blocks the path between 𝐴 and 𝐶: (𝐴 ∐ 𝐶 ∣ 𝐵). 

c)  Collider rule (𝐴 𝐵): 𝐴 and 𝐵 are independent until conditioning on 𝐶, which 

introduces dependence: 

(𝐴∐𝐵 ∣ 𝐶). 

From d-separation, Pearl derived a ‘backdoor adjustment theorem’, which provides a general identification 

algorithm given structural assumptions encoded in a causal directed acyclic graph Pearl (2009): In a causal 
directed acyclic graph (causal DAG), a set of variables 𝐿 satisfies the backdoor adjustment theorem relative to 

the treatment 𝐴 and the outcome 𝑌 if 𝐿 blocks every path between 𝐴 and 𝑌 that contains an arrow pointing into 

𝐴 (a backdoor path). Formally, 𝐿 must: 
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1. not be a descendant of 𝐴; 

2. block all backdoor paths from 𝐴 to 𝑌. 

If 𝐿 satisfies these conditions, the causal effect of 𝐴 on 𝑌 is identified by conditioning on 𝐿 (Pearl, 2009). In 

what follows, I will assume readers are familiar with causal directed acyclic graphs. Accessible introductions to 
causal directed acyclic graphs can be found in Pearl (2009); Barrett (2021); McElreath (2020); Neal (2020); 

Hernan & Robins (2024); Bulbulia (2024a). (For an introduction to Single World Intervention Graphs, used 

below, refer to Richardson & Robins (2013a); Richardson & Robins (2013b).) 

Part 1: Interaction as ‘Effect Modification’ 

We have said that in causal inference, we must explicitly define our causal question before applying statistical 
models to data. What question might the analysis of interaction answer? In causal inference, we think of 

interaction in two ways: 

1. Interaction as Effect Modification from a Single Intervention: We want to understand how an intervention 

varies in its effect across the strata of the target population in which we are interested. For example, we 

might ask: does the one-year effect of attending weekly religious service differ among people born in 

Australia compared with people born in Egypt? Note that here, we do not imagine intervening on 

birthplace. 

2. Interaction as Joint Intervention: We want to understand whether the combined effects of two treatments 

administered together differ from the separate effect of each treatment acting alone. For example, we 

might ask: does the one-year effect of attending weekly religious service and the one-year effect of being 
at least one standard deviation above population average wealth differ from not attending any religious 

service and being at the population average in wealth? Here there are two interventions that might act 

individually, separately, or in concert. 

Part 1 considers interaction as effect modification. Readers who do not wish to use the ‘effect modification’ may 

prefer the term ‘moderation.’ 

Effect Modification 

First, we define the ‘sharp-null hypothesis’ as the hypothesis that there is no effect of the exposure on the 

outcome for any unit in the target population. Unless the sharp-null hypothesis is false, there may be effect 
modification (Bulbulia (2024b)). Clearly, the variability of causal effect modification cannot be assessed from 

descriptive measures of individuals in one’s sample. Such heterogeneity must be modelled (refer to Tibshirani et 

al. (2024); Vansteelandt & Dukes (2022)). Alternatively, we might seek to compare whether the effects of 

treatments vary by strata within the target population. For example we may ask whether effects vary by culture 

group membership, gender or another grouping variable. 

Table ?? describes conventions to clarify how to ask a causal question of effect modification. We assume no 

confounding of the treatment on the outcome and that 𝐴 has been randomised (i.e. ℛ 𝐴). As such, we will  

not use causal directed acyclic graphs to evaluate a treatment effect. We will assume ℛ → 𝐴 → 𝑌. 

To sharpen focus on our interest in effect modification, we will not draw a causal arrow from the direct effect 

modifier 𝐹 to the outcome 𝑌. This convention is specific to this article. (Refer to Hernan & Robins (2024), pp. 

126-127, for a discussion of ‘noncausal’ arrows.) 

In Table ?? 𝒢1, we represent that 𝐹 is a direct effect modifier for the effect of 𝐴 on 𝑌. The open arrow indicates 

that we are not attributing causality to 𝐹. Because our estimand does not involve intervening on 𝑍, there is no 

need to close its backdoor paths. Note that if 𝐹 were to affect 𝐴, we could still estimate the effect modification 
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of 𝐴 on 𝑌 because 𝐹 has no causal interpretation. However, if 𝐴 were to cause 𝐹, and 𝐹 were to cause 𝑌, then 

by the chain rule (recall Table ?? 𝒢4), conditioning on 𝐹 would bias the effect estimate of 𝐴 on 𝑌. 

In Table ?? 𝒢2, we represent that 𝐹 is an unobserved direct effect modifier of 𝐴 to 𝑌. When the distribution of 

direct effect modifiers 𝐹 differs between two populations and effect modification is non-linear, marginal 

treatment effects between populations will generally differ and will not easily transport from one population to 

another. The concept of an average treatment effect has no meaning without a population over which the effect 
marginalises. This point, although obvious, has profound implications when investigators seek to assess whether  

their research generalises; refer to Hernan & Robins (2024), Bulbulia (2024b). For example, if the study 

population differs in the distribution of features that modify a treatment effect, and no correction is applied, 

effect estimates will be biased for the target population in at least one measure of effect (Bulbulia, 2024b; 

Greenland, 2009; Lash et al., 2020) We present two candidate effect modifiers in Table ?? 𝒢3. Notice that whether  
a variable is an effect modifier also depends on which other variables are included in the model. Here, 𝐹 is a 

direct effect modifier and 𝐺, a descendant of 𝐹, is an indirect effect modifier. Suppose we were interested in 

whether treatment effects vary (on the difference scale) within levels of 𝐹. For example, let 𝐹 denote childhood 

deprivation, 𝐺 denote educational achievement, 𝐴 denote a government educational initiative, and 𝑌 denote 

recycling. If we were to condition on 𝐹, we would not observe effect modification by education 𝐺 for the effect 

of the government initiative 𝐴 on recycling behaviour 𝑌: 𝐹 blocks the path 𝐺 𝐹 𝑌. 

We present the same causal structure in Table ?? 𝒢4. However, we do not condition on the direct effect modifier 
𝐹, but rather condition only on 𝐺, the indirect effect modifier. In this scenario, we would find that the 

effectiveness of the government initiative 𝐴 on recycling behaviour 𝑌 varies by educational achievement 𝐺. Thus, 

we would observe 𝐺 as an effect modifier because this path is open: 𝐺 𝐹 𝑌. 

In Table ?? 𝒢5, suppose we add another variable to our model, depression, denoted by 𝐵. We imagine 𝐵 to be a 

stable trait or that investigators measured childhood depression (that is, 𝐵 precedes 𝐺). Suppose we do not 

condition on the direct effect modifier 𝐹 (childhood deprivation), but we condition on educational attainment 
(𝐺) and depression (𝐵). In this graph, 𝐺 is a collider of 𝐹 and 𝐵. Thus, conditioning on 𝐺 (but not 𝐹) opens a 

path from 𝐵 𝐺 𝑍 𝑌. The investigators would find evidence for effect modification by 

depression on the effectiveness of the government intervention 𝐴 on recycling (𝑌). However, they should not 
interpret this result to mean that if levels of depression were to change within the population the treatment 

effect would change. 𝐵 is not causally related to 𝑌 in this scenario. Here, association is not causation. 

In Table ?? 𝒢6, we will not find evidence for effect modification for 𝐵 and 𝐺 because conditioning on 𝐹 blocks 

the flow of information that was open in 𝒢4 and 𝒢5. This again underscores the relativity of effect modification 

to (1) the structure of causality in the world and (2) an investigator’s statistical modelling strategy. 

These examples reveal the power—and simplicity—of causal diagrams to ‘transform the obvious’. Using causal 

directed acyclic graphs and Pearl’s rules of d-separation, it is clear that the analysis of effect modification 

cannot be conducted without reference to an assumed causal order and an explicit statement about which 

variables within that order investigators have included in their statistical models (VanderWeele, 2012). 

Investigators and policymakers may make incorrect policy decisions if they do not understand the relevance of 

effect modification to such parameters. It is important to remember that when evaluating evidence for effect 
modification, we are not assessing the effects of intervening on variables other than the treatment. Instead, we 

qualitatively evaluate 

whether treatment effects vary within subgroups. For more on effect modification, refer to VanderWeele (2012); 

VanderWeele & Robins (2007); Suzuki et al. (2013). 
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Example Showing Scale Dependence of Effect Modification 

Suppose investigators are interested in whether treatment varies across levels of another variable, an effect 

modifier. We next illustrate how causal inferences about the presence or absence of effect modification depend 

on the scale that is used to measure the contrast. We show that an effect modifier on the ratio scale may not be 

an effect modifier on the difference scale, and vice versa. 

Recall individual treatment effects are not observed. Assume a binary treatment is randomised, and we have 𝐴 

= 𝑎 ∈ {0, 1}. Investigators are interested in comparing the magnitude of this treatment effect across two levels 

of 𝐹 = 𝑓 ∈ {0, 1}. 

We define the average treatment effects for each group under each intervention as follows: 

𝔼[𝑌 ∣ 𝐴 = 0, 𝐹 = 1] = 𝜇01, 𝔼[𝑌 ∣ 𝐴 = 1, 𝐹 = 1] = 𝜇11 𝔼[𝑌 ∣ 𝐴 

= 0, 𝐹 = 0] = 𝜇00, 𝔼[𝑌 ∣ 𝐴 = 1, 𝐹 = 0] = 𝜇10 

The treatment effect for each group on the difference scale (absolute scale) is given: 

ATE𝐹=0 = 𝜇10 − 𝜇00 

ATE𝐹=1 = 𝜇11 − 𝜇01 

The treatment effect on the ratio scale (relative scale) for each group is: 

𝜇10 

RR𝐹=0 = 𝜇00 

𝜇11 

RR𝐹=1 = 𝜇01 

We say there is effect modification on the difference scale if: 

ATE𝑍=1 ≠ ATE𝑍=0 ⟹ 𝜇11 − 𝜇01 ≠ 𝜇10 − 𝜇00 

We say there is effect modification on the ratio scale if: 

 RR𝑍=1 ≠ RR𝑍=0 ⟹ 𝜇𝜇1101 ≠ 𝜇𝜇1000 

We have stated each causal question in relation to well-defined causal contrast and population, here defined by 

membership in 𝐹. 

Imagine we obtain the following estimates from our study: 

Outcomes under A = 0: 

• 𝜇00 = 5 

• 𝜇01 = 15 
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Outcomes under A = 1: 

• 𝜇10 = 10 

• 𝜇11 = 20 

Next, we calculate the treatment effects on the difference and ratio scales for each group: 

Difference Scale: 

ATE𝐹=0 = 𝜇10 − 𝜇00 = 10 − 5 = 5 

ATE𝐹=1 = 𝜇11 − 𝜇01 = 20 − 15 = 5 

Both groups have the same treatment effect on the difference scale, ATE𝐹=0 = ATE𝐹=1 = 5. investigators conclude 

there is no evidence for effect modification on the difference scale. 

Ratio Scale: 

 𝜇 10 

RR𝐹=0 

20 
RR𝐹=1 

The treatment effect on the ratio scale is different between the two groups, RR𝐹=0 = 2 ≠ RR𝐹=1 ≈ 1.33. Hence, 

investigators find evidence for effect modification on the ratio scale. 

The discrepancy in evidence for effect modification depending on the scale we choose arises because the two 

scales measure different aspects of the treatment effect: the absolute difference in outcomes versus the relative 

change in outcomes. Parallel considerations apply to the analysis of interaction, where we imagine a joint 

intervention. For this reason, it is important to state the causal effect scale of interest in advance of estimation 

(Bulbulia, 2024a). We next consider interaction as a joint intervention. 

Part 2: Interaction 

Introducing Single World Intervention Graphs 

When evaluating evidence for interaction, we must assess whether the combined effects of two treatments differ 
from the unique effects of each treatment relative to a baseline where neither treatment is administered. 

Understanding multiple interventions can be facilitated by using Single World Intervention Graphs (SWIGs) 

(Richardson & Robins, 2013a). 

SWIGs employ Pearl’s rules of d-separation but offer additional benefits by graphically representing the complex 

factorisations required for identification, presenting distinct interventions in separate graphs. The first advantage 

is greater precision and clarity: SWIGs allow us to consider identification conditions for each counterfactual 

outcome individually. Such precision is useful because identification conditions may differ for one, but not 

another, of the treatments to be compared. Node-splitting also makes it easier to determine identification 
conditions that are obscured in causal directed acylic graphs, for an example refer to supplementary materials 

S2. The second advantage Single World Intervention Graphs unify the potential outcomes framework with 
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Pearl’s structural causal model framework: any causal relationship that can be represented in a causal directed 

acyclic graph can also be represented in a Single World Intervention Graph (Richardson & Robins, 2013b). 

Single World Intervention Graphs Work by Node-Splitting 

We create a Single World Intervention Graph by ‘node-splitting’ at each intervention such that the random 

variable that is intervened upon is presented on one side and the level at which the random variable is fixed is 

presented on the other. 

Consider a template graph Table ?? 𝒢. Applying node-splitting to 𝐴 involves creating separate graphs for each 

value of 𝐴 to be contrasted. 

1. SWIG for 𝐴 = 0: Denoted as 𝒢𝐴=0, this graph shows the hypothetical scenario where 𝐴 is set to 0. 2. 

SWIG for 𝐴 = 1: Denoted as 𝒢𝐴=1, this graph shows the hypothetical scenario where 𝐴 is set to 1. 

In these graphs, the node corresponding to the treatment 𝐴 is split, relabelled with the random and fixed 

component, and then each node that follows is labelled with the fixed component until the next intervention. 

Here, 𝑌(𝑎̃) is the only variable to follow 𝐴 and it is relabelled either 𝑌(0) or 𝑌(1) corresponding to whether 𝐴 = 1 

or 𝐴 = 0; hence 𝑌(𝑎̃) is relabelled as either 𝑌(0) or 𝑌(1). Note that we do not place both 𝑌(0) and 𝑌(1) on the 

same Single World Intervention Graph because the variables are not jointly observed. Hence, we evaluate 

identification for 𝑌(0) ∐ 𝐴 = 0|𝐿 and 𝑌(1) ∐ 𝐴 = 1|𝐿 separately. 

Interaction as a Joint Intervention 

We now use Single World Intervention Graphs (SWIGs) to clarify the concept of causal interaction as a joint 

intervention. 

Consider two treatments, denoted as 𝐴 and 𝐵, and a single outcome, 𝑌. A joint intervention causal interaction 

examines whether the combined effect of 𝐴 and 𝐵 on 𝑌 (denoted as 𝑌(𝑎, 𝑏)) is greater than, less than, or equal 

to the effect of each individual treatment. What does this mean? 

First, we obtain the expected outcomes when the entire target population is treated at each level of the 

treatments to be compared. These potential outcomes are illustrated in Table ??: 

• Table ?? 𝒢1: Neither treatment 𝐴 nor treatment 𝐵 is given. 

• Table ?? 𝒢2: Both treatment 𝐴 and treatment 𝐵 are given. 

• Table ?? 𝒢3: Treatment 𝐴 is given, and treatment 𝐵 is not given. 

• Table ?? 𝒢4: Treatment 𝐴 is not given, and treatment 𝐵 is given. 

By comparing these expected outcomes, we can determine the presence and nature of causal interaction 

between treatments 𝐴 and 𝐵 with respect to the outcome 𝑌. 

Example 

Consider the effect of beliefs in big Gods (exposure 𝐴) and a culture’s monumental architecture (exposure 𝐵) 
on social complexity (outcome 𝑌). Both interventions have equal status; we are not investigating effect 

modification of one by the other. The interventions must be well-defined. We must state, understand, and 

obtain measures for the quantities ‘big Gods’, ‘monumental architecture’, and ‘social complexity’ measured at a 

clearly stated time interval after the interventions are first observed. 

We need to state a population and scale to assess the individual and combined effects of 𝐴 and 𝐵. The units in 

the study draw from this population—say they are the societies of primary urban genesis (Wheatley, 1971). We 

look for evidence of causal interaction on the difference scale. Evidence for interaction would be present if the 

following inequality were to hold. Where, 

https://doi.org/10.1017/ehs.2024.32 Published online by Cambridge University Press

https://doi.org/10.1017/ehs.2024.32


10 

• 𝔼[𝑌(1, 1)]: mean outcome for those jointly exposed to both treatments, big Gods and big 

architecture. 

• 𝔼[𝑌(1, 0)]: mean outcome for those exposed only to the treatment of big Gods. 

• 𝔼[𝑌(0, 1)]: mean outcome for those exposed only to the treatment of big architecture. 

• 𝔼[𝑌(0, 0)]: mean outcome for those exposed to neither treatment of big Gods nor of big 

architecture. Suppose outcomes are well-defined. We say there is evidence for interaction on the additive 

scale if 

( 𝔼[𝑌(1, 1)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ −𝔼[𝑌(0, 0)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟  ) − [(𝔼[𝑌(1, 0)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟  − 𝔼[𝑌(0, 

0)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟  ) + (⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟𝔼[𝑌(0, 1)]  −⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟𝔼[𝑌(0, 0)]  )] ≠ 0 

 joint exposure neither exposed only A exposed neither exposed only B exposed neither exposed 

This equation simplifies to 

 𝔼[𝑌(1, 1)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ −𝔼[𝑌(1, 0)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟  −𝔼[𝑌(0, 1)]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ +

 ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟𝔼[𝑌(0, 0)]  ≠ 0 

 joint exposure only A exposed only B exposed neither exposed 

A positive value would indicate evidence for additive interaction. A negative value would indicate evidence for 

sub-additive interaction. A value near zero would imply no reliable evidence for interaction. 

Table ?? presents each counterfactual intervention. We can read from the graphs that identification in each 𝒢𝑎̃,𝑏̃ 

requires conditioning on all confounders of 𝐴, 𝐿𝐴, and all confounders of 𝐵, 𝐿𝐵. 

As with effect modification, evidence for causal interaction may differ depending on the measurement scale one 

chooses to assess it (VanderWeele, 2012; VanderWeele & Knol, 2014). Evidence for the strength of a causal effect 

estimate for interaction in the presence of effect modification will differ depending on whether the effect is 

measured on the ratio scale as opposed to the difference scale (see: VanderWeele & Knol (2014), who 

recommends using the causal difference scale for most policy settings). 

Note that if 𝐴 and 𝐵 were to affect each other, we would need to collect time series data and estimate causal 
effects using causal mediation analysis. Indeed, if there has been a co-evolution of religious culture, political 

and religious theatres, and urban density—as archaeologists have long reported (De Coulanges, 1903; 

Wheatley, 1971)—mediation analysis is better motivated. However, the demands for causal mediation analysis 

are more stringent than those of causal interaction analysis. We next consider these demands. 

Part 3: Causal Mediation Analysis 

In 1992, Robins and Greenland clarified the objectives of interpretable causal mediation analysis: to 

decompose the total effect into natural direct and indirect effects within a set of hypothetical interventions, 

contrasting their counterfactual outcomes (Robins & Greenland, 1992). This landmark paper has been to 
mediation analysis of what ‘On the Origin of Species’ has been to evolutionary biology (Darwin, 1859). 

However, mediation analysis in the human sciences remains rife with confusion. The primary source of this 

confusion is the application of statistical models to data without first defining the causal quantities of interest. 
Associations derived from mediation analysis do not necessarily imply causation and are typically 

uninterpretable. This section considers how to formulate causal questions in mediation analysis. 
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Defining a Mediation Analysis Estimand 

To understand causal mediation, we deconstruct the total effect into natural direct and indirect effects. 

Again, the total effect of treatment 𝐴 on outcome 𝑌 is defined as the difference between potential outcomes 

when the treatment is applied versus when it is not. The estimand for the total (or average, or ‘marginal’) 

treatment effect is given: 

Total Treatment Effect = 𝔼[𝑌(1)] − 𝔼[𝑌(0)] 

The total effect can be further decomposed into direct and indirect effects, addressing questions of mediation. 

The potential outcome 𝑌(1), considering the mediator, expands to: 

𝔼[𝑌(1)] = 𝔼[𝑌(1, 𝑀(1))] 

This considers the effect of the exposure 𝐴 = 1 and the mediator at its natural value when 𝐴 = 1. Similarly, the 

potential outcome 𝔼[𝑌(0)], considering the mediator, expands to: 

𝔼[𝑌(0)] = 𝔼[𝑌(0, 𝑀(0))] 

This quantity denotes the effect of exposure 𝐴 = 0 and the mediator at its natural value when 𝐴 = 0. 

Next, we clarify our estimand by decomposing the Total Effect (TE) into the Natural Direct Effect (NDE) and the 

Natural Indirect Effect (NIE). 

Natural Direct Effect (NDE) is the effect of the treatment on the outcome while maintaining the mediator at the 

level it would have been if the treatment had not been applied: 

Natural Direct Effect = 𝔼[𝑌(1, 𝑀(0))] − 𝔼[𝑌(0, 𝑀(0))] 

Here, the counterfactual quantities not directly realised in the data are highlighted in blue: 𝔼[𝑌(1, 𝑀(0))]. Notice 

we add this term to the potential outcomes when 𝐴 = 0, recalling 𝔼[𝑌(0, 𝑀(0))] = 𝑌(0). 

Natural Indirect Effect (NIE) is the effect of the exposure on the outcome that is mediated. To obtain these 

quantities, we compare the potential outcome 𝑌 under treatment, where the mediator assumes its natural level 

under treatment, with the potential outcome when the mediator assumes its natural value under no treatment:  

Natural Indirect Effect = 𝔼[𝑌(1, 𝑀(1))] − 𝔼[𝑌(1, 𝑀(0))] 

Here, the counterfactual quantities not directly realised in the data are again highlighted in blue: 𝔼[𝑌(1, 𝑀(0))]. 

Notice we subtract this term from the potential outcomes when 𝐴 = 1, recalling 𝔼[𝑌(1, 𝑀(1))] = 𝔼[𝑌(1)]. 

By rearranging this decomposition, we find that the total effect (TE) is the sum of the NDE and NIE. This is shown 

by adding and subtracting the term 𝔼[𝑌(1, 𝑀(0))] to our equation: 

Total Effect (TE) = {𝔼[𝑌(1, 𝑀(1))] − 𝔼[𝑌(1, 𝑀(0))]} + {𝔼[𝑌(1, 𝑀(0))] − 𝔼[𝑌(0, 𝑀(0))]} 

 ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

 ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟ 
 Natural Indirect Effect (NIE) Natural Direct Effect (NDE) 
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Table ?? presents a conceptual challenge for causal mediation analysis. Suppose we randomise a binary 

treatment 𝐴 ∈ {0, 1}. Although randomising 𝐴 does not ensure there is no confounding of the mediator/outcome 

path, we assume no unmeasured confounding for either the treatment or the mediator. (We will relax this 

assumption in the next section.) 

Table ?? 𝒢1 is a Single World Intervention Template (SWIT), which generates Single World Intervention Graphs 

(SWIGs) for each condition. 

Table ?? 𝒢2 presents counterfactual outcomes for condition 𝐴 = 0; here, the natural value of 𝑀 is 𝑀(𝑎 = 0), and 

the counterfactual outcome is given by 𝑌(0, 𝑀(0)). 

Table ?? 𝒢3 presents counterfactual outcomes for condition 𝐴 = 1; here, the natural value of 𝑀 is 𝑀(𝑎 = 1), and 

the counterfactual outcome is given by 𝑌(1, 𝑀(1)). 

These Single World Intervention Graphs clarify that we cannot identify natural direct and indirect effects from 

observations on individual units under treatment because 𝔼[𝑌(1, 𝑀(0))] is not observable. (Shi et al., 2021; 

Steen et al., 2017; Valeri et al., 2014; VanderWeele, 2015; T. VanderWeele & Vansteelandt, 2014; Vansteelandt 
et al., 2012). Expressing these quantities requires a counterfactual framework. Here, we see that a 

counterfactual formulation of mediation analysis has made the familiar strange. However, under assumptions, 

we can sometimes recover natural direct and indirect effects from data (VanderWeele, 2015), given that our 
interest is in contrasts obtained for the target population, not for individuals, where we assume no causal 

effects are directly observed. 

Assumptions of Causal Mediation Analysis 

Table ?? 𝒢1 presents a Single World Intervention Template (SWIT) that specifies the assumptions required for 

inferring natural direct and indirect effects. This template highlights that, when estimating natural mediated 
effects, we only intervene on the treatment. Therefore, we must infer the mediated effect of the treatment 

under the condition that the mediator is set to zero. 

Additionally, Table ?? 𝒢1 also clarifies the assumptions needed for inferring controlled direct effects, where the 

mediator is fixed to a level specified by the investigators. In this scenario, we obtain causal contrasts by fixing 

variables to specific states. 

Consider the hypothesis that cultural beliefs in ‘big Gods’ influence social complexity, with political authority 

mediating. Assuming we have well-defined interventions and outcomes, what requirements are necessary to 

decompose this causal effect into natural direct and indirect effects? 

1. No unmeasured exposure-outcome confounder 

This requirement is expressed as 𝑌(𝑎, 𝑚) ∐ 𝐴|𝐿. After accounting for the covariates in set 𝐿, there must be no 
unmeasured confounders influencing cultural beliefs in Big Gods (𝐴) and social complexity (𝑌). For example, if 

our study examines the causal effect of cultural beliefs in Big Gods (the exposure) on social complexity (the 

outcome), and the covariates in 𝐿 include factors such as geographic location and historical context, we need to 
ensure that these covariates effectively block any confounding paths between 𝐴 and 𝑌. The relevant path in 

Table ?? 𝒢1 is shown ‘confounder of path 𝐴 → 𝑌.’ 

2. No unmeasured mediator-outcome confounder 

This requirement is expressed as 𝑌(𝑎, 𝑚) ∐ 𝑀|𝑍. After controlling for the covariate set 𝑍, we must ensure that 

no other unmeasured confounders affect political authority (𝑀) and social complexity (𝑌). For instance, if trade 
networks affect political authority and social complexity, we must account for trade networks to block the path 

linking our mediator and outcome. Furthermore, we must assume the absence of any other confounders for 

the mediator-outcome path. The relevant path in Table ?? 𝒢1 is shown ‘confounder 𝑀 → 𝑌.’ 
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3. No unmeasured exposure-mediator confounder 

This requirement is expressed as: 𝑀(𝑎) ∐ 𝐴|𝑄. After controlling for the covariate set 𝑄, we must ensure that 

no additional unmeasured confounders affect cultural beliefs in Big Gods (𝐴) and political authority (𝑀). For 

example, the capability to construct large ritual theatres may influence the belief in Big Gods and the level of 
political authority. If we have indicators for this technology measured before the emergence of Big Gods (these 

indicators being 𝑄), we must assume that accounting for 𝑄 closes the backdoor path between the exposure 

and the mediator. The relevant path in Table ?? 𝒢1 is shown ‘confounder of path 𝐴 → 𝑀.’ 

4. No mediator-outcome confounder affected by the exposure  

This requirement is expressed as: 𝑌(𝑎, 𝑚) ∐ 𝑀(𝑎∗)|𝑍. We must ensure that no variables confounding the 

relationship between political authority and social complexity in 𝑍 are themselves influenced by the cultural 

beliefs in Big Gods (𝐴). For example, when studying the effect of cultural beliefs in Big Gods (𝐴, the exposure) on 

social complexity (𝑌, the outcome) as mediated by political authority (mediator), there can be no un-modelled 

factors, such as trade networks (𝑍), that influence both political authority and social complexity and are 

themselves affected by the belief in Big Gods. The relevant path in Table ?? 𝒢1 is shown ‘confounder of path 𝑀 

→ 𝑌.’ 

Satisfying assumption 4 imposes considerable demands on causal mediation analysis. When the exposure 

influences a confounder of the mediator and outcome, we face a dilemma. Without adjusting for this 

confounder, a backdoor path between the mediator and the outcome remains open. However, by adjusting for 

it, we partially obstruct the path between the exposure and the mediator, leading to bias. In this setting, we 
cannot recover the natural direct and indirect effects from any observational data and may need to settle for 

investigating controlled direct effects, which stipulate fixed values for the mediator, or consider estimating the 

jointly mediated effects of 𝑍 and 𝑀 together, or evaluate an analogue of the natural direct effect by obtaining 

random draws from the distributions whose causal relationships remain obscured in the data (Dıaz et al., 2023́ ; 

Robins & Richardson, 2010; VanderWeele et al., 2014; VanderWeele, 2015; VanderWeele & Tchetgen Tchetgen, 

2017; Vo et al., 2024). 

Notice that even when assumptions 1-4 are satisfied, natural direct effect estimates and natural indirect effect 

estimates require conceptualising a counterfactual that is never directly observed on any individual, namely: 

𝑌(1, 𝑀(0)): such effects are only identified in distribution (refer to VanderWeele (2015)). 

Controlled Direct Effects 

Consider another identification challenge, as described in template Table ?? 𝒢1. Suppose we aim to understand 

the effect of a stringent pandemic lockdown, 𝐴, on psychological distress, 𝑌, focusing on trust in government, 𝑀, 
as a mediator. Further, suppose that pandemic lockdowns may plausibly influence attitudes towards the 

government through pathways that also affect psychological distress. For instance, people might trust the 

government more when it provides income relief payments, which may also reduce psychological distress. 

Under the rules of d-separation, conditioning on income relief payments, denoted as 𝑍, would attenuate the 

natural value of the mediator, trust in the government, under exposure to the lockdowns. This blocking of the 

exposure’s effect is represented by the causal path 𝐴 → 𝑍 𝑌. Additionally, the causal path 𝐴 → 𝑍 𝑀 partially 

blocks the exposure’s effect on the mediator. However, if we do not condition on 𝑍, the path from trust in 

government, 𝑀, to psychological distress, 𝑌, would be confounded by the common cause 𝑍, hence: 𝑌 𝑍 𝑀. 

In such a scenario, it would not be feasible to consistently decompose the total effect of the exposure 

(pandemic lockdowns) on the outcome (psychological distress) into natural indirect and direct effects. However, 

if all other assumptions were to hold, we might obtain an unbiased estimate for the controlled direct effect of 

pandemic lockdowns on psychological distress as a fixed level of government trust. 
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Table ?? 𝒢2 presents the weaker assumptions required to identify a controlled direct effect. We might examine 

the effect of the pandemic lockdown if we could intervene and set everyone’s trust in government to, say, one 
standard deviation above the baseline, compared with fixing trust in government to the average level at 

baseline. We might use modified treatment policies (described below) that specify interventions as functions of 

the data. For instance, we might investigate interventions that ‘shift only those whose mistrust of government 
was below the mean level of trust at baseline and compare these potential outcomes with those observed.’ 

Asking and answering precisely formulated causal questions such as this might lead to clearer policy advice, 

especially in situations where policymakers can influence public attitudes towards the government; see: 

Williams & Díaz (2021); Díaz et al. (2021); Hoffman et al. (2022); Hoffman et al. (2023). 

In any case, I hope this discussion of causal mediation analysis clarifies that it would be unwise to simply examine 
the coefficients obtained from structural equation models and interpret them as meaningful as in statistical 

mediation analysis. To answer any causal question, we must first state it, with respect to clearly defined 

counterfactual contrasts and a target population. Once we state our causal question, we find have no guarantees 

that the coefficients from statistical models are straightforwardly interpretable (VanderWeele, 2015). 

For those interested in statistical estimators for causal mediation analysis, I recommend visiting the CMAverse 

website https://bs1125.github.io/CMAverse/articles/overview.html , accessed 12 December 2023. This excellent 

resource provides comprehensive documentation, software, and practical examples, including sensitivity 

analyses. Next, we will consider more complex scenarios that involve feedback between treatments and 
confounders across multiple time points, settings in which traditional statistical methods also fail to provide valid 

causal inferences. 

Part 4: Time-fixed and Time-Varying Sequential Treatments (Treatment Strategies, 

Modified Treatment Policies) 

Our discussion of causal mediation analysis focused on how effects from two sequential treatments – the initial 

treatment and that of a mediator affected by the treatment – may combine to affect an outcome. 

This concept can be expanded to investigate the causal effects of multiple sequential exposures, referred to as  

‘treatment regimes’, ‘treatment strategies’, or ‘modified treatment policies’. Researchers often use longitudinal 

growth and multi-level models in many human sciences, where longitudinal data are collected. How may we 

identify such effects? What do they mean? 

As before, to answer a causal question, we must first clearly state it. This involves specifying the counterfactual 
contrast of interest, including the treatments to be compared, the scale on which the contrast will be 

computed, and the target population for whom inferences are valid. Without such clarity, our statistical models 

are often uninterpretable. 

Worked Example: Does Marriage Affect Happiness? 

Richard McElreath considers whether marriage affects happiness and provides a simulation to clarify how age 
structure complicates causal inferences (McElreath, 2020, pp. 123–144). We expand on this example by first 

clearly stating a causal question and then considering how time-varying confounding invalidates the use of 

standard estimation methods such as multi-level regression. 

Let 𝐴𝑡 = 1 denote the state of being married at time 𝑡 and 𝐴𝑡 = 0 denote the state of not being married, where 𝑡 

∈ {0, 1, 𝜏} and 𝜏 is the end of the study. 𝑌𝜏 denotes happiness at the end of study. For simplicity, assume this 

concept is well-defined and measured without error. 

The table below reveals four treatment strategies and six causal contrasts that we may estimate for each 

treatment strategy combination. Treatment Strategies: 
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Table 1: Table outlines four fixed treatment regimens and six causal contrasts in time-series data where exposure 

varies 

Regime Counterfactual Outcome 

Always married 𝑌(1, 1) 

Never married 𝑌(0, 0) 

Divorced 𝑌(1, 0) 

Gets married 𝑌(0, 1) 

Causal Contrasts: 

Table 2: Table outlines four fixed treatment regimens and six causal contrasts in time-series data where exposure 

varies. 

Comparison Counterfactual Outcome 

Always married vs. Never married 𝔼[𝑌(1, 1) − 𝑌(0, 0)] 

Always married vs. Divorced 𝔼[𝑌(1, 1) − 𝑌(1, 0)] 

Always married vs. Gets married 𝔼[𝑌(1, 1) − 𝑌(0, 1)] 

Never married vs. Divorced 𝔼[𝑌(0, 0) − 𝑌(1, 0)] 

Never married vs. Gets married 𝔼[𝑌(0, 0) − 𝑌(0, 1)] 

Divorced vs. Gets married 𝔼[𝑌(1, 0) − 𝑌(0, 1)] 

To answer our causal question, we need to: 

1. Specify Treatments: Define the treatment strategies being compared (e.g., always married vs. never 

married). 

2. Define the Contrast: State the counterfactual contrast of interest (e.g., 𝔼[𝑌(1, 1) − 𝑌(0, 0)]). 

3. Identify the Population: Specify the population for which the inferences are valid (e.g., adults aged  

20-40). 

Time-Varying Confounding with Treatment-confounder Feedback 

Table ?? 𝒢1 and Table ?? 𝒢2 represent two subsets of possible confounding structures for a treatment regime 

conducted over two intervals. Covariates in 𝐿𝑡 denote measured confounders, and 𝑈 denotes unmeasured 

confounders. 𝐴𝑡 denotes the treatment, ‘Marriage Status,’ at time 𝑡. 𝑌 denotes ‘Happiness’ measured at the end 

of the study. 

Consider the structure of confounding presented in Table ?? 𝒢1. To close the backdoor path from 𝐴1 to 𝑌, we 

must condition on 𝐿0. To close the backdoor path from 𝐴2 to 𝑌, we must condition on 𝐿2. However, 𝐿2 is a collider 

of treatment 𝐴1 and unmeasured confounders, such that conditioning on 𝐿2 opens a backdoor path between 𝐴1 

and 𝑌. This path is highlighted in red: 𝐴1 𝐿2(a1 ̃) 𝑈 (a1 ̃, a2 ̃). 

If Table ?? 𝒢1 faithfully represents causality, it might seem that we cannot obtain valid inferences for any of the 

six causal contrasts we have defined. Indeed, using standard methods, we could not obtain valid causal 

inferences. However, J. Robins (1986) first described a consistent estimation function that can be constructed  

where there is time-varying confounding (Hernán et al., 2004; J. Robins & Hernan, 2008). 

Table ?? 𝒢3 presents a Single World Intervention Template that clarifies how identification may be obtained in 
fixed treatment regimes where there is time-varying confounding as observed in Table ?? 𝒢1. When constructing 

a Single World Intervention Graph (or Template), we obtain factorisations for counterfactual outcomes under a 

specific treatment regime by employing ‘node-splitting,’ such that all nodes following an intervention are 

relabelled as counterfactual states under the preceding intervention. After node-splitting, a fixed intervention is 

no longer a random variable. Thus, under fixed treatment regimes, the counterfactual states that follow an 
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intervention are independent of the states that occur before node-splitting if there are no backdoor paths into 

the random partition of the node that has been split. 

If all backdoor paths are closed into the random partitions of the nodes on which interventions occur, we can 

graphically verify that the treatment is independent of the counterfactual outcome for that intervention node. 
Where there are multiple interventions, we ensure sequential exchangeability at the following node—which we 

likewise split and relabel—by closing all backdoor paths between the random portion of the following 

treatment node. We have sequential independence if, for each intervention node, all backdoor paths are closed 

(refer to Robins & Richardson (2010); Richardson & Robins (2013b); Richardson & Robins (2023)). 

The Single World Intervention Template Table ?? 𝒢3 makes it clear that sequential identification may be obtained. 

𝐴1 is d-separated from 𝑌 by conditioning on 𝐿0; 𝐴2 is d-separated from 𝑌 by conditioning on 𝐿2. 

Notice that we cannot estimate the combined effect of a treatment strategy over 𝐴1 and 𝐴2 by employing 
regression, multi-level regression, statistical structural equation models, or propensity score matching. However, 

special estimators may be constructed (refer to J. Robins (1986); J. Robins & Hernan (2008); Van Der Laan & Rose 

(2011); Dıaz et al. (́ 2021)). For recent reviews of special estimators refer to Hernan & Robins (2024); Chatton et 

al. (2020); Van Der Laan & Rose (2018); Chatton & Rohrer (2024)). 

Time-Varying Confounding without Treatment-Confounder Feedback 

Consider how we may have time-varying confounding in the absence of treatment-confounder feedback. 
Suppose we are interested in computing a causal effect estimate for a two-treatment ‘marriage’ intervention on 

‘happiness’. We assume that all variables are well-defined, that ‘marriage’ can be intervened upon, that we have 

specified a target population, and that our questions are scientifically interesting. Here, we focus on the 

challenges in addressing certain causal questions with time-varying confounding without treatment confounder 

feedback. Table ?? 𝒢1 presents such a structure of time-varying confounding. 

Let 𝑈𝐴𝐿 denote an over-confident personality, an unmeasured variable that is causally associated with decisions 

to marry early and with income. We do not suppose that 𝑈𝐴𝐿 affects happiness. Taken in isolation, 𝑈𝐴𝐿 is not a 

confounder. 

Let 𝐿𝑡 denote income. Suppose that income affects whether one stays married. For example, suppose it takes 

wealth to divorce. We can sharpen focus on risks of time-varying confounding by assuming that income itself 

does not affect happiness. Even with this weaker assumption, we shall see a problem arises. 

Let 𝑈𝐴𝑌 denote a common cause of income, 𝐿2, and of happiness at the end of the study, 𝑌. An example of such 
a confounder might be educational opportunity, which by supposition affects both income and happiness. 

Table ?? 𝒢2 presents the confounding structure for this problem in its simplest form. To declutter, we remove 

the baseline node, 𝐿0, which we assume to be measured. 

Notice that in this example there is no treatment-confounder feedback. We have not imagined that marriage 
affects wealth, or even that wealth affects happiness. Nevertheless, there is confounding. To obtain valid causal 

inference for the effect of 𝐴2 on 𝑌, we must adjust for 𝐿2 [otherwise: 𝐴𝑡 𝐿𝑡 𝑈𝐴𝐿 𝑌(𝑎)]. However, 𝐿2 is a 

collider of 𝑈𝐴𝐿 and 𝑈𝐴𝑌. In this setting, adjusting for 𝐿2 opens the path: 

 𝐴1 𝑈𝐴𝐿 𝐿2(a1 ̃) 𝑈𝐴𝑌 𝑌(a1 ̃, a2 ̃) 

We have confounding without treatment-confounder feedback (refer to Hernan & Robins (2024)) 

Table ?? 𝒢4 clarifies that sequential exchangeability can be obtained in the fixed treatment regime. To estimate 

the effect of 𝐴2 on 𝑌, we must condition on 𝐿2. When estimating the effect of 𝐴1 on 𝑌, all backdoor paths are 
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closed because 𝐿2(a1 ̃) is a collider, and 𝐴0 ∐ 𝑌(a1 ̃, a2 ̃). Note that because a Singal World Intervention Template 

does not represent the joint distributions of more than one treatment, treatment sequence, or time-varying 
treatment, to evaluate the conditional independences we must specify the interventions of interest for 𝐴1 and 

𝐴2. That is, we would need to evaluate at least two Single World Intervention Graphs that correspond to the 

treatment level we wish to contrast. Note further that because there is time-varying confounding, we cannot 
use standard estimators such as multi-level regressions or structural equation models. Estimation must occur 

stepwise (refer, for example to Dıaz et al. (́ 2021), Williams & Díaz (2021).] 

Confounding Under Dynamic Treatment Strategies (Modified Treatment Policies) 

In a dynamic treatment strategy, or ‘modified treatment policy,’ the value at which a treatment is fixed is a 

function of events leading up to it. 

Suppose we were interested in the population average effect of divorce on happiness if divorce was only 

permitted for those with incomes. 

This question is easy to ask but deceptively difficult to answer. For example, we cannot fit an interaction of time 

× social status × marriage status because marital status might affect personal wealth. Yet even if marriage did 
not affect personal wealth, as in Table ?? 𝒢4, regression would not produce valid estimates for the 

counterfactual question we asked. 

To sharpen focus, suppose that we have obtained indicators of wealth at baseline. 

Suppose further that we want to consider the following fixed treatment strategy: 

𝑔𝜙(⋅): remain married for at least two additional years: 

𝐴+𝑡 (g𝜙) = g𝜙(𝐴𝑡) = {𝑎1 = 1 

𝑎2 = 1 

This regime is identified. The setting is identical to Table ?? 𝒢3 however with no unmeasured variables and no 

arrow from 𝐴1 to 𝐿2. 

However, every causal contrast requires a comparison of at least two interventions. 

We next consider the treatment policy 𝑔𝜆(⋅), divorce only if one’s personal wealth is at least 50% greater than 

average and one would have divorced in the absence of intervention; otherwise, enforce marriage: 

 ⎧𝑎1 = 0  if income > 1.5 × 𝜇income&𝐴1 = 0 

 𝐴+
𝑡 (g𝜆) = g𝜆(𝐴𝑡) = ⎨𝑎2 = 0  if income > 1.5 × 𝜇income&𝐴2 = 0 

 ⎩𝑎𝑡 = 1 otherwise 

Notice that for the treatment policy g𝜆(⋅), treatment is computed as a function of income at both the natural 

value of 𝐴𝑡 and of wealth 𝐿𝑡. Again, to declutter our graphs, we leave 𝐿 at baseline off the graph, noting that 

adjustment at baseline does not change the confounding structure. 

Template Table ?? 𝒢5 presents this confounding structure. To convey the dependence of the fixed node on 

covariate history under treatment, we use Richardson & Robins (2013a)‘s conventions and draw a dashed line (

 ) to indicate paths from the variables on which the time-varying treatment regime depends on the 

deterministic portion of the intervention node. This strategy clarifies that setting the treatment level requires 
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information about prior variables, including the ’natural value of the treatment’ in the absence of any 

intervention (Young et al., 2014). 

The reason for noting these dependencies on a Single World Intervention Graph (SWIG) is that such 

dependencies impose stronger identification assumptions. At every time 𝑡, 𝐴𝑡 must be conditionally independent 

not only of the potential outcome at the end of the study but also of any future variable that might lead to a 

non-causal association between future treatments and the potential outcome at the end of the study. We clarify 

this additional requirement for strong sequential exchangeability in the next section. 

Identification of Dynamic Time-Varying Treatment Strategies using an Extension of Robin’s Dynamic G-

formula 

Supplementary materials S3 describes Richardson and Robins extension of J. Robins (1986) dynamic g-formula. 

Essentially, the algorithm can be stated as follows. 

Step 1: where g(⋅) is a modified treatment policy, identify all the variables that influence the outcome 𝑌(g), 

excluding those that are current or past treatment variables or covariates. 

Step 2: For each treatment at time 𝑡, check if the treatment is independent of the variables identified in Step 1, 

after accounting for past covariates and treatments, in each Single World Intervention Graph where the 

treatment values are fixed. This step amounts to removing the dotted green arrows from the dynamic Single 
World Intervention Graph in Table ?? 𝒢5, and doing so gives us Table ?? 𝒢4. For each time point, we recover a set 

of future counterfactual variables that includes the potential outcome for the treatment regime under 

consideration, 𝑌(g), and other variables that the treatment might affect, including the natural value of future 

treatments. All backdoor paths must be closed to each member of this set of counterfactual variables. We call 

the more stringent assumptions required for identification in time-varying treatments (or equivalently 

longitudinal modified treatment policies (Díaz et al., 2023)): strong sequential exchangeability. 

Where: 

1. ℤ𝑡(a∗): denotes the subset of vertices in 𝒢 (a∗) corresponding to ℤ𝑡(g). 

2. 𝐴𝑡(a∗) = 𝑎𝑡∗: denotes the specific value of the treatment variable at time 𝑡 under the intervention a∗. 

3. 𝕃 ̄𝑡(a∗): denotes the set of covariates up to time 𝑡 under the intervention a∗. 

4. 𝔸̄ 𝑡−1(a∗): denotes the set of past treatment variables up to time 𝑡 − 1 under the intervention a∗. 

Applying Richardson & Robins (2013a)’s dynamic extended g-formula, we obtain the following sets of future 

variables for which each current treatment must be independent: 

ℤ(g) = {𝐴1, 𝐿1(g), 𝐴1(g), 𝐴2(g), 𝑌(g)} 

ℤ1(g) = {𝐴1(g), 𝐿1(g), 𝑌(g)} 

ℤ2(g) = {𝑌(g)} 

Having determined which variables must remain conditionally independent of each treatment in a sequence of 

dynamic treatments to be compared, we then consider whether strong sequential exchangeability holds. We do 

this by inspecting template Table ?? 𝒢4 (recall this is Table ?? 𝒢5 without the dashed green arrows). On inspection 
of 𝒢4 (the dynamic SWIG without dashed green arrows), we discover that this dynamic treatment strategy is not 

identified because we have the following open backdoor path: 

 𝐴1 𝑈𝐴𝐿 𝐿2(g) 
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We also have: 

 𝐴1 𝑈𝐴𝐿 𝐿2(g) 𝐴2(g) 

Strong sequential exchangeability fails for 𝐴1. We might consider lowering our sights and estimating a fixed or 

time-varying treatment strategy that can be identified. 

Note that certain time-varying treatment strategies impose weaker assumptions than time-fixed strategies. For 

example, with a continuous intervention, we might consider intervening only if the observed treatment does 

not reach a specific threshold, such as: 

 g𝜙(𝐴𝑖) = {𝜇𝐴 if 𝐴𝑖 < 𝜇𝐴 

 𝐴𝑖 otherwise 

This is a weaker intervention than setting everyone whose natural value of treatment is above this threshold to 

precisely the threshold’s value: 

 g𝜆(𝐴𝑖) = {𝜇𝐴  if 𝐴𝑖 ≠ 𝜇𝐴 

 𝐴𝑖 otherwise 

Whereas g𝜆 sets everyone in the population to the same treatment level, g𝜙 sets only those below a certain 

threshold to a fixed level but does not estimate treatment effects for those above (Hoffman et al., 2023). We can 

also write stochastic treatment functions (Dıaz et al., 2021́ ; Muñoz & Van Der Laan, 2012; T. VanderWeele & 

Vansteelandt, 2014; Young et al., 2014), see supplementary materials S4. 

Of course, the details of every problem must be developed in relation to the scientific context and the practical 

questions that address gaps in present science. However, causal inference teaches us that the questions we ask—
seemingly coherent and tractable questions such as whether marriage makes people happy—demand 

considerable scrutiny to become interpretable. When such questions are made interpretable, causal inference 

often reveals that answers may elude us, regardless of the quality and abundance of our data, or even if we 

randomise interventions. Modest treatment functions, however, might be more credible and useful for many 

scientific and practical questions. Such functions often cannot be estimated using the models routinely taught in 

the human sciences, such as multi-level modelling and statistical structural equation modelling. 

Conclusions 

Philosophical interests in causality are ancient. Democritus once declared, “I would rather discover one cause 
than gain the kingdom of Persia” (Freeman, 1948). Hume provided a general account of causality by referencing 

counterfactuals: “… where, if the first object had not been, the second never would have existed” (Hume, 

1902). 

However, it was not until Jerzy Neyman’s master’s thesis that a quantitative analysis of causality was formalised  
(Splawa-Neyman, 1990). Remarkably, Neyman’s work went largely unnoticed until the 1970s, when Harvard 

statistician Donald Rubin formalised what became known as the ‘Rubin Causal Model’ (also the Rubin-Neyman 

Causal Model) (Holland, 1986; Rubin, 1976). 

In 1986, Harvard statistician James Robins extended the potential outcomes framework to time-varying 

treatments, laying the foundation for powerful new longitudinal data science methods (J. Robins, 1986). Judea 
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Pearl introduced directed acyclic graphs, making identification problems transparent and accessible to non-

specialists (Pearl, 1995). Robins and Richardson extended Pearl’s graphical models to evaluate counterfactual 

causal contrasts on graphs, building on Robins’ earlier work. Concurrently, the causal revolution in economics 

opened new, fertile frontiers in causal data sciences. By the early 2000s, targeted learning frameworks were 
being developed (Van Der Laan & Rose, 2011), along with causal mediation analysis methods (Dıaz et al., 2023́ ; 

Pearl, 2009; Robins & Greenland, 1992; Rudolph et al., 2024; VanderWeele, 2015; T. VanderWeele & 

Vansteelandt, 2014; Vansteelandt et al., 2012), and techniques for analysing time-varying treatments (Muñoz & 

Van Der Laan, 2012; Richardson & Robins, 2013a; Richardson & Robins, 2023; J. Robins, 1986; Robins et al., 1999; 

J. Robins & Hernan, 2008; Shpitser et al., 2022; Young et al., 2014). 

Readers should note that the causal inference literature contains vigorous debates at the horizons of discovery. 

However, there is a shared consensus about the foundations of causal inference and a common conceptual and 

mathematical vocabulary within which to express disagreements and accumulate progress—a hallmark of a 

productive science. Old debates resolve and new debates arise, the hallmark of a vibrant science. 

Despite the progress and momentum of the causal revolution in certain human sciences, many areas have yet 
to participate and benefit. The demands for researchers to acquire new skills, coupled with the intensive 

requirement for data collection, have significant implications for research design, funding, and the accepted pace 

of scientific publishing. To foster essential changes in causal inference education and practice, the human 

sciences need to shift from a predominantly output-focused, correlation-reporting culture to a slow, careful, 

creative culture that promotes retraining and funds time-series data collection. Such investments are 
worthwhile. Much as Darwin’s theory transformed the biological sciences from speculative taxonomy, causal 

inference is slowly but steadily transforming the human sciences from butterfly collections of correlations to 

causal inferential sciences capable of addressing the causal questions that animate our curiosities.  
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