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THE FIXED SUBRING OF SOME GROUPS OF RING
AUTOMORPHISMS

BY
MARY DOWLEN

ABSTRACT. Let Z, denote the ring of integers modulo an in-
teger m>1 and let G(Z,,) be the group under composition of all
Z,.-automorphisms of Z,[X]. In this paper we determine
Z, [X]°%w, the subring of Z, [X] left fixed by elements of G(Z,,).

1. Introduction. Let R be a commutative ring with identity and let R[X] be
the polynomial ring in one variable over R. A ring automorphism o of R[X]is
said to be an R-automorphism of R[X]if o(r) =r for each r € R. The set G(R)
of all R-automorphisms of R[X] is a group under composition. If H is a
subgroup of G(R), then we denote by R[X]" the fixed subring of H—that is,

R[XT" ={fe R[X]| o(f)=f for each o € H}.

In this paper we determine the ring R[X]°®, where R =Z,, is the ring of
integers modulo an integer m > 1. Using the standard direct sum decomposi-
tion of Z,,, most of our work goes into the case where m = p* is a prime power
(this case is considered in Section 2). If k=1, Z, is a field, and little work is
required because of results that are known. To wit, if R is an integral domain,
then standard results from Galois theory show that if H is infinite then
R[XT" =R, whereas a result of Samuel [2] shows that if H is finite then
R[XT = R[f], where f=[I,cn o (X).

Before proceeding it is necessary to consider the elements of G(R) more
closely and to establish some notation. It is well known that an R-
endomorphism of R[X] is determined by o(X)—that is, if o(X)=h, then
a(f(X))=f(h) for each f(X)e R[X]; we denote this endomorphism by .
Moreover, in [1] Gilmer gave the following characterization of the elements of
G(R): If h=Y", hX' e R[X], then gy, is an R-automorphism of R[X] if and
only if h, is a unit of R and h; is nilpotent for i =2. From this characterization
we see that G(Z,,) is an infinite group if Z,, contains a nonzero nilpotent
element. However, it turns out that Z,[X]°%" is a finite ring extension of Z,,
properly containing Z,,.. In the case where m is a prime p, we show in Section 2
using Samuel’s result for integral domains that Z,[X]°% = Z [(X*—X)"'].
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In the case where m is not prime, we determine in Sections 2 and 3 a set of
generators for Z,,[X]°‘% as a finite ring extension of Z,,.

2. A prime power modulus. In this section we determine a finite set {g;}i_,
of polynomials in Z,,[X] such that Z,[X]°%)=Z, [g,,...,g], where m = p*
is a prime power. For any positive integer j, define v(j) as the highest power of
p that divides j. That is, p*®|j, but p*®*' | j. Furthermore, let

g(X)=p 1 O(XP - X)®PV forall 1=i=p“ .
Lemma 1. Z[X]°% =Z [(X*-X)""'].

Proof. By Samuel’s result [2] it suffices to show that [[,cg,) o(X)=
(X? - X)""'. Let 0 € G(Z,). Then by the characterization of elements of G(Z,)
[1] we have o(X)=a+bX, where a,be Z, and b# 0. Hence,

[T «0=11 Il (a+bx)

oeG(Z,) aeZ, beZ,/{0}

=11 II v '+x

aeZ, beZy/{0}

=IT II bc+x)

ceZ, beZ, {0}

= IIb Il (c+X

beZ {0} ceZ,
=[] » x*-X)
beZ, {0}
= (X?—X)!

LeEMMA 2. Let n be a positive integer. Then p°™™*!

<r.l)pi forall 1=i=n.
i

Proof. It suffices to show that p*™*'~ \ (n) for 1=i=v(n)+1. Let n=
i

v(n)

r and i =p°®-s. Then

()=o)

. n\ . . . . . n—1\ .
since | . ] is an integer and s is relatively prime to p, then (r/s) o1 IS an
i _

p

integer. Hence, it suffices to show that p*™*'~| p*™*® for 1=i=v(n)+1.
But this is trivially true since i=v(i)+1 for all positive integers i. Thus,

(ﬁ)p" for l=i=<n.
i

v(n)+1

p

LemMA 3. Let f(X) =Y fX' '€ Z, [ X]°%". Then p(p—1) | n.
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Proof. Let 0y, x € G(Z,«). Then o, x(f)=f or o1, x(f)—f=0. If we equate
the coefficients of X" ', we obtain f,_;+nf, —f,_; =0 or nf, =0. Since f,#0,
then ne(p) so p|n.

Next choose an element b of Z,« such that b+ (p) is a (p — 1)* -primitive root
of unity in Z,/(p). Since b¢ (p), then b is a unit in Z,«. Also, if (p—1) /i, then
b’ —1¢(p). Now o,x(f) = f because a,x € G(Z,-). If we equate the coefficients
of X" in this equation, we have b"f,=f, or f,(b"—1)=0. Since f,#0, then
b"—1e(p) so (p—1)|n. Thus, p(p—1) | n.

TaeorEM 1. Z[X]°%") = Z [{g.(X)}5)].

Proof. Let o, € G(Z,), where h=hy+h, X+---+h,X™, and fix 1=<i=<
p“~'. Then we show that 0,(g(X))=g(X). We can write h=hy+h; X+
ph *(X), since h; is nilpotent for 2 <j =m. Moreover, by Fermat’s theorem we
know that h?= h; +pr,; for i =0, 1. Then using these facts we can simplify

0 (X? — X) = h(X)’ — h(X) = h; X? — h, X + pm(X),

where
p
m(X)=r, X° +r,— h*(X)+ Z <?)pi_‘h*(X)j(ho+ h,X)P7i
i=1
pl p . . )
VB [(0) e
ji=1 L\]
Hence,

01.(g (X)) = p* P (h XP — b, X + pm (X))~

— pk—l—u(i)(hlxp _ hlx)(p-l)i
(p—1)i

. -1 . . .
+ ) p"_l""(')<(p]. )l>p'm(>0’(h1X"—th)("_”'"'
=1

]
k| k—1—0() (p— D\ . .

By Lemma 2, we know that p*|p* '@ “")p/ for all 1=i=(p—1)i.
Hence, I

01,(g (X)) = p* T TP ORPTVI(XP - X))
Again using Lemma 2 and writing h?~ ' =1+pr,;h7", we get p* 1 °OpPVi=
pk_l"’(i)(l'**prmhfl)i — pk—l—u(i). So ﬁnally,

01,(& (X)) = p* T OXP - X)PTV = g (X).

Thus, Z,[{g (X511 Z[XTO@ .

Let f=Yr, X € Z,[X]°%, then by Lemma 3 we know n=p(p—1)r. we
use induction on n. If n =0, then f=f,€ Z,- < Z,[{g(X)}2,']. We assume the
hypothesis is true for all polynomials of degree less than n. Let r=p*“ 's+t¢,
where 0=t<p“~'. We note that v(r) = v(t) because t<p“~'. From the proof
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of Lemma 3 we know that f,e(p" '), so we write f, =p* ', We
consider F(X) = £ = clgy (0 [8, (01
Clearly, f*(X)e Z:[X]°%* and deg f*(X)<n so f*(X)e Z,[{g(X)}",] by

k—

the induction hypothesis. Hence f(X) is also in Z,«[{g,(X)}?-,']. This completes
the proof that Z[X]°“¥ = Z.[{g (X)}5,'].

3. The general case. In order to extend Theorem 1 to the case of modulus
m, we use the standard direct sum decomposition of Z,. If m is written as a

roduct of distinct powers
’ P m=pk---p,

then the ring Z,, can be represented as a direct sum of rings
b

Zy=2Z,- D - -BZ,x.
The isomorphism ¢ is defined using the Chinese Remainder Theorem.
1D ¢(a)=(ay,...,a), where a=a;(modp}) i=1,2,...,r
The isomorphism ¢ extends to the polynomial ring Z,[X] and induces an
isomorphism ¢* between Z,,[X] and Z,«[X]®- - -® Z,+[X] defined by
) ¢ o+ fiX+ LX) =(frot  Hfia X L fot X,
where  &(f)=(fii foir- ... fa) i=1,....n

Moreover, it can be verified that ¢™ restricted to the subring Z,, [ X maps
Z,,[X]°% onto the subring Z, [ X]°“ "' ®- - -BZ,.. [ X]°%~, yielding the
following theorem.

1@

THEOREM 2. Let me Z* be such that m =p% - - - p, where p,,...,p, are
primes and k; >0 for all 1=i=<r. Let ¢ and ¢* be defined as in (1) and (2). For
all 1=i<r and 1=j=<pl define g¥= (..., h,), where h,, =0 for i#m
and

hi; = g
Then  Z,[X1°%=Z,[fi1s- s fipfr-tseesfotseeosfrpeer],  where  fi=
(&%) (g3)].

ExampLE. M=12. Let Z,,=Z,DZ;. We have seen that Z,[X]°% =
Z[(X?—X)?] and that Z,[X]°@% = Z,[2(X*— X), (X*— X)?]. By Theorem 2
we see that Z,,[ X% = Z ,[6(X?— X), 9(X*— X)?, 4(X>—X)?].
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