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ON PRIME GOLDIE-LIKE QUADRATIC JORDAN 
MATRIX ALGEBRAS(1) 

BY 

DANIEL J. BRITTEN 

In [1] and [2], there was given a characterization for linear Jordan matrix 
algebras whose coordinatizing ring is *-prime Goldie or a Cayley-Dickson ring 
(C-D ring). If one considers the corresponding question in the more general 
setting of quadratic Jordan algebra as defined by McCrimmon in [11], then the 
result is similar. In this latter case the ample quadratic Jordan algebras, as 
studied by Montgomery in [12] and [13], are brought into play. Here we tie 
these concepts together in extending [2, Theorem 0] to its quadratic Jordan 
generalization. This paper also shortens some arguments of [2] and indicates 
some corrections necessary in [2]. 

The corresponding setting is that of the Coordinatization Theorem for 
quadratic Jordan algebras [11]. 

Let K be a commutative associative ring with 1 and R an alternative 
K-algebra with 1 and involution *. A quadratic Jordan subalgebra T of the 
symmetric elements of the nucleus of R which contains the norm xx* and the 
trace x + x* of each element x in R is said to be ample. An ample sub-algebra 
T is said to be closed ample if x*TxçT for each xeR. Let R0 be a closed 
ample subalgebra containing 1 and let a = diag(ai,..., a„) e Rn with at inver-
tible elements contained in R0. Let ya be the diagonal involution on Rn given 
by yy° = a~1y*ta where y*r denotes the taking of conjugate transpose. Let 
J = H(Rn, R0, ya) be the set of those ya-symmetric elements' y = y7a whose 
diagonal entries yit lie in a~[1R0 = Ro^i- If Ro is the set of all symmetric 
elements of JR which are contained in the nucleus, then we write H(Rn, ya). 
Ju={x[ii] = xeii:xeai1Ro} and Jii={x[ij] = xeii + aJ1x*ai:xeR}, iV/, are the 
Pierce components of / where {ei;-} is a standard set of matrix units. For a 
subset A of J we use Atj to denote A n Jiy. A quadratic (inner) ideal Q is said 
to be fj-quadratic if Q,-/^0. 

We will use the definitions of: Jordan ring of quotients; common multiple 
property (cmp); and the Goldie-like conditions as stated in [2]. 

First we point out that condition (iii) of [2, Theorem 0] should have added to 
it the statement that (JR, *) is a subring of (R\ *). This is used, for example, in 
the proof of Lemma 2. It is not necessary if n > 3 . 
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Our aim here is to point out the changes necessary in [1] and [2] in order to 
obtain 

THEOREM 0'. Let J = H(Rn, R0, ya)n > 2 be a diagonal Jordan matrix algebra 
as described above. Then the following are equivalent 

(i) / is a prime Goldie-like 
(ii) R is *-prime Goldie or n — 2, 3 and R is a C-D ring with its symmetric 

elements in its nucleus 
(iii) J has cmp and a Jordan ring of quotients J' = H(R„, JR.Q, ya) where (R, *) 

is a subring of (R\ *) and R' is an involution simple Artinian ring on n~2,3 
and Rf is a C-D algebra with standard involution. JRQ is a Jordan ring of 
quotients for R0. 

Implied in the use of the symbol H(Rf
m R'0, ya) in (iii) above is that R'0 is a 

closed ample subalgebra of R'. If R is a C-D ring then it is easy to check that 
the Jordan ring of quotients R'0, contained in the nucleus of the C-D algebra 
JR' corresponding to R, is closed ample. By the Hersîein-Kleinfeld-Osborn™ 
McCrimmon Theorem [8, p. 3.32], R'0 = Z\ the center of R'. 

If R is *-prime Goldie then it follows from Montgomery's Theorem as 
formulated in [4, Theorem 2] that the Jordan subring of quotients R'0, 
contained in the involution simple Artinian ring corresponding to JR, is closed 
ample. 

In [1] and [2], the equivalence of Theorem 0' was shown when | E R . in [1], 
the use of \ was indirect in that it was not used as such but the results of [7] 
were used and this assumption was made there. Thus if one uses [8] for his 
reference this need of \ is essentially eliminated. The main thrust of the 
arguments of [1] involved Jtj iV / which are of the same form regardless of 
characteristic. One must change the construction of quadratic ideals given on 
[1, p. 89-90] so that R0 plays its role. After making such natural changes one 
obtains the equivalence of (i) and (ii). 

We now show that if R satisfies (ii) then J has a ring of quotients as 
described in (iii). 

LEMMA 1. Let R be an associative ring with involution * and le J a quadratic 
Jordan subalgebra of H(Rn, ya). Then J is a closed ample subalgebra of 
H(Rm ya) if and only if J has the form H(Rn, R0, ya)-

Proof. This can be proven by straightforward calculation similar to those 
given in the proof of the theorem characterizing outer ideals [8, Theorem 2, p. 
2.18]. 

LEMMA 2. Let J=H(Rn, R0,ya)n>2 be prime Goldie-like. Then J'= 
H(R'n, R'0, ya) is a Jordan ring of quotients for J where R' is the ring of quotients 
for R and R'0^ R' is the Jordan ring of quotients for RQ. 
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Proof. Suppose JR is a C-D ring. Let Z be the center of JR, Z ' its field of 
quotients and R' the C-D algebra Z'JR. The general form of an element of JR' 
is given by z -1f where 2 is a norm in JR and t is arbitrary in R so that all norms 
of R' are in its center. Thus, by [8, Theorem 8], * on JR' is the standard 
involution. As previously pointed out, R'0 = Z' the center of R'. Hence 
{U7a(x)-xeJ and r = diag(r0 , . . . , r0) with 0 ^ r0e R0} = H(R'n, ya). Clearly this 
is a Jordan ring of quotient for J. 

Now suppose that R is *-prime Goldie. By [13, Corollary 2] applied to the 
involution prime Goldie ring jRn, J has a Jordan ring of quotients J' which is an 
ample Jordan subalgebra of H(R'm ya) where R' is the associative ring of 
quotients of JR. It was shown [4, Theorem 2] that J' is closed ample and hence, 
by Lemma 1, it has the form H(R'n, JRo, ya)- Using the common multiple 
property of the associative ring R, it is easy to show that each element of f has 
the form /3_1x where ]3 = d i a g ( a a i , . . . , aan) and a is a norm in JR. Thus 
/3_1x = j3~1(x]8)/3~1 and xj8 e J. From this we see that the ith diagonal entry of 
any element in f is in {ai1a~1ta~1:a, teR0, a regular}. 

By [13, Corollary 2], JR0 has a Jordan ring of quotients in R' and we have 
shown above that it is R'0. 

We now show that if (ii) is satisfied the / has cmp. 
Let R be a C-D ring and JR' its C-D algebra. Since Ux is a bijective 

Z'-linear transformation (Z' = center JR) on J', for any choice r, w, z y e J, w 
and x regular, r = diag(r0 , . . . , r0) with 0^r o e jR o there exist r', veJ, r' = 
diag(rx,. . . , rt) with 0 •£ rt e R0 such that Ux(Ur'\v)) = Uy(U7\w)). The cmp 
follows if LTy(l/71(w))#0 for some choice of r and w. 

It is easy to check that JR' has a Z ' basis of regular elements and if t is 
invertible in R' then t[ij](+ l[k, k], i^k^j if n = 3) is invertible in / ' . Also, if 
a^-b are non-zero elements of Z ' then #[»] = 
((a + b)[»] + X/?feifc[//])""Œ?=i b[jj]) is expressed as the difference of two inver­
tible elements. If the center of R' has only two elements, then u-
l[îï] + l[y]( + l[kk], iïk = j if n = 3) and s = l[î/]( + l[ikfc], iïkïj if n = 3) 
are invertible elements such that l[ii] = s + n. In any case, every element of J' 
may be expressed as the sum of invertible elements, and each invertible 
element of / ' has the form l/71(w) where r and w are as described above. 
Since Uy9^0, and every element is the sum of invertible elements, 
there is some invertible element U^iw) such that l/y(l/71(w))?é0 and 
hence we have the cmp in this case. 

This argument is similar to that given in the proof of [2, Theorem 1]. 

When R is *-prime Goldie the proof analogous to that given in [2] would 
involve a "twisting" of J' = H(R'm R'0, ya) to obtain a capacity. Even after this 
is done, there seems to be other complications so that here we offer an 
alternate proof. 

Let R be *-prime Goldie and R' its ring of quotients. Then R' — Dm where 
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D is a division ring or A ® A0 and A is a division ring. Let {ftj} be a standard set 
of matrix units for Dm. By cmp on R, fti = d - 1 w^-d-1 for wij9 deR where d is a 
fixed *-norm. We may express w^ as the sum of regular elements. 

Wii = I WH + Wtj + Wji + X Wkkj- IWy + WyiX £ VVkk I 

wij = (wij + l)-l. 

Apply left and right multiplication by d~l to see that the elements in paren­
thesis are regular. 

LEMMA 3. Let R be *-prime Goldie. If teR is such that txt = 0 for each 
regular element of R then t = 0. 

Proof. Let R, D, ftj, w0, and d be as above. Consider R^Rf = Dm. Now if 
txt = 0 for each regular element xeR then tWijt = 0 for i , / = = l , . . . , m . But 
then 0 = dt dd~lWijd~l dtd = dt d% dtd, i, j = 1 , . . . , m. If we express dtd as 
X Ujfij with Uj e D then we see that fj}= 0, i, / = 1 , . . . , m. But in D this implies 
% = 0, which in turn implies dtd = 0 and hence t = 0. 

By using cmp on Rn, the problem of showing that J= H(Rn, R0, ya) has cmp 
can be reduced to showing that O ^ y e J implies there is some regular zeJ 
such that Uy(z)9^0 (see proof of [2, Theorem 1]). 

Let O^yeJ be such that Uy(z) = 0 for all z regular in J. Set y = 
Zï yuM +JLi?sj<k^n yjkijk]. Let x be a regular element of R and r0ejR0tfi. 
Then z = Jc[i/] + Xk=i,j? l[fck] and z,==ro[ii] + z are regular in J since they are 
invertible in JR^. Thus since r0[ii] is the sum of regular elements - z and z' we 
have Uy(ro[ii]) = 0 and hence yuroyii = 0 for each r0eR0ai so that, by [5, 
Theorem 7'], yfi = 0 for i = 1 , . . . , n. Now, since r0[kk] is the sum of regular 
elements l[kk] is and the same is true of x[ij]. Thus Uy(x[ij]) = 0 so that 
yijaj1x*aiyij = 0 for all regular x in JR. Thus y,7 = 0, by Lemma 3. 

We have now proven 

LEMMA 4. / / J = H(Rn, JR0, ya)n >2 is prime Goldie-like then J has cmp. 

Lemmas 2 and 4 as well as the results of [1] (after the changes indicated 
earlier) give us the implications (i)4^ (ii) =>(iii). To complete the proof of 
Theorem 0', we now show (iii) => (ii). [2, Lemma 2] gives us this implication in 
the case of R' being a C-D algebra. Therefore, we must show that if Rf is an 
involution simple Artinian ring then R is *-prime Goldie. By the proof of [2, 
Theorem 31. JR satisfies ACC on left (right) annihilator ideals and by [2, 
Lemma 4], R is semi-prime. For the remainder of this paper we assume: R is a 
semi-prime associative ring with involution * and satisfies ACC on left an­
nihilator ideals; (R, *) is a subring of (R\ *) a *-simple Artinian ring; and 
f = H(R'n, R'o, ya) (resp. R'0) is a Jordan ring of quotients for / = H(Rn, R0, ya) 
(resp. R0). 
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First we show that R is *-prime. The proof we offer here is shorter than that 
of [2] and it does not use the Second Structure Theorem. 

LEMMA 5. JR is *-prime. 

Proof. Suppose that R is not *-prime. Then R contains non-zero *-ideals A 
and B such that A is both the left and right annihilator for B as is B for A. By 
semiprimeness of R, A C\ B = 0. For a G An D J, j8 G Bn (1 J, and y e J', 
there exist u, we J, u regular such that u~1wu~1 = ayj3 + j3yae 
(AnJ'Bn + BnJ'An) fl J. Since w G (AnJ'Bn + BnJ'An) H J, AnwAn = 0 = BnwBn so 
that w G An (lBn = 0. Thus f = ay|3 is ya-skew. Thus tyitef for y i e J ' and 
hence there exist uu WxeJ, UX regular, such that uï1w1uïl = ty1te 
AnRnBnDJ'. Thus WieAnRnBnC\J so that w1An = 0 = Bnw1 and hence WiG 
An fl Bn = 0. Therefore, tyxt = 0. That is for any a e An fl J, j3 G Bn fl J, y, y! G J' 
we have ay/3yiay/3 = 0. 

By [12, Lemma 3.1], AnRo*0*BnRo. Pick O ^ a i G A H R o , O^jSiG 
B fl i?0. Then ^ [ 1 2 ] eAnC\J and /8X[12] G £ n H / so that 

0 = a1[12]x[21]0i[12]x'[21]a1[12]x[21]p1[12] 

= aiXj8ix'aiXj8i[12] 

where x, JC' are arbitrary in JR'. Therefore, by the semiprimeness of R', 
«îXjSi = 0. H(R') = {x G R :x* = x} is a prime Jordan algebra since JR' is *-prime 
[5, Corollary, p. 162] and by [5, Theorem 7] «i = 0 or j3i = 0, contrary to 
choice. 

Using the lemmas of [2] we outline the proof that JR is Goldie. (Note the 
corrected definition of T*.) 

LEMMA 6. R is *-prime Goldie. 

Proof. Since JR is *-prime, R contains a prime ideal P such that P 0 P* = 0 
[10, or 3]. Suppose that R/P contains both an infinite direct sum of left ideals 
and an infinite direct sum of right ideals. Then JR contains left ideals \t => P 
such that XT (KIP) is an infinite direct sum and similarly for right ideals pt => P. 
Define T{ = K if P = 0 and if P ^ 0 set 

jP*Aj if i is even 

\Ppi if i is odd. 

Then £ ^ is an infinite direct sum of left ideals of R. Form Lt = (ri)n ç Rn. 
Since R is involution simple Artinian R'n~ Dmn where D is a division ring or 

A© A0 with A a division ring. Since the right submodule (XT Lt)D of the right 
D-module JR„ has a "finite basis" in XT Lt, for some k there are XJGLJ, 

i = 1 , . . . , k such that YA+I Lt ç ££ XjD. Consider x0 = ££ x*. Suppose y G I* is 
such that yx0 = 0. Then yxt = 0 for i = 1 , . . . , k since XÏ Lf is a direct sum. Thus 
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y(Ik+i U) = 0 so that yLi = 0 for / > fc + 1 . This implies y G (P n P*)n = 0 since 
L2k ^ (P*)n and L2k+i c Pn. Therefore x0 is not a right divisor of zero and 
hence by [2, Lemma 10] x0 is regular in Rn. This contradicts [2, Lemma 11] 
which says that £J ^ contains no regular element. 

We have now shown that R/P does not contain an infinite direct sum of left 
ideals and an infinite direct sum of right ideals. That is, R/P is either left or 
right Goldie. Therefore, we may assume that R/P is left Goldie and P # 0. If 
R/P is also right Goldie then R is Goldie as can be seen using the subdirect 
sum embedding of R in R/P®R/P*. Set R1 = R/P. If R is not Goldie, then 
T- (jRi)n has an infinite direct sum of right ideals, say £ pU which are arrived 
at from an infinite direct sum of right ideals in Rlm 

Now JR is a subdirect sum of JRi © JR?. Letting A* be the ring of left quotients 
for Ru we have Rn ç (Ri)n © (R?)„"c (A © A°)ln = U and * transpose extends to 
[ / as yl9 the exchange involution followed by transpose. 

Let T = (R1)n © {0}ç S = Aln © 0 ç U and {fhk} be the standard set of matrix 
units for U so that fkk is the matrix or ordered pairs with (0, 0) in every entry 
except the kkth entry and here (1A, 1A) appears where 1^ (resp. 1A) is the 
identity of A (resp. A0). By [2, Lemma 15], I = fkkSfkk H T is a right order in 
fkkSfkk- Since g:à-*JkkSfkk, 8 -> diag((8, 0 ) , . . . , (8, 0))/fck is an isomorphism, 
every element in A has the form g"1(aj3~1) for a, Pel, jS^O. By finite 
dimensionality of Aln over A we may choose Xi G p' , i = 1 , . . . , q such ]Tq+i p- ç 
2 i XjA. Also, we may choose xepq+1 and k such that xfkk9^0. Using the right 
common multiple property of I, there are ah /3 G /, 0 5e 0 such that 

<\ 
^ = Zxig"1(a,P"1). 

l 

This implies 0 5e x]8 = £ xfai e (pq+ in£ i p') = 0. This contradiction completes 
the proof. 
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