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ON PRIME GOLDIE-LIKE QUADRATIC JORDAN
MATRIX ALGEBRASY

BY
DANIEL J. BRITTEN

In [1] and [2], there was given a characterization for linear Jordan matrix
algebras whose coordinatizing ring is *-prime Goldie or a Cayley-Dickson ring
(C-D ring). If one considers the corresponding question in the more general
setting of quadratic Jordan algebra as defined by McCrimmon in [11], then the
result is similar. In this latter case the ample quadratic Jordan algebras, as
studied by Montgomery in [12] and [13], are brought into play. Here we tie
these concepts together in extending [2, Theorem 0] to its quadratic Jordan
generalization. This paper also shortens some arguments of [2] and indicates
some corrections necessary in [2].

The corresponding setting is that of the Coordinatization Theorem for
quadratic Jordan algebras [11].

Let K be a commutative associative ring with 1 and R an alternative
K-algebra with 1 and involution *. A quadratic Jordan subalgebra T of the
symmetric elements of the nucleus of R which contains the norm xx* and the
trace x +x* of each element x in R is said to be ample. An ample sub-algebra
T is said to be closed ample if x*Tx< T for each xe R. Let R, be a closed
ample subalgebra containing 1 and let a = diag(a,, ..., a,) € R, with q; inver-
tible elements contained in R,. Let vy, be the diagonal involution on R, given
by y™=a"'y*a where y* denotes the taking of conjugate transpose. Let
J=H(R,, Ry, v,) be the set of those 7y,-symmetric elements y =y whose
diagonal entries y; lie in a;'Ryo=Rpa;. If R, is the set of all symmetric
elements of R which are contained in the nucleus, then we write H(R,, v,).
Ji ={x[ii]=xe;:x € a;i 'Ro} and J; ={x[ij]1=xe; +a; 'x*a;:xe R}, i#], are the
Pierce components of J where {e;} is a standard set of matrix units. For a
subset A of J we use A;; to denote A NJ;. A quadratic (inner) ideal Q is said
to be ij-quadratic if Q;;#0.

We will use the definitions of: Jordan ring of quotients; common multiple
property (cmp); and the Goldie-like conditions as stated in [2].

First we point out that condition (iii) of [2, Theorem 0] should have added to
it the statement that (R, *) is a subring of (R, *). This is used, for example, in
the proof of Lemma 2. It is not necessary if n=3.
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Our aim here is to point out the changes necessary in [1] and [2] in order to
obtain

THEOREM ', Let J= H(R,, Ry, v,)n=2 be a diagonal Jordan mairix algebra
as described above. Then the following are equivalent

(1) J is a prime Goldie-like

(i) R is *-prime Goldie or n=2,3 and R is a C-D ring with iis symmetric
elements in its nucleus

(iti) J has cmp and a Jordan ring of quotients J'= H(R, R§, v,.) where (R, ™)
is a subring of (R',*) and R’ is an involution simple Artinian ring on n=2,3
and R’ is a C-D algebra with standard involution. Ry is a Jordan ring of
quotients for R,.

Implied in the use of the symbol H(R}, R}, v,) in (iii) above is that R§ is a
closed ample subalgebra of R'. If R is a C-D ring then it is easy to check that
the Jordan ring of quotients R}, contained in the nucleus of the C-D algebra
R’ corresponding to R, is closed ample. By the Hersiein-Kleinfeld—Osborn—
McCrimmon Theorem (8, p. 3.32], R, =Z’, the center of R'.

If R is *-prime Goldie then it follows from Montgomery’s Theorem as
formulated in [4, Theorem 2] that the Jordan subring of quotients R§,
contained in the involution simple Artinian ring corresponding to R, is closed
ample.

In [1] and [2], the equivalence of Theorem 0’ was shown when e R. In [1],
the use of 3 was indirect in that it was not used as such but the resulits of {7]
were used and this assumption was made there. Thus if one uses [8] for his
reference this need of 3 is essentially eliminated. The main thrust of the
arguments of [1] involved J; i# j which are of the same form regardless of
characteristic. One must change the construction of quadratic ideals given on
[1, p. 89-90] so that R, plays its role. After making such natural changes one
obtains the equivalence of (i) and (ii).

We now show that if R satisfies (ii) then J has a ring of quotients as
described in (iii).

LemMmA 1. Let R be an associative ring with involution * and 1€ J a quadratic
Jordan subalgebra of H(R,, v.). Then J is a closed ample subalgebra of
H(R,, v.) if and only if J has the form H(R,, Ry, v,).

Proof. This can be proven by straightforward calculation similar to those
given in the proof of the theorem characterizing outer ideals [8, Theorem 2, p.
2.18].

LemMa 2. Let J=H(R,, Ry, y.)n=2 be prime Goldie-like. Then J' =
H(R}, R, v.) is a Jordan ring of quotients for J where R’ is the ring of quotients
for R and R, < R’ is the Jordan ring of quotients for R,.
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Proof. Suppose R is a C-D ring. Let Z be the center of R, Z’ its field of
quotients and R’ the C-D algebra Z'R. The general form of an element of R’
is given by z~'t where z is a norm in R and ¢ is arbitrary in R so that all norms
of R’ are in its center. Thus, by [8, Theorem 8], * on R’ is the standard
involution. As previously pointed out, R,=Z' the center of R’. Hence
{UR (x):xeJ and r=diag(ry, . . ., ro) with 0# ro€ Ro} = H(R%, v,). Clearly this
is a Jordan ring of quotient for J.

Now suppose that R is *-prime Goldie. By [13, Corollary 2] applied to the
involution prime Goldie ring R,, J has a Jordan ring of quotients J' which is an
ample Jordan subalgebra of H(R, y,) where R’ is the associative ring of
quotients of R. It was shown [4, Theorem 2] that J' is closed ample and hence,
by Lemma 1, it has the form H(R}, R}, v,). Using the common multiple
property of the associative ring R, it is easy to show that each element of J' has
the form B~ 'x where B =diag(aa;,...,aa,) and a is a norm in R. Thus
B~ 'x=p""(xB)B ™" and xB € J. From this we see that the ith diagonal entry of
any element in J' is in {a; 'a 'ta"':q, t€ Ry, a regular}.

By [13, Corollary 2], R, has a Jordan ring of quotients in R’ and we have
shown above that it is Rj.

We now show that if (ii) is satisfied the J has cmp.

Let R be a C-D ring and R’ its C-D algebra. Since U, is a bijective
Z'-linear transformation (Z' = center R) on J', for any choice r,w,z yelJ, w
and x regular, r=diag(re,..., 1) with 0#rye R, there exist r', vel, r'=
diag(ry, ..., ry) with 0#ry € R, such that U, (U;'(v)) = U,(U;*(w)). The cmp
follows if U,(U;'(w))#0 for some choice of r and w.

It is easy to check that R’ has a Z' basis of regular elements and if ¢ is
invertible in R’ then [ij}(+ 1[k, k], i# k# j if n=3) is invertible in J'. Also, if
a#—b are non-zero elements of z' then alii]=
((a+b)Lii]+ X2 b[jjD — f=1 bljiD is expressed as the difference of two inver-
tible elements. If the center of R’ has only two elements, then u=
1[ii]+ 1[ij)(+ 1[kk], i# k=] if n=3) and s=1[ij](+ 1[kk], i%k#] if n=3)
are invertible elements such that 1[ii]= s+ u. In any case, every element of J'
may be expressed as the sum of invertible elements, and each invertible
element of J' has the form U, (w) where r and w are as described above.
Since U,#0, and every element is the sum of invertible elements,
there is some invertible element U;’(w) such that U,(U;'(w))#0 and
hence we have the cmp in this case.

This argument is similar to that given in the proof of [2, Theorem 1].

When R is *-prime Goldie the proof analogous to that given in [2] would
involve a “twisting” of J'= H(R}, R, v,) to obtain a capacity. Even after this
is done, there seems to be other complications so that here we offer an
alternate proof.

Let R be *-prime Goldie and R’ its ring of quotients. Then R'=D,, where
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D is a division ring or A@® A° and A is a division ring. Let {f;} be a standard set
of matrix units for D,,. By cmp on R, f;=d 'w;d ' for wy, d€ R where d is a
fixed *-norm. We may express w;; as the sum of regular elements.

Wi = (Wﬁ + W,‘j + Wﬁ + Z wkk) - (V\’ii + Wi X Z wkk)

k#i,j k=i,j
W,'j = (Wij + 1)" 1.

Apply left and right multiplication by d~' to see that the elements in paren-
thesis are regular.

LEmMMA 3. Let R be *-prime Goldie. If te R is such that txt=0 for each
regular element of R then t=0.

Proof. Let R, D, f;, w;, and d be as above. Consider R < R’'= D,,. Now if
txt=0 for each regular element xe R then tw;t=0 for i,j=1,..., m. But
then 0=dtdd 'wyd~' dtd =dtdf;dtd, i,j=1,...,m. If we express dtd as
Y t;f; with t; € D then we see that t5=0, i, j=1,..., m. But in D this implies
t; =0, which in turn implies dtd =0 and hence t=0.

By using cmp on R,, the problem of showing that J = H(R,, Ry, y,) has cmp
can be reduced to showing that 0# y €J implies there is some regular zeJ
such that U,(z) # 0 (see proof of [2, Theorem 1]).

Let 0#yeJ be such that U,(z)=0 for all z regular in J. Set y=
Y1 yulit] +Yisj<k=n Yix[jk]. Let x be a regular element of R and ry€ Roa;.
Then z = x[ij]+Yx-:; 1[kk] and z'=ro[ii]+z are regular in J since they are
invertible in R/. Thus since ro[ii] is the sum of regular elements —z and z' we
have U, (ro[ii])=0 and hence yuroy; =0 for each roe Roa; so that, by [5,
Theorem 7'], y; =0 for i=1,..., n. Now, since ro[kk] is the sum of regular
elements 1[kk] is and the same is true of x[ij]. Thus U,(x[ij])=0 so that
yia; ‘x*aiy; =0 for all regular x in R. Thus y; =0, by Lemma 3.

We have now proven

Lemma 4. If J= H(R,, Ry, y.)n =2 is prime Goldie-like then J has cmp.

Lemmas 2 and 4 as well as the results of [1] (after the changes indicated
earlier) give us the implications (i) < (ii) = (iii). To complete the proof of
Theorem 0', we now show (iii) = (ii). [2, Lemma 2] gives us this implication in
the case of R’ being a C-D algebra. Therefore, we must show that if R’ is an
involution simple Artinian ring then R is *-prime Goldie. By the proof of [2,
Theorem 3]. R satisfies ACC on left (right) annihilator ideals and by [2,
Lemma 4], R is semi-prime. For the remainder of this paper we assume: R is a
semi-prime associative ring with involution * and satisfies ACC on left an-
nihilator ideals; (R,*) is a subring of (R’,*) a *-simple Artinian ring; and
J'= H(R}, Rj, v.) (resp. Rp) is a Jordan ring of quotients for J = H(R,, Ry, v.)
(resp. Ry).
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First we show that R is *-prime. The proof we offer here is shorter than that
of [2] and it does not use the Second Structure Theorem.

LeEmMA 5. R is *-prime.

Proof. Suppose that R is not *-prime. Then R contains non-zero *-ideals A
and B such that A is both the left and right annihilator for B as is B for A. By
semiprimeness of R, ANB=0. For a€A,NJ, BeB,NJ, and yelJ,
there exist wu,welJ, u regular such that u'wu'=ayB+Byac
(A.J'B,+B,J'A,)NJ. Since we (A,.J'B,+B,J'A,)NJ, A,wA, =0=B,wB, so
that we A, N B, =0. Thus t=ayB is y,-skew. Thus ty;teJ’ for y,eJ' and
hence there exist u;,w;€J, u; regular, such that uilwiuit= ty te
A,R'B,NJ'. Thus w,€ A,R!B,NJ so that w;A, =0=B,w; and hence w,€
A, N B, =0. Therefore, ty;t=0. That is for any a € A, NJ, Be B, NJ, y,y:€J’
we have ayBy;ayp =0.

By [12, Lemma 3.1], ANR,#0# BNR,. Pick 0#a;€ ANR,, 0#p;€
BN R,. Then a,[12]e A, NJ and B4[12]€ B, NJ so that

0= a,[12]x[21]84[12]x"[21]es[12]x[21]B4[12]
= alxﬁlx'alxﬁl[12]

where x, x' are arbitrary in R'. Therefore, by the semiprimeness of R’,
a;xB;=0. H(R')={x € R:x* = x} is a prime Jordan algebra since R’ is *-prime
[5, Corollary, p. 162] and by [5, Theorem 7] a;=0 or B;=0, contrary to
choice.

Using the lemmas of [2] we outline the proof that R is Goldie. (Note the
corrected definition of 7;.)

LemMa 6. R is *-prime Goldie.

Proof. Since R is *-prime, R contains a prime ideal P such that PN P*=0
[10, or 3]. Suppose that R/P contains both an infinite direct sum of left ideals
and an infinite direct sum of right ideals. Then R contains left ideals A, > P
such that Y7 (A/P) is an infinite direct sum and similarly for right ideals p; © P.
Define 7, =A; if P=0 and if P#0 set

{P*Ai if i iseven

T = * . . .

Pp; if i isodd.

Then Y 7; is an infinite direct sum of left ideals of R. Form L; = (1), S R..
Since R is involution simple Artinian R} = D,,, where D is a division ring or

A® A° with A a division ring. Since the right submodule (¥ L;)D of the right

D-module R}, has a “finite basis” in Y7 L;, for some k there are x;€L;

i=1,...,k such that ¥x,; L;c Y% x;D. Consider xo=Y} x;. Suppose y€R is

such that yxo=0. Then yx;=0fori=1,..., k since Z'{ L; is a direct sum. Thus

https://doi.org/10.4153/CMB-1977-008-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1977-008-0

44 D. J. BRITTEN [March

y(Qx+1 Li) =0 so that yL; =0 for i=k +1. This implies y € (PN P*), =0 since
L, = (P*), and Ly, < P,.. Therefore x, is not a right divisor of zero and
hence by [2, Lemma 10] x, is regular in R,. This contradicts [2, Lemma 11]
which says that }; L; contains no regular element.

We have now shown that R/P does not contain an infinite direct sum of left
ideals and an infinite direct sum of right ideals. That is, R/P is either left or
right Goldie. Therefore, we may assume that R/P is left Goldie and P#0. If
R/P is also right Goldie then R is Goldie as can be seen using the subdirect
sum embedding of R in R/P @ R/P*. Set R, = R/P. If R is not Goldie, then
T =(R;), has an infinite direct sum of right ideals, say ) p/, which are arrived
at from an infinite direct sum of right ideals in R;.

Now R is a subdirect sum of R; @ RY. Letting A, be the ring of left quotients
for R;, we have R, < (R;), ® (RY), = (A ® A°),,= U and * transpose extends to
U as v,, the exchange involution followed by transpose.

Let T=(Ry),®{0}cS=A,D0< U and {f.x} be the standard set of matrix
units for U so that fi, is the matrix or ordered pairs with (0, 0) in every entry
except the kkth entry and here (1,,13) appears where 1, (resp. 13) is the
identity of A (resp. A°). By [2, Lemma 15], I = fSfie N T is a right order in
fiSfir. Since g:A — FiSfir, 8 — diag((s,0),. .., (8, 0))fu is an isomorphism,
every element in A has the form g '(aB™") for a,Bel, B#0. By finite
dimensionality of A;, over A we may choose x;€p!, i=1,...,q such Y . picS
21 xA. Also, we may choose x € p,+; and k such that xfi, # 0. Using the right
common multiple property of I, there are a;, B €I, B# 0 such that

x=2, xg (afh).

.-Ma

This implies 0# xB =) xia; € (ph+1 N Y1 pf)=0. This contradiction completes
the proof.
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