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Abstract. This paper is intended as an introduction to the theory of 
weak lensing. A review of the inversion formula introduced by Kaiser and 
Squires is presented. We then prove the formula of the aperture densitome-
try method in a simple way that allows a clear understanding of where the 
various terms come from. This is particularly useful to measure quantita-
tively masses in any region of a lens. We then summarize what has been 
learned from observations of strong lensing about the dark matter distri-
bution; weak lensing should provide similar information on larger scales in 
clusters of galaxies. 

1. The Weak Lensing Inversion 

Gravitational lensing can be described as a mapping from the image plane 
(with coordinates yj) to the source plane (with coordinates xs, 2 / 5 ) , 
which is given by the lens equation: 

( 3 5 , Vs) = (arj, yi) - V<£(z/, yj) , (1) 

where V<£ is the deflection angle (in the single screen approximation), the 
projected gravitational potential φ is related to the surface density Σ by 
V 2 0 = 2 (E /E c r i t ) , and Σ0Γα is the critical surface density (see Schneider, 
Ehlers, & Falco 1992). The distortion of a small image is given by the 
magnification matrix, which is the Jacobian of this mapping: 

Δ - ι = d(xs,ys) _ f l - n - X -μ \ ( . 

- d(xuyi) ~ \ -μ 1-K + XJ ' [ Z ) 
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Using the lens equation, the convergence can be expressed as κ = 1/2 V2</> = 

Σ / Σ 0 Γ ί ί , while the two components of the shear are 

M = / | " . (3) 
dxidyi 

The magnification matrix can be diagonalized by rotating the coordinates 

by some angle to the form 

/ 1 _ Κ _ 7 ο λ 

where λ = 7 cos(2/3), and μ = 7 sin(2/?). The axes in this rotated frame are 

called the "principal axes of the shear", because the images are "stretched" 

along these axes. The "stretching factor" or the axis ratio of the image 

of a circular source, is the ratio of the two eigenvalues q = (1 — g)/(l + g), 

where g = 7 / ( 1 — κ). Thus, the change in the ellipticities of background 

sources depends only on the quantity g. In the limit of weak lensing, we 

assume 7 <C 1 and κ <C 1, so q ~ 2η and the observed quantity from the 

galaxy ellipticities is the shear. The problem of weak lensing is then reduced 

to obtaining the surface density given the shear. 

To solve this problem, we first see how the shear is expressed in terms 

of the surface density. The projected potential is a linear superposition of 

the potentials caused by every element of mass in the lens: 

φ(π) = J log | | r / - r f l l , (5) 

where 17 is the vector (xi,yi) (this results from the fact that V 2 l o g ||r/ — 

r'j\\ = 2π δ2(τι — Y'J) ) . Using equation (3) , the shear is given by 

[ λ ( Γ 7 ) , μ ( Γ , ) ] - J drj — | | r / _ r , | | 2 - (6) 

Here, the quantities written inside square parentheses are "polars" which, 

like the shear, rotate by twice the angle by which the coordinates are ro-

tated. We have defined η as the angle between the direction from r/ to 

and the x-axis. With the minus sign, the orientation of the polar inside 

the integral rotates to the tangential direction which the shear at ( z / , yi) 

produced by a mass element at ( # / , î / / ) should have. 

The inversion of the operator in equation (6) is most easily found by 

considering the Fourier transforms of the convergence, the shear and the 

potential, which we denote as and and will be functions 

of the two Fourier coordinates kx,ky. The second derivatives giving the 
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convergence and the shear in terms of the potential are converted into 

multiplications with kx and ky in Fourier space, so equation (6) is simply 

given by: 

kx — ky 2,kxky 
[Afc,/ifc] = κ* · (7) 

^x ' χ ι 

It is most easily seen that the scalar product of the operator in equation 

(7) with itself is equal to unity. In other words, this operator is its own 

inverse. If true in Fourier space, this must also be true in real space, where 

the operator has the form in equation (6) . Thus, the surface density is 

expressed in terms of the shear as 

, ν / , / M r / M r ' / ) ] -[cos2T/,sin2T7] 

«Trt = JdT*> ΐ | |r 7 - r'7||
2 ' ( 8 ) 

This equation was found by Kaiser & Squires (1993). As they explained, 

it is obviously not directly applicable since the surface density can only be 

recovered with finite resolution. Several methods to obtain convolved maps, 

solving the problem of the finite size of the fields, and extending the analysis 

beyond the weak lensing limit have been extensively discussed (Kaiser 1995; 

Schneider & Seitz 1995; Seitz & Schneider 1995; Bartelmann 1995). Here, 

we shall give an alternative proof of the inversion equation which gives us 

directly the surface density convolved with a particularly useful window 

function, in the aperture densitometry method. 

The main operation in equation (8) is to calculate an average of the tan-

gential component of the shear (which is obtained from the scalar product 

of the shear with the polar [cos 2r/, sin 2η]) around every point, as proposed 

originally by Tyson, Valdes, & Wenk (1990). We can then simply do this 

average over a circle for a point mass lens, which can only depend on the 

distance from the point mass to the center of the circle. Since any arbitrary 

lens can be decomposed into small mass elements that can be treated as 

point masses, this will give us an inversion formula for the surface den-

sity smoothed with a certain filter. Using the symbols defined in Figure 

1, the tangential component of the shear at a point along the circle is 

\t(<f>) = (&/Z)) 2 cos2/? , where b is the critical radius of the point mass, and 

using simple trigonometry, the average along the circle is 

\C _ b2 / 2 π d(t> (1 - ß c o s ^ ) 2 - (asin<^>)2 

' " Ä 2 Jo 2^ ( l - a c o s ^ ) 2 + ( a s i n 0 ) 2 " ( ' 

where a = d/R. The remarkable result is that this integral is equal to 1 

for a < 1, and equal to zero for a > 1. Thus, any mass outside the circle 

has no effect on \f, while any mass which is inside has an effect which is 
independent of its position within the circle. In fact, b2/R2 is the average 
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Figure 1. 

convergence within the circle, κ, due to the point mass (since, by definition, 
the average surface density within the critical radius is equal to the critical 
surface density). Thus, for any arbitrary lens, the contribution from the 
mass inside the circle is Af = R. We still need to include the contribution 
from the mass on the circle. We first notice that, from symmetry consid-
erations, the contribution from any element of mass cannot depend on its 
azimuthal angle, and therefore the contribution from the mass on the circle 
can only depend on the surface density averaged over the circle, n c . Since 
we also know that the shear is zero when the surface density is uniform, 
the contribution from the mass on the circle must be — K C , SO the result for 
any arbitrary lens is 

\C = K - K C . (10) 

This equation was known for a circularly symmetric lens (where Xf = 7(7*) 
is simply the total shear), but its general validity was not realized until re-
cently. The integration of this equation over an interval in log Ä , where R is 
the radius around a fixed center, yields (using R(R) = 2/R2 f dR' R' KP(R') 

and exchanging the order of the integrals) 

2 Γ* dlogR X°(R) = R(Rt) - R(R2) , (11) 
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which gives the surface density convolved with a compensated top-hat (see 

Fahlman et al. 1994, Kaiser 1995). This formula is useful not only to mea-

sure mass differences on the largest scale of an observed frame, but also to 

obtain maps of the small-scale variations in surface density (which could 

indicate the presence of dumpiness in the dark matter) by applying the 

formula around all possible centers. 

2. Observations of Strong Lensing and Future Prospects 

After weak lensing was first detected by Tyson et al. (1990), it is only 

recently that a large number of observational results are being reported 

(Bonnet, Mellier, k Fort 1994; Fahlman et al. 1994; Smail, Ellis, & Fitchett 

1994; Smail et al. 1995; Tyson & Fisher 1995). Weak lensing by individual 

galaxies, first searched by Tyson et al. (1984), is now also being found 

(Brainerd, Blandford, & Smail 1995), and the average shear in blank fields 

(the weakest lensing in the sky) is also being searched for (Mould et al. 

1994; Villumsen 1995). The weak shear is only sensitive to differences in 

surface density, as is clearly seen from the inversion formulae extended only 

over finite fields (10), (11). Recent work by Broadhurst, Taylor, & Peacock 

(1995) has highlighted the use of the magnification, measured from the 

fluctuations in the number counts of galaxies in different colors, which has 

the advantage of probing directly the surface density although it may be 

more severely subject to systematic errors due to the clustering of the lensed 

sources. 

Meanwhile, much progress has been done on strong lensing, the ob-

servations of the highly distorted "arcs" and multiple images. After the 

initial realization that this ruled out a flat core larger than ~ 50 h'1 Kpc 

for the dark matter, it has been found that lensing always occurs around 

bright central cluster galaxies or around highly compact galaxy clumps, 

and the mass-to-light ratios are typically M/LB ~ 300 h within the radius 

of the arcs (Fort & Mellier 1994). Models reproducing the multiply imaged 

sources require the presence of substructure in the form of dark matter 

clumps around the brightest galaxies; furthermore, these clumps are found 

to have similar ellipticities as the outer stellar isophotes of the bright galax-

ies (see Kneib et al. 1993, 1995; Mellier et al. 1993). This is not surprising, 

since the outer stellar isophotes can be observed to radii similar to those of 

the observed arcs, and therefore they must be in orbits in the dark matter 

clumps yielding the lensing deflection angles; it also implies that the stel-

lar velocity dispersions of the bright galaxies must rapidly rise within the 

radius of the arcs (Miralda-Escudé 1995). These observations suggest that 

clusters of galaxies are typically not in a static equilibrium, but they are 

constantly undergoing mergers on a wide range of scales, down to the scales 
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of the observed arcs and the stellar halos of the central galaxies. This pic-

ture seems consistent with hierarchical theories of formation of clusters and 

should offer new clues on the formation of central cluster galaxies (Merritt 

1985 and references therein). The determination of masses can also provide 

new information on the hot intracluster gas (Loeb & Mao 1994, Miralda-

Escudé & Babul 1995, Waxman & Miralda-Escudé 1995, Allen, Fabian, & 

Kneib 1995, Squires et al. 1995). The present rapid growth of weak lens-

ing observations will probably lead to new discoveries on similar aspects 

of clusters of galaxies at larger radii: the mass-to-light ratios and the den-

sity profiles, substructure in the dark matter and its relation to the galaxy 

distribution, and the physical state of the intracluster gas. 

I thank Nick Kaiser for many illuminating discussions on this subject. 

I gratefully acknowledge support from the W . M. Keck Foundation. 
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