Can. J. Math. Vol. 49 (4), 1997 pp. 840-854.

NON-HERMITIAN SOLUTIONS
OF ALGEBRAIC RICCATI EQUATIONS

LEIBA RODMAN

ABSTRACT. Non-hermitian solutions of algebraic matrix Riccati equations (of the
continuous and discrete types) are studied. Existence is proved of non-hermitian solu-
tions with given upper bounds of the ranks of the skew-hermitian parts, under the sign
controllability hypothesis.

1. Introduction. In this paper we study the continuous algebraic Riccati equations
(CARE)
(@) XDX+XA+A*X—C=0,

and the discrete algebraic Riccati equations (DARE)
2 X = A'XA+ Q — (A*XB*)(R+ B*XB) 1B*XA.

Here, A,B,C = C*, D = D*, Q = Q* and R = R* are given matrices with the entriesin F
(where either F = R, the field of real numbers, or F = C, thefield of complex numbers)
of appropriate sizes, and X is the unknown square size matrix (real or complex, as the
case may be).

The CARE and DARE, aswell astheir more general versions, are ubiquitousin many
applications, in particular, in engineering control systems. Thereisvoluminousliterature
on the CARE and DARE, especially in engineering journals; we mention here only three
books [LR1], [M€], [BLW] dedicated mainly to these equations. In almost all of the
existing literature, the solution X of (1.1) and (1.2) is assumed to be hermitian (= real
symmetric, if F = R); non-hermitian solutions X of (1.1) such that

©) (X* = X)(A+DX) <0

(i.e., the left-hand side of (1.3) is negative semidefinite hermitian) have been studied in
[LR1] (seealso Section 2.2 in [LR2]).

Here we specifically study solutions of CARE and DARE that are not assumed to be
hermitian. In this case existence of solutionsis guaranteed under relatively mild assump-
tions on the coefficients of these equations. In particular, we give explicit upper bounds
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on the rank of the skew-hermitian part of a solution X of (1.1), under a weaker hypoth-
esis (sign controllability) then the controllability hypothesis used in [LR1]. Both real
and complex caseswill be considered, as well as the analogous results for DARE (1.2).
The obtained results generalize several well-known results in the literature concerning
existence of hermitian solutions.

Our main results are expressed in terms of the neutrality index of the hamiltonian
matrix.

Throughout the paper the following notation is used: The set of eigenvalues of a
matrix Z (including complex conjugate pairs of nonreal eigenvalues of areal matrix) is
denoted o(Z). The restriction of amatrix Z (considered as a linear transformation in the
standard basisin C or in R, as appropriate) to its invariant subspace M is denoted Z|M .
Finally, we write I, for the m x midentity matrix.

2. The CARE: main results. In this section we state our main results concerning
CARE (1.1). Let n x n bethe size of matrices A, C, D, X. We consider the complex case
first.

- A D 0 I

— T — n

M—I{C_A*}, H—|[_In 0}.
Then clearly H is hermitian and HM = M*H, in other words, M is self-adjoint with
respect to the indefinite scalar product in C defined by H. Denote by (M, H) the
neutrality index of the pair (M. H), i.e., Y(M, H) is the maximal dimension of an M-
invariant, H-neutral subspace (recall that a subspace L C C?" is called A-neutral if
x*l:|y = Ofor all x,y € L). Inthe general framework of finite dimensional spaceswith an
indefinite metric the notion of the neutrality index wasintroduced in [LMY] to study low
rank perturbations of matrices which are selfadjoint with respect to an indefinite inner
product, and used subsequently in [LR3], [LR4] to describe symmetric factorizations of
rational matrix functions.

A pair of complex matrices (A,B), where Aisn x nand Bisn x m, is caled
sign-controllable if for every Ao € C at least one of the subspaces Ker(Aol — A)" and
Ker(—Xol — A)" is contained in the controllable subspace

1) C(A.B) = Range[B.AB. ..., A™1B].

THEOREM 2.1. (F = C) AssumeD > 0, and (A, D) issign controllable. If 2y(M, H) >
n, then thereis a solution X of (1.1) for which

2 rank(i(X — X)) < 2(n— (M. H)).

In particular, if Y(M. H) = n, then there exists a hermitian solution of (1.1), recovering
the complex analogue of aresult of [F]; seealso Chapter 7 in [LR2].

The proof of Theorem 2.1 reveals additional spectral properties of the solutions X
whose existence is asserted in Theorem 2.1. Namely, let S be a subset in the complex
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plane with the following properties: (1) Ker(A\l —A)" C C(A.D)for X €S;(2) X €
S = —X¢S;(3) S ismaximal with respect to the properties (1) and (2): if T 2 S
has the properties (1) and (2), then necessarily T = S. Then (under the hypotheses of
Theorem 2.1) there exists a solution X of (1.1) with the property (2.1), and such that the
set of eigenvaluesof A+ DX with nonzero real partsis containedin {—\ | A € S}.

The proof of Theorem 2.1 will be given in Section 4.

In the real case, an analogous result holds (under some additional hypotheses). To
state the result, we usethe real 2n x 2n matrices

@3) M,:{é_%}. ﬂr:{_oln'g}.

The neutrality index v, (M. H;) of the pair (M. H,) is defined as the maximal dimension
of areal M,-invariant H,-neutral subspace in R? (a subspace L C R?" is called H, -
neutral if xTI:|ry = Ofor al x,y € L). We say that a pair of real matrices (A, B), where
Aisnx nandBisn x m, issign controllableif for every Ao € R at least one of the
subspacesKer(\ol — A)" and Ker(—Xol — A)" is contained in C (A, B) (defined by (2.1))
andforevery A\ +iu € C, where \, i arereal and i # 0, at least one of the two subspaces

Ker((\2 + 12l £ 20 A+ A?)"

iscontainedin C (A, B). It isnot difficult to seethat (A, B) issign controllableif and only
if (A, B) issign controllable as a pair of complex matrices.

Easy examples (such as the scalar equation x? + 1 = 0 which has no real solutions)
show that in thereal casearesult analogousto Theorem 2.1 isnot valid without additional
hypotheses. Our main result for the CARE in the real caseis:

THEOREM 2.2. (F =R) Let D > 0, and let (A, D) be sign controllable. Assume that
the matrix M, isinvertible. Then the following statements are equivalent:
(o) Theequation (1.1) hasa real solution.
() Theequation (1.1) hasareal solution X for which
(4) rank(X — XT) < 2(n — 7, (Mr. Hy)).

(¥) Thematrix M; has a real n-dimensional invariant subspace.
(6) Either niseven, or nisodd and M, hasareal eigenvalue.

The particular casewhen 7, (M. H,) = nyieldsexistence of areal symmetric solution
of (1.1), thereby recovering the main result of [F] (see also Chapter 8 in [LR2]), under
the additional hypothesisthat M, isinvertible.

Several commentson Theorem 2.2 arein order. The equivalenceof () and (5) iswell-
known (see Section 12.1in[GLR2], for example), andis presented herefor compl eteness.
Notethat (o) clearly implies () becauseif X isarea solution of (1.1), then

@ e [x)=1x

(A+DX),
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[
andsolm{x

provides additional information comparing with («) only when 2v,(M. I:|r) > n. Thus
the main new message of Theorem 2.2 is the implication (7) = (). We do not know if
the hypothesisthat M, is invertible can be removed in Theorem 2.2.

A sufficient condition for the matrix M, to beinvertible is that A isinvertible and

} is an M;-invariant n-dimensional subspace. Also, the inequality (2.3)

(6) min([[CA~'D(AT)[|. [|(AT)*CA™D]) < 1,

where || - || is a power multiplicative norm (see Proposition 8.1.4 in [LR2]). In this case
_CAT N

the matrix { AC A[‘) } = —H;M; has equal number of positive and negative eigenvalues.

In connection with Theorem 2.2 we point out also the following fact:

T

A D
itive and negative eigenvalues (counted with multiplicities), then the existence of a real

n-dimensional M;-invariant subspaceis guaranteed.

PROPOSITION 2.3. If the real symmetric matrix has equal number of pos-

Observe that the additional hypotheses of Theorem 2.2 (D > 0, sign controllability

of (A, D), invertibility of M,) are not needed in Proposition 2.3. In particular, if C > 0
T

(a situation frequently encountered in applications) then the matrix _AC A[‘) has n

positive and n negative eigenvalues provided it is invertible. We obtain the following
corollary.

COROLLARY 2.4. Assume the hypotheses of Theorem 2.2. Assume further that (2.6)
holdsor C > 0. Then (1.1) hasareal solution X for which (2.4) holds.

It is well-known (see, e.g., Theorem 9.1.2 in [LR2]) that if the pair (—A.D) is
stabilizable, which is a more restrictive hypothesis than the sign controllability used in
Theorem 2.2, and if D > 0, C > 0, then (1.1) hasareal symmetric solution.

Analogously to the the complex case, additional spectral properties of the real so-
lutions of (1.1) can be identified. Let S be a set in the complex plane with the fol-
lowing properties: (1) Xo € S = X € S.—Xo ¢ S (in particular, S does not
intersect the imaginary axis); (2) Ker(Aol + A" C C(A.D) for every red A\ € S;
(3) Ker((\3+pd)l +2/\0A+A2)n € C (A, D) for every pair of nonreal complex conjugate
numbers Ao = ipg € S; (4) S is amaximal set having the properties (1), (2), and (3).
Then (under the hypotheses of Corollary 2.4, or of Theorem 2.2 (assuming one of the
conditions (&) through (6) in Theorem 2.2)) there exists areal solution X of (1.1) with
the property that the set of eigenvaluesof A+ DX with nonzero real partsis contained in
S and (2.4) holds.

The proofs of Theorem 2.2 and Proposition 2.3 will be given in Section 5.
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3. Indefinite scalar products and neutrality indices. In this section we develop
someresults concerning matriceswith respect to indefinite scalar productsthat are needed
for the proofs of Theorems 2.1 and 2.2.

Let H bean m x mhermitian invertible (complex) matrix, and let A be H-self-adjoint,
i.e, HA = A*H. Asin Section 2, we denote by Y(A, H) the neutrality index of (A, H),
i.e., the maximal dimension of an A-invariant H-neutral subspace. By Theorem 2.1
of [LMY], an A-invariant H-neutral subspace M C C™ is maximal in the set of all
A-invariant H-neutral subspacesif and only if dimM = y(A. H).

Denoteby v+ (H)(v—(H)) thenumber of positive (negative) eigenvaluesof H, counted
with their multiplicities. It is a well-known basic fact in the theory of operators in
indefinite scalar product spaces that every H-self-adjoint matrix A has an invariant H-
nonnegative subspace of dimension v.(H). (Recall that a subspace M C C™ is called
H-nonnegative if x*Hx > 0 for al x € M, see, eg., Section 3.12 in [GLR1]). The
following lemmais more informative; it reveals additional structural properties of such
subspaces.

In the Lemmas 3.1-3.3 below, it is assumed that A is H-self-adjoint.

LEMMA 3.1. Let M beA-invariant H-nonnegative (or H-nonpositive) subspacesuch
that AIM has no real eigenvalues. Then, in fact, M isH-neutral.

PROOF. Using the well-known canonical form (see, e.g., Chapter 3 in [GLR1]) of
the pair (A, H) under the transformation (A, H) — (S *AS S'HS), where Sisinvertible,
without loss of generality we can (and do) assume that one of the following two cases
holds: (i) o(A) = {Xo}, where \g isredl; (ii) o(A) = { oL iuo}, where \o, uo arereal and
wo # 0.1 (i) holds, Lemma2.1istrivia. Assumethat (ii) holds. Then thereisinvertible
Ssuch that

K:=51AS={J 0}; Q:=S*HS={0 'p}.

0 J* )
where J is a Jordan matrix with o(J) = {\o +iuo) (this transformation was used in [R]).
The subspaceN = S™*M is K-invariant and Q-nonnegative. Write

(X% 0
N —Im{O Xz}’

where the matrices X; and X, havefull column rank and p rows (that N so decomposes
follows because J and J* have no common eigenvalues). We have

X; 0 0 X1 0]1_[ 0 XiXz
0 X3 0 Xo| [ XX O |°
which is positive semidefinite. Thisis possible only if X;X; =0, and then N is actually

Q-neutral. n

A set S of non-real eigenvaluesof Aiscalled ac-set of Aif \g € S = Ao ¢S, and
theset S ismaximal with respect to this property (in other words, if T isaset of non-real
eigenvaluesof Asuchthat S CT,and o € T = Ao & T, then necessarily S = T).

https://doi.org/10.4153/CJM-1997-043-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-043-4

ALGEBRAIC RICCATI EQUATIONS 845

LEMMA 3.2. Let M be A-invariant H-nonnegative (resp. H-nonpositive) subspace.
Thenthere exists A-invariant H-nonnegative (resp. H-nonpositive) subspace L suchthat
L O M anddimL = v.(H) (resp. dimL = v_(H)). Moreover, if the set S of non-real
eigenvaluesof AIM issuchthat A € S = A ¢ S, thenfor everyc-set T of A containing
S the subspace L. can be chosenwith the additional propertythat T isthe set of non-real
eigenvaluesof A|L.

PROCOF. Again, we use the canonical form of the pair (A, H). So it will be assumed
that one of the cases(i) and (ii) of the proof of Lemma 3.1 holds. Assume(ii) holds. Then
by Lemma 3.1 an A-invariant subspaceis H-nonegative (or H-nonpositive) if and only if
it is H-neutral. Thusthe statement of Lemma 3.2 is contained in Theorem 2.1 of [LMY]].
Assume (i) holds, and let Ao = O for convenience. It sufficesto consider the case when
M is H-nonnegative (then the case of H-nonpositive M is taken care of by replacing
H with —H). The statement of Lemma 3.2 concerning the set of non-real eigenvalues
of A|L is trivially empty, and we only have to prove the existence of an A-invariant
H-nonegative subspace L © M with dimL = v.(H). But the existence of suchan L is
avery particular case of awell-known result in the theory of linear operators on infinite
dimensional Krein spaces (seeg, e.g., Corollary 3.3.10in [Al]) ]

LEMMA 3.3. For every c-set S there exists an A-invariant H-neutral subspace L of
dimension Y(A, H) such that S is the set of non-real eigenvaluesof A|L.

PROOF. Without loss of generality assume that either o(A) = {\}, A € R or o(A) =
{A A} A ¢ R Inthefirst case any maximal A-invariant H-neutral subspace will do, in
the second caselet L = Ker(A — ul)™, where p € {\. A} N S. "

Lemmas 3.2 and 3.3 will be needed for the proof of Theorem 2.1.

4. Proof of Theorem 2.1 We continue to use the notation introduced in Sections 2
and 3.

Let

_[-CA
=W o)
Replacing, if necessary, Aby A+ial for sufficiently large real number o (such replacement
does not alter the set of solutions of (1.1)), we assume without loss of generality that H
isinvertible and v+(H) = v_(H) = n (the size of the matrices A, C, D, and X). Note the
equalities
H=HAM, HM=MH.

LEMMA 4.1. AssumeD > 0, and (A, D) sign controllable. Then there existsa c-set S
(for the matrix M) such that every n-dimensional M-invariant H-nonpositive subspace

M witho(M | M)\ R =S isagraph subspace: M = Im{ ! for some X.

X

Thisresult is contained in the proof of Lemma 7.2.6 of [LR2].
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PROOF OF THEOREM 2.1. Let S bethe c-set asin Lemma4.1. By Lemma 3.3, there
exists M-invariant H-neutral subspace L of dimension (M. H) such that S is the set
of nonreal eigenvalues of M|L. Since H = HM, the subspace L is also H-neutral. By
Lemma 3.2, there exists an n-dimensional M-invariant H-nonpositive subspace M such
thaa M D Lando(M | M)\ R=S.ByLenma4.1,

_ |
M =Im {X}
for somen x n matrix X. One verifies that X is a solution of (1.1). Letfy,...,f, € C"
(where p =v(M, H)) be such that

| .
[X} fj, 1=1.... P,
formabasisinL, and letfper, ..., f, besuchthatthematrix Y = [fy, ... , fy] isnonsingular.
Since L isH-neutral, we have

* X

ey | _10p *
Y[l X]H{X}Y—[ }
where Qp isp x p. On the other hand,
%11} I _ %
[l X]H[x}-l(X—X),

and therefore
. Y 0p *
rank(i(X — X)) —rank{ N *} <2(n—p)
if 20 > n. (If 2p < n, then 2(n — p) > n, and the inequality rank(i(X — X*)) < 2(n— p)
istrivial). ]

5. Proofs of Theorem 2.2 and Proposition 2.3 In this section we assume that all
matrices are real, and the matrices M, and H, are given by (2.3). As in the proof of
Theorem 2.1, we start with preliminary results.

The set of eigenvaluesof M, is symmetric with respect to the imaginary axis because
the matrix .

A M, = { _CA _'g }
is symmetric. Of course, this set is also symmetric with respect to the real axis because
M, isreal. A set S of eigenvalues of M, will be called an r-set, if:

(@ S doesnot intersect the imaginary axis;

(b) MES=NES;

(c) )\OES:>—)\0¢S;

(d) theset S isamaximal (with respect to containment of sets) set of eigenvalues of
M; having the properties (a), (b), and (c).
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LEMMA 5.1. Assume that D > 0 and the pair (A, D) is sign controllable. Then
there is an r-set S of eigenvalues of M, such that every n-dimensional M,-invariant
H,M;-nonnegative subspace M C R?" with o(M, | M) \ iR = S is a graph subspace:

M:Im{l

X} for some X.

ProoF. We follow the approach used to prove Lemma 7.2.6 in [LR2]. Let Sbea
maximal set in the complex plane having the propertiesthat Ag € S=¢eS X ¢ S,
and Ker(Aol +A)" C C (A, D) for every real Ao € S and Ker((\3 + u3)l +2)0A+A?)" C
C (A, D) for every pair of complex conjugate numbers Ao +ipo € S. Wetake S to beany
r-set of eigenvalues of M, contained in S.

Let
_ X1
M =Im [Xz} ,
where X; and X, are n x n matrices, be a subspace with the properties described in the
lemma. Then
A D Xl _ [ X1
) [C—AT xz}‘{xzh

for a uniquely determined matrix T. Moreover,
%)) TK =K,
where K = Ker X;. Indeed, using the H, M, -nonnegativity of M , we see that the matrix

—[XIXT1A, M, Bﬁﬂ = [X1X3] {_AC ABT} [éﬂ

is negative semidefinite, and (5.2) follows by the standard arguments (see, e.g., the
proof of Lemma 7.2.2in [LR2]). Now (5.1) implies ATX,x = —X,Tx for every x € K .
Since X,|K is one-to-one, we obtain that AT|X;K issimilar to —T|K ; in particular, the
spectrum of AT|X,K is contained in the spectrum of —M;|M .

Let Sy be the union of S and the set of eigenvaluesof M, with zero real parts (if any).
Asin the proof of Lemma7.2.2in [LR2], we obtain for anyy € X,K:

D
DAT
@ yeke| . |=CAD'C( X RM®')= ¥ R
: —2¢So ~2¢So
D(AT)nfl

where R, (2) stands for the real root subspace of real n x n matrix Z corresponding to
the eigenvalue \: Ry (Z) = Ker(Al — Z2)"if A isreal, and

R\(2) = Ker((? + p)l + 20Z+ 22)"

if A\ =v+ipisnonrea (herev,.u € R and p # 0). Assuming y # 0, it follows from
a(AT | %K) C o(—M, | M) and from (5.3) that o(M; | M) \ So is not empty. But this
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contradicts the assumptionthat o(M, | M)\ iR = S. We must concludethat X,K = {0},
and since dimM = n, the subspace K = Ker X; must be the zero subspace. In other
words, X; isinvertible, and

_ |
M _lm{xzxfl}

is agraph subspace. ]

Next, we present the analogues of Lemmas 3.2 and 3.3 in thereal case. Let H; be an
mx mskew-symmetric invertible matrix (in particular, miseven), andlet A beanmxm
matrix such that H,A, = —A,THr. It is easy to see that the spectrum of A, is symmetric
relative to both real and imaginary axes, i.e., Ao € o(A) = +Xo € o(Ar). A set of
eigenvalues S of A, is called an r-set if S satisfies the conditions (a)—(d) stated before
Lemmab5.1.

LEMMA 5.2. LetH, and A, be asabove, and assumethat A, isinvertible. Let N bean
A-invariant H,-neutral subspace. Then there exists an A;-invariant H;A;-nonnegative
(resp. HyA.-nonpositive) subspace L suchthat L O N and dimL = v.(HA) (resp.
dimL = v_(H,A)). Moreover, if the set S of eigenvalues of A(|[N with nonzero real
partsissuchthat A € S = —\ ¢ S, then for every r-set T of A containing S the
subspace L can be chosen with the additional property that T is the set of eigenvalues
of Ar|L with nonzeroreal parts.

PROOF. We proceed in two steps. Only the part concerning Ac-invariant H A -
nonnegative subspaces will be proved; the corresponding result for Aq-invariant H; A, -
nonpositive subspaces can be proved analogously.

Step 1. In additionto the hypothesesof thelemma, it will be assumedthat N = {0}.
Weusethecanonical form of of thepair (Ar, H;) (see[DPWZ], [RR], or [T], for example).

LetE= { _01 H and for a positive real number b denote
bE I, --- 0 O

ObE--- 0 O

J(Eib) = oo

0 0 ---bE I,

00 0 bE

the real Jordan block of size 2k x 2k with the pure imaginary eigenvalues +ib. In view
of the canonical form, and since A, isinvertible, we haveto consider only two cases:
QA= K OT JH = 0 lm2 , where the matrix K has no pureimaginary
0 —K —lm2 O
or zero eigenvalues,
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(2) A =dny(£ib) & - - - & n,(£ib),

O 0-- 0 Em O 0. 0 Em
0 0--—E" 0 0 0. —E% 0

Hy = k1 . L e ek
(—)mEm Q... 0 0 (-)%E% 0. 0 0

where s are+1 or —1.

Theorem 6.1in [LR3] showsthat inthe case (1) there existsan A, -invariant H,-neutral
subspaceLL of dimensionm/2 = v, (H, A/), and the proof of Theorem 6.1in [LR3] shows
that the additional property concerning the set of eigenvalues of A;|L with nonzero real
parts can be satisfied aswell. In the case (2) observethat for the pair of blocks

0O O--- 0 EnJ
. . . 0 0---—E" 0

(4) Ao=dy(ib). Fo=rp| . ..
+E"0--- 0 O

an A -invariant H,A,-nonnegative subspace of the required dimension is given by
Span{ey.....e+1} if njisodd and x; = —1, by Span{e;.....e, 1} if nj is odd and
xj = 1, and by Spar{ey. ..., &y } if nj is even (we denote here by e, the standard unit
coordinate vector, having the p-th coordinate equal to 1 and all other coordinates equal

to O; the number of coordinatesin e, will be clear from the context).

STEP 2. Wedrop the additional assumptionthat N = {0}.

In view of the canonical form, we need only to consider separately the cases (1) and
(2) above. Inthecase(1), by Theorem 6.1 of [L R3] thereexistsan A -invariant H,-neutral
m/ 2-dimensional subspacelL O N ; but also v, (H,A) = m/2, so we are done (the proof
of Theorem 6.1 in [LR3] guaranteesthe additional property involving ther-set T).

Consider now the case (2). We follow the idea of the proof of Theorem 3.1in [LR3].
Letd =dimN , and assumed < v.(H:A) (if d = v.(H;A) thereis nothing to prove).
Consider the subspace

N ={xecR™|x"Hy=0foralyc N}

(the H,-orthogonal companion of N ). As N is H;-neutral, we clearly have N C
N [, Furthermore, dimN [ = m — d (because N [ coincides with the (euclidean)
orthogonal complement to the d-dimensional subspace H;N ). The subspace N [ is
aso A -invariant. So, choosing (euclidean) orthonormal basesinN ,inN I & N, and
inR™ o N [ we represent the matrices A, and H;, in the following forms:

A1 Ap Agz 0 0 His
A'/, = 0 A22 A23 H; = 0 H22 H23 .
0 0 Az —His —H Has
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The matrix Hay is skew-symmetric and invertible (because H; has these properties), and
H2,A2, is symmetric. Since both H; and A} areinvertible, it easily follows that

v+(H2A2) = v+(HA) —d > 0.

By step 1, there exists an Ax-invariant HxyAx-nonnegative subspace Ng such that
dimNop = v+ (H»A2). Put L =N + N to satisfy therequirements of Lemma5.2. =

Next, we state the analogue of Lemma 3.3.

LEMMA 5.3. Let H; = —H] be areal invertible m x m matrix, and let A, be a real
matrix such that H,A, = —ATH,. Then for every r-set S of eigenvaluesof A, there exists
an A-invariant H,-neutral real subspace L of dimension ¥,(A;, H;) such that S is the
set of eigenvalues of A|L having nonzero real parts.

Thislemmais contained in Theorem 6.1 in [LR3] and its proof.

Now the proof of Theorem 2.2 proceedsin the sameway asthe proof of Theorem 2.1,
using the Lemmas 5.1, 5.2, and 5.3 in place of Lemmas 4.1, 3.2, and 3.3, respectively,
and using H; and M, in place of H and M.

Finally, we turn to Proposition 2.3. It follows (by letting H, = H;, M; = A;) from a
general statement on pairs of matrices:

LEMMA 5.4. LetH, = —H and A, be asin Lemma 5.3. If the symmetric matrix H, A,
has equal number of positive and of negative eigenvalues (counted with multiplicities),
then A, hasan m/2-dimensional real invariant subspace.

PrROOF. We can assume that A; has no real eigenvalues (otherwise the lemma is
trivial). Again by the canonical form for the pair (A, H;) (cf. the proof of Lemma 5.2),
we further assume that A, and H; have the forms of the cases (1) and (2) of the proof
of Lemma 5.2. In the case (1) the statement of Lemma 5.4 is evident. In the case (2)
construct an A,-invariant subspace M (as in the proof of Lemma 5.2) by selecting for
each pair of blocks (5.4) the subspace given by Span{ey, ..., &y+1) if y is odd and
kj =—1,by Span{ey.....e,_1}if njisoddand x; = 1, and by Span{ey..... e, } if njis

even. Clearly,
(5) dimM = %]+#{j | njisodd. k; = —1} — #{j | nj isodd. x; = +1}.
Onthe other hand, for the pair of blocks (A, H,) given by (2.6), an easy inspection shows
that
o n; if njiseven
ve(HiA) = { n+1 ifnisoddands;=-1
nF1 ifnisoddands; =1
and by the hypothesis of the lemma the right hand side of (5.5) is equal tom/ 2. ]

https://doi.org/10.4153/CJM-1997-043-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-043-4

ALGEBRAIC RICCATI EQUATIONS 851
6. Discretealgebraic Riccati equations. Consider the DARE,
(@D} X = AXA+ Q — (A*XB)*(R+ B*XB) " 1B*XA,

where the given complex matrices A, B, Q = Q* and R = R* are of sizesn x n, m x n,
n x n, and m x m, respectively. A complex n x n matrix X (not necessarily hermitian)
satisfying (6.1) issought. In this sectionwewill obtain results analogousto Theorems 2.1
and 2.2. The main method of proof will consist of reduction of the DARE (6.1) to the
CARE (1.1). Because of the limitations of this method, it will be assumed throughout
this section that A and R are invertible matrices.

Introduce the matrix

@) T=

A+BR1B*A*1Q —BR !B *A*1
_A*—lQ A*—l 9

and the rational matrix function

(3) Y(2 = R+[-B*A1Q,B*A* (zl — { _ A*A—lQ A?_l D - [ '8} .

whoseinverseis given by

Y@ =R - [-RIBAQ R BA Y@@ -T)? { Bwl} ,

0
The approach to study the hermitian solutions of DARE using T and W(z) was used
first in [LRR] (this approach had many precursors, see, e.g., [PLS]) and exposed with

full details in Chapter 12 of [LR2]. Here we use this approach to study non-hermitian
solutions of DARE.

If X isann x nmatrix, the subspace Im

)|< } is called the graph subspace of X.

PrROPOSITION6.1.  Thegraph subspaceof XisT-invariantif and onlyif X isa solution
of (6.1).

For the proof, simply repeat a part of the proof of Proposition 12.2.2in [LR2].

PROPOSITION 6.2. Ann x nmatrix X isa solution of (6.1) if only if X is a solution of

the CARE,

@) XDX—-XC—-C'X—E=0,
where

&) D = —2(yl — A)T'BY() !B (1 — A) .

C=(A -y A +)
©) #2011 — A)IBW() 1B (7l — A) QAT — A )L

and E is a suitable hermitian matrix (the exact form of E is not important here). The
function W(2) is defined in the equation (6.3), and i isa unimodular number such that the
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matrices W(n). nl — A, gl — At and 5l — T areinvertible, where T is given by equation
(6.2) (and the existence of such an 5 is guaranteed).

The proof proceedsasin the proof of Proposition 12.2.2 of [LR2]. For future reference

we indicate that in fact
_[-CD

where ¢(\) = (A + 1)(A — 1)~1, and the matrices T, C, and D are given by (6.2), (6.4),
and (6.5), respectively.

Letd = [ |cl) —(;I } A straightforward calculation showsthat T*JT = J; in other words,
T is J-unitary. We definethe neutrality index v(T, J) of the pair (T, J) analogously to that
of self-adjoint matrices with respect to an indefinite scalar product. Namely, (T, J) is
the dimension of amaximal T-invariant J-neutral subspace.

A pair (A, B) with n x n matrix A is called d-sign controllable if for every Ao # O
at least one of the subspaces Ker(A\ol — A)" and Ker(A\g1l — A)" is contained in the
controllable subspace C (A, B) (defined by (2.1)).

THEOREM 6.3. Assume that A and R are invertible, and there exists a unimodular
number i such that W(n) is positive definite. If the pair (A, B) isd-sign controllable, then
the equation (6.1) has a solution X such that

rank(i(X — X)) < 2(n—(T.J)).
For the proof we need alemma.

LEMMA 6.4. Let Aben x n,and B ben x m. Then (A, B) issign controllable (resp.
d-sign controllable) if and only if (SAS™* + SBK, SBL) is sign controllable (resp. d-sign
controllable) for any m x n matrix K, any m x p matrix L such that Im(BL) = Im B, and
any invertiblen x n matrix S

PROOF. The set of transformations (A.B) — (SAS™! + SBK, SBL), where K, L, S
satisfy the conditions of the lemma, is easily seento beagroup. It is therefore sufficient
to prove the lemmafor the three particular cases: (1) K=0,L=1;(2) S=1,K=0; (3)
S=1,L =1.Inthecase (1) the result follows immediately from the obvious observation
that C(SAS ™1, SB) = SC(A. B) and Ker(SAS™ — \ol)" = gKer(A — Aol)"]. The case
(2) istrivial because the condition Im(BL) = Im B guarantees that C (A, B) = C (A, BL).
Finally, assume S = I, L = [, and consider the sign controllability property (the proof
for the d-sign controllability is completely analogous). Write A and B as 2 x 2 block
matrices with respect to the orthogonal decomposition C" = C (A, B) & C (A. B)*:

_ AL A _[B1
a=5 ] e=[G )

The sign controllability conditionimplies that for every pair of complex numbers A, Y
at least oneof A and —\ isnot aneigenvalueof A, (in particular, A, hasno pureimaginary
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or zero eigenvalues). Indeed, for every such pair A, —) at least one of them, call it Ao,
has the property that R,,,(A) C C (A. B). Therefore, dimR,,,(A) = dim(R,, N C(A. B)) =
dimR,, (AIC(A. B)) = dimR,,(A1). On the other hand, dimR,,(A) (resp. dimR, (A1)
is just the multiplicity of Ao as a zero of det(Al — A) (resp. of det(Al — Aq)). Since
det(Al — A) = det(Al — A7) det(Al — Ap), it follows that Ao isnot azero of det(A\l — Ay).

Now A+ BK = | A1+ BiK A +BiK
0 A

every pair of eigenvalues A, —\ of A+ BK at least one of them is not an eigenvalue
of A;. Reversing the above argument, we obtain that at least one of A, —X (call it Ag)
satisfies the property R, (A) C C (A, B). Sinceclearly C (A + BK, B) = C (A, B), the sign

controllability of (A + BK, B) follows. ]

. Hence A + BK &l so has the property that for

PROOF OF THEOREM 6.3. Lemma 6.4 impliesthat the pair (C, D) issign controllable,
where C and D are given by (6.6) and (6.5), respectively. Now apply Proposition 6.2 and
Theorem 2.1. ]

A real version of Theorem 6.3 can be obtained, under the additional hypotheses that
7 can be chosen to be either 1 or —1 in Theorem 6.3 and that the matrix

Cc -D
—-E -CT

isinvertible. Here C, D and E are taken from Proposition 6.2. We state the result, omitting
the proof.

THEOREM 6.5. (F = R). Assumethat A and Rareinvertible, the pair (A, B) isd-sign
controllable, and there exists o € {1, —1} such that the matrices ol — A, 5ol — A%,
nol £ T areinvertible and the matrix W(no) is positive definite. Then the equation (6.1)
admits a real solution X such that

rank(X — XT) < 2(n—(T.J)).

-1 0

As in Theorems 2.1 and 2.2, additional information can be given concerning the
spectral properties of the solutions whose existenceis asserted in Theorems 6.1 and 6.5.

Where\AJ:{ 0 I}.
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