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NON-HERMITIAN SOLUTIONS
OF ALGEBRAIC RICCATI EQUATIONS

LEIBA RODMAN

ABSTRACT. Non-hermitian solutions of algebraic matrix Riccati equations (of the
continuous and discrete types) are studied. Existence is proved of non-hermitian solu-
tions with given upper bounds of the ranks of the skew-hermitian parts, under the sign
controllability hypothesis.

1. Introduction. In this paper we study the continuous algebraic Riccati equations
(CARE)

XDX + XA + AŁX � C = 0Ò(1)

and the discrete algebraic Riccati equations (DARE)

X = AŁXA + Q� (AŁXBŁ)(R + BŁXB)�1BŁXA(2)

Here, AÒBÒC = CŁ, D = DŁ, Q = QŁ and R = RŁ are given matrices with the entries in F
(where either F = R, the field of real numbers, or F = C, the field of complex numbers)
of appropriate sizes, and X is the unknown square size matrix (real or complex, as the
case may be).

The CARE and DARE, as well as their more general versions, are ubiquitous in many
applications, in particular, in engineering control systems. There is voluminous literature
on the CARE and DARE, especially in engineering journals; we mention here only three
books [LR1], [Me], [BLW] dedicated mainly to these equations. In almost all of the
existing literature, the solution X of (1.1) and (1.2) is assumed to be hermitian (= real
symmetric, if F = R); non-hermitian solutions X of (1.1) such that

(XŁ � X)(A + DX) � 0(3)

(i.e., the left-hand side of (1.3) is negative semidefinite hermitian) have been studied in
[LR1] (see also Section 2.2 in [LR2]).

Here we specifically study solutions of CARE and DARE that are not assumed to be
hermitian. In this case existence of solutions is guaranteed under relatively mild assump-
tions on the coefficients of these equations. In particular, we give explicit upper bounds
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ALGEBRAIC RICCATI EQUATIONS 841

on the rank of the skew-hermitian part of a solution X of (1.1), under a weaker hypoth-
esis (sign controllability) then the controllability hypothesis used in [LR1]. Both real
and complex cases will be considered, as well as the analogous results for DARE (1.2).
The obtained results generalize several well-known results in the literature concerning
existence of hermitian solutions.

Our main results are expressed in terms of the neutrality index of the hamiltonian
matrix.

Throughout the paper the following notation is used: The set of eigenvalues of a
matrix Z (including complex conjugate pairs of nonreal eigenvalues of a real matrix) is
denoted õ(Z). The restriction of a matrix Z (considered as a linear transformation in the
standard basis in C or in R, as appropriate) to its invariant subspace M is denoted ZjM .
Finally, we write Im for the mðm identity matrix.

2. The CARE: main results. In this section we state our main results concerning
CARE (1.1). Let nð n be the size of matrices A, C, D, X. We consider the complex case
first.

Let

M = i
"

A D
C �AŁ

#
Ò Ĥ = i

"
0 In

�In 0

#


Then clearly Ĥ is hermitian and ĤM = MŁĤ, in other words, M is self-adjoint with
respect to the indefinite scalar product in C2n defined by Ĥ. Denote by ç(MÒ Ĥ) the
neutrality index of the pair (MÒ Ĥ), i.e., ç(MÒ Ĥ) is the maximal dimension of an M-
invariant, Ĥ-neutral subspace (recall that a subspace L � C2n is called Ĥ-neutral if
xŁĤy = 0 for all xÒ y 2 L). In the general framework of finite dimensional spaces with an
indefinite metric the notion of the neutrality index was introduced in [LMY] to study low
rank perturbations of matrices which are selfadjoint with respect to an indefinite inner
product, and used subsequently in [LR3], [LR4] to describe symmetric factorizations of
rational matrix functions.

A pair of complex matrices (AÒB), where A is n ð n and B is n ð m, is called
sign-controllable if for every ï0 2 C at least one of the subspaces Ker(ï0I � A)n and
Ker(�ï̄0I � A)n is contained in the controllable subspace

C (AÒB) = Range[BÒABÒ    ÒAn�1B](1)

THEOREM 2.1. (F = C) Assume D ½ 0, and (AÒD) is sign controllable. If 2ç(MÒ Ĥ) ½
n, then there is a solution X of (1.1) for which

rank
�
i(X � XŁ)

�
� 2

�
n � ç(MÒ Ĥ)

�
(2)

In particular, if ç(MÒ Ĥ) = n, then there exists a hermitian solution of (1.1), recovering
the complex analogue of a result of [F]; see also Chapter 7 in [LR2].

The proof of Theorem 2.1 reveals additional spectral properties of the solutions X
whose existence is asserted in Theorem 2.1. Namely, let S be a subset in the complex
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plane with the following properties: (1) Ker(ïI � A)n � C (AÒD) for ï 2 S; (2) ï 2

S ) �ï̄ Û2 S; (3) S is maximal with respect to the properties (1) and (2): if T � S
has the properties (1) and (2), then necessarily T = S. Then (under the hypotheses of
Theorem 2.1) there exists a solution X of (1.1) with the property (2.1), and such that the
set of eigenvalues of A + DX with nonzero real parts is contained in f�ï̄ j ï 2 Sg.

The proof of Theorem 2.1 will be given in Section 4.
In the real case, an analogous result holds (under some additional hypotheses). To

state the result, we use the real 2nð 2n matrices

Mr =
"

A D
C �AT

#
Ò Ĥr =

"
0 In

�In 0

#
(3)

The neutrality index çr(MrÒ Ĥr) of the pair (MrÒ Ĥr) is defined as the maximal dimension
of a real Mr-invariant Ĥr-neutral subspace in R2n (a subspace L � R2n is called Ĥr-
neutral if xTĤry = 0 for all xÒ y 2 L). We say that a pair of real matrices (AÒB), where
A is n ð n and B is n ð m, is sign controllable if for every ï0 2 R at least one of the
subspaces Ker(ï0I � A)n and Ker(�ï0I � A)n is contained in C (AÒB) (defined by (2.1))
and for every ï+ iñ 2 C, where ïÒ ñ are real and ñ 6= 0, at least one of the two subspaces

Ker
�
(ï2 + ñ2)I š 2ïA + A2

�n

is contained in C (AÒB). It is not difficult to see that (AÒB) is sign controllable if and only
if (AÒB) is sign controllable as a pair of complex matrices.

Easy examples (such as the scalar equation x2 + 1 = 0 which has no real solutions)
show that in the real case a result analogous to Theorem 2.1 is not valid without additional
hypotheses. Our main result for the CARE in the real case is:

THEOREM 2.2. (F = R) Let D ½ 0, and let (AÒD) be sign controllable. Assume that
the matrix Mr is invertible. Then the following statements are equivalent:

(ã) The equation (1.1) has a real solution.
(å) The equation (1.1) has a real solution X for which

rank(X � XT) � 2
�
n � çr(MrÒ Ĥr)

�
(4)

(ç) The matrix Mr has a real n-dimensional invariant subspace.
(é) Either n is even, or n is odd and Mr has a real eigenvalue.

The particular case when çr(MrÒ Ĥr) = n yields existence of a real symmetric solution
of (1.1), thereby recovering the main result of [F] (see also Chapter 8 in [LR2]), under
the additional hypothesis that Mr is invertible.

Several comments on Theorem 2.2 are in order. The equivalence of (ç) and (é) is well-
known (see Section 12.1 in [GLR2], for example), and is presented here for completeness.
Note that (ã) clearly implies (ç) because if X is a real solution of (1.1), then

"
A D
C �AT

# "
I
X

#
=
"

I
X

#
(A + DX)Ò(5)
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and so Im
"

I
X

#
is an Mr-invariant n-dimensional subspace. Also, the inequality (2.3)

provides additional information comparing with (ã) only when 2çr(MrÒ Ĥr) ½ n. Thus
the main new message of Theorem 2.2 is the implication (ç) ) (å). We do not know if
the hypothesis that Mr is invertible can be removed in Theorem 2.2.

A sufficient condition for the matrix Mr to be invertible is that A is invertible and

min
�
kCA�1D(AT)�1kÒ k(AT)�1CA�1Dk

�
Ú 1Ò(6)

where k Ð k is a power multiplicative norm (see Proposition 8.1.4 in [LR2]). In this case

the matrix
"
�C AT

A D

#
= �ĤrMr has equal number of positive and negative eigenvalues.

In connection with Theorem 2.2 we point out also the following fact:

PROPOSITION 2.3. If the real symmetric matrix
"
�C AT

A D

#
has equal number of pos-

itive and negative eigenvalues (counted with multiplicities), then the existence of a real
n-dimensional Mr-invariant subspace is guaranteed.

Observe that the additional hypotheses of Theorem 2.2 (D ½ 0, sign controllability
of (AÒD), invertibility of Mr) are not needed in Proposition 2.3. In particular, if C ½ 0

(a situation frequently encountered in applications) then the matrix
"
�C AT

A D

#
has n

positive and n negative eigenvalues provided it is invertible. We obtain the following
corollary.

COROLLARY 2.4. Assume the hypotheses of Theorem 2.2. Assume further that (2.6)
holds or C ½ 0. Then (1.1) has a real solution X for which (2.4) holds.

It is well-known (see, e.g., Theorem 9.1.2 in [LR2]) that if the pair (�AÒD) is
stabilizable, which is a more restrictive hypothesis than the sign controllability used in
Theorem 2.2, and if D ½ 0, C ½ 0, then (1.1) has a real symmetric solution.

Analogously to the the complex case, additional spectral properties of the real so-
lutions of (1.1) can be identified. Let S be a set in the complex plane with the fol-
lowing properties: (1) ï0 2 S ) ï̄0 2 SÒ �ï0 Û2 S (in particular, S does not
intersect the imaginary axis); (2) Ker(ï0I + A)n � C (AÒD) for every real ï 2 S;
(3) Ker

�
(ï2

0 +ñ2
0)I +2ï0A +A2

�n
2 C (AÒD) for every pair of nonreal complex conjugate

numbers ï0 š iñ0 2 S; (4) S is a maximal set having the properties (1), (2), and (3).
Then (under the hypotheses of Corollary 2.4, or of Theorem 2.2 (assuming one of the
conditions (ã) through (é) in Theorem 2.2)) there exists a real solution X of (1.1) with
the property that the set of eigenvalues of A + DX with nonzero real parts is contained in
S and (2.4) holds.

The proofs of Theorem 2.2 and Proposition 2.3 will be given in Section 5.
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3. Indefinite scalar products and neutrality indices. In this section we develop
some results concerning matrices with respect to indefinite scalar products that are needed
for the proofs of Theorems 2.1 and 2.2.

Let H be an mðm hermitian invertible (complex) matrix, and let A be H-self-adjoint,
i.e., HA = AŁH. As in Section 2, we denote by ç(AÒH) the neutrality index of (AÒH),
i.e., the maximal dimension of an A-invariant H-neutral subspace. By Theorem 2.1
of [LMY], an A-invariant H-neutral subspace M � Cm is maximal in the set of all
A-invariant H-neutral subspaces if and only if dim M = ç(AÒH).

Denote by ó+(H)
�
ó�(H)

�
the number of positive (negative) eigenvalues of H, counted

with their multiplicities. It is a well-known basic fact in the theory of operators in
indefinite scalar product spaces that every H-self-adjoint matrix A has an invariant H-
nonnegative subspace of dimension ó+(H). (Recall that a subspace M � Cm is called
H-nonnegative if xŁHx ½ 0 for all x 2 M , see, e.g., Section 3.12 in [GLR1]). The
following lemma is more informative; it reveals additional structural properties of such
subspaces.

In the Lemmas 3.1–3.3 below, it is assumed that A is H-self-adjoint.

LEMMA 3.1. Let M be A-invariant H-nonnegative (or H-nonpositive) subspace such
that AjM has no real eigenvalues. Then, in fact, M is H-neutral.

PROOF. Using the well-known canonical form (see, e.g., Chapter 3 in [GLR1]) of
the pair (AÒH) under the transformation (AÒH) ! (S�1ASÒ SŁHS), where S is invertible,
without loss of generality we can (and do) assume that one of the following two cases
holds: (i) õ(A) = fï0g, where ï0 is real; (ii) õ(A) = fï0š iñ0g, where ï0Ò ñ0 are real and
ñ0 6= 0. If (i) holds, Lemma 2.1 is trivial. Assume that (ii) holds. Then there is invertible
S such that

K := S�1AS =
"

J 0
0 JŁ

#
; Q := SŁHS =

"
0 Ip

Ip 0

#
Ò

where J is a Jordan matrix with õ(J) = fï0 + iñ0) (this transformation was used in [R]).
The subspace N = S�1M is K-invariant and Q-nonnegative. Write

N = Im
"

X1 0
0 X2

#
Ò

where the matrices X1 and X2 have full column rank and p rows (that N so decomposes
follows because J and JŁ have no common eigenvalues). We have

"
XŁ

1 0
0 XŁ

2

#
Q
"

X1 0
0 X2

#
=
"

0 XŁ
1X2

XŁ
2X1 0

#
Ò

which is positive semidefinite. This is possible only if XŁ
1X2 = 0, and then N is actually

Q-neutral.

A set S of non-real eigenvalues of A is called a c-set of A if ï0 2 S ) ï̄0 Û2 S, and
the set S is maximal with respect to this property (in other words, if T is a set of non-real
eigenvalues of A such that S � T , and ï0 2 T ) ï̄0 Û2 T , then necessarily S = T ).
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LEMMA 3.2. Let M be A-invariant H-nonnegative (resp. H-nonpositive) subspace.
Then there exists A-invariant H-nonnegative (resp. H-nonpositive) subspace L such that
L � M and dim L = ó+(H) (resp. dim L = ó�(H)). Moreover, if the set S of non-real
eigenvalues of AjM is such that ï 2 S ) ï̄ Û2 S, then for every c-set T of A containing
S the subspace L can be chosen with the additional property that T is the set of non-real
eigenvalues of AjL.

PROOF. Again, we use the canonical form of the pair (AÒH). So it will be assumed
that one of the cases (i) and (ii) of the proof of Lemma 3.1 holds. Assume (ii) holds. Then
by Lemma 3.1 an A-invariant subspace is H-nonegative (or H-nonpositive) if and only if
it is H-neutral. Thus the statement of Lemma 3.2 is contained in Theorem 2.1 of [LMY].
Assume (i) holds, and let ï0 = 0 for convenience. It suffices to consider the case when
M is H-nonnegative (then the case of H-nonpositive M is taken care of by replacing
H with �H). The statement of Lemma 3.2 concerning the set of non-real eigenvalues
of AjL is trivially empty, and we only have to prove the existence of an A-invariant
H-nonegative subspace L � M with dim L = ó+(H). But the existence of such an L is
a very particular case of a well-known result in the theory of linear operators on infinite
dimensional Krein spaces (see, e.g., Corollary 3.3.10 in [AI])

LEMMA 3.3. For every c-set S there exists an A-invariant H-neutral subspace L of
dimension ç(AÒH) such that S is the set of non-real eigenvalues of AjL.

PROOF. Without loss of generality assume that either õ(A) = fïg, ï 2 R or õ(A) =
fïÒ ï̄g, ï Û2 R. In the first case any maximal A-invariant H-neutral subspace will do, in
the second case let L = Ker(A � ñI)m, where ñ 2 fïÒ ï̄g \ S.

Lemmas 3.2 and 3.3 will be needed for the proof of Theorem 2.1.

4. Proof of Theorem 2.1 We continue to use the notation introduced in Sections 2
and 3.

Let

H =
"
�C AŁ

A D

#

Replacing, if necessary, A by A+iãI for sufficiently large real numberã (such replacement
does not alter the set of solutions of (1.1)), we assume without loss of generality that H
is invertible and ó+(H) = ó�(H) = n (the size of the matrices A, C, D, and X). Note the
equalities

H = ĤMÒ HM = MŁH

LEMMA 4.1. Assume D ½ 0, and (AÒD) sign controllable. Then there exists a c-set S
(for the matrix M) such that every n-dimensional M-invariant H-nonpositive subspace

M with õ(M j M ) nR = S is a graph subspace: M = Im
"

I
X

#
for some X.

This result is contained in the proof of Lemma 7.2.6 of [LR2].
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PROOF OF THEOREM 2.1. Let S be the c-set as in Lemma 4.1. By Lemma 3.3, there
exists M-invariant Ĥ-neutral subspace L of dimension ç(MÒ Ĥ) such that S is the set
of nonreal eigenvalues of MjL. Since H = ĤM, the subspace L is also H-neutral. By
Lemma 3.2, there exists an n-dimensional M-invariant H-nonpositive subspace M such
that M � L and õ(M j M ) nR = S. By Lemma 4.1,

M = Im
"

I
X

#

for some n ð n matrix X. One verifies that X is a solution of (1.1). Let f1Ò    Ò fp 2 Cn

(where p = ç(MÒ Ĥ)) be such that
"

I
X

#
fjÒ j = 1Ò    Ò pÒ

form a basis in L, and let fp+1Ò    Ò fn be such that the matrix Y = [f1Ò    Ò fn] is nonsingular.
Since L is Ĥ-neutral, we have

YŁ[I XŁ]Ĥ
"

I
X

#
Y =

"
0p Ł
Ł Ł

#
Ò

where 0p is p ð p. On the other hand,

[I XŁ]Ĥ
"

I
X

#
= i(X � XŁ)Ò

and therefore

rank
�
i(X � XŁ)

�
= rank

"
0p Ł
Ł Ł

#
� 2(n � p)

if 2p ½ n. (If 2p � n, then 2(n� p) ½ n, and the inequality rank
�
i(X � XŁ)

�
� 2(n� p)

is trivial).

5. Proofs of Theorem 2.2 and Proposition 2.3 In this section we assume that all
matrices are real, and the matrices Mr and Ĥr are given by (2.3). As in the proof of
Theorem 2.1, we start with preliminary results.

The set of eigenvalues of Mr is symmetric with respect to the imaginary axis because
the matrix

ĤrMr =
"

C �AT

�A �D

#

is symmetric. Of course, this set is also symmetric with respect to the real axis because
Mr is real. A set S of eigenvalues of Mr will be called an r-set, if:

(a) S does not intersect the imaginary axis;
(b) ï0 2 S ) ï̄0 2 S;
(c) ï0 2 S ) �ï0 Û2 S;
(d) the set S is a maximal (with respect to containment of sets) set of eigenvalues of

Mr having the properties (a), (b), and (c).
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LEMMA 5.1. Assume that D ½ 0 and the pair (AÒD) is sign controllable. Then
there is an r-set S of eigenvalues of Mr such that every n-dimensional Mr-invariant
ĤrMr-nonnegative subspace M � R2n with õ(Mr j M ) n iR = S is a graph subspace:

M = Im
"

I
X

#
for some X.

PROOF. We follow the approach used to prove Lemma 7.2.6 in [LR2]. Let Ŝ be a
maximal set in the complex plane having the properties that ï0 2 Ŝ ) ï̄0 2 Ŝ,�ï0 Û2 Ŝ,
and Ker(ï0I + A)n � C (AÒD) for every real ï0 2 Ŝ and Ker

�
(ï2

0 + ñ2
0)I + 2ï0A + A2

�n
�

C (AÒD) for every pair of complex conjugate numbers ï0 š iñ0 2 Ŝ. We take S to be any
r-set of eigenvalues of Mr contained in Ŝ.

Let

M = Im
"

X1

X2

#
Ò

where X1 and X2 are n ð n matrices, be a subspace with the properties described in the
lemma. Then "

A D
C �AT

# "
X1

X2

#
=
"

X1

X2

#
T(1)

for a uniquely determined matrix T. Moreover,

TK = K Ò(2)

where K = Ker X1. Indeed, using the ĤrMr-nonnegativity of M , we see that the matrix

�[XT
1 XT

2 ]ĤrMr

"
X1

X2

#
= [XT

1 XT
2 ]
"
�C AT

A D

# "
X1

X2

#

is negative semidefinite, and (5.2) follows by the standard arguments (see, e.g., the
proof of Lemma 7.2.2 in [LR2]). Now (5.1) implies ATX2x = �X2Tx for every x 2 K .
Since X2jK is one-to-one, we obtain that ATjX2K is similar to �TjK ; in particular, the
spectrum of ATjX2K is contained in the spectrum of �MrjM .

Let S0 be the union of Ŝ and the set of eigenvalues of Mr with zero real parts (if any).
As in the proof of Lemma 7.2.2 in [LR2], we obtain for any y 2 X2K :

y 2 Ker

2
6666664

D
DAT

...
D(AT)n�1

3
7777775 = C (AÒD)? �

� X
�ïÛ2S0

Rï(A)?
�

=
X

�ïÛ2S0

Rï(AT)Ò(3)

where Rï(Z) stands for the real root subspace of real n ð n matrix Z corresponding to
the eigenvalue ï: Rï(Z) = Ker(ïI � Z)n if ï is real, and

Rï(Z) = Ker
�
(ó2 + ñ2)I + 2óZ + Z2

�n

if ï = ó + iñ is nonreal (here óÒ ñ 2 R and ñ 6= 0). Assuming y 6= 0, it follows from
õ(AT j X2K ) � õ(�Mr j M ) and from (5.3) that õ(Mr j M ) n S0 is not empty. But this
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contradicts the assumption that õ(Mr j M )n iR = S. We must conclude that X2K = f0g,
and since dim M = n, the subspace K = Ker X1 must be the zero subspace. In other
words, X1 is invertible, and

M = Im
"

I
X2X�1

1

#

is a graph subspace.

Next, we present the analogues of Lemmas 3.2 and 3.3 in the real case. Let Hr be an
mðm skew-symmetric invertible matrix (in particular, m is even), and let Ar be an mðm
matrix such that HrAr = �AT

r Hr. It is easy to see that the spectrum of Ar is symmetric
relative to both real and imaginary axes, i.e., ï0 2 õ(Ar) ) šï̄0 2 õ(Ar). A set of
eigenvalues S of Ar is called an r-set if S satisfies the conditions (a)–(d) stated before
Lemma 5.1.

LEMMA 5.2. Let Hr and Ar be as above, and assume that Ar is invertible. Let N be an
Ar-invariant Hr-neutral subspace. Then there exists an Ar-invariant HrAr-nonnegative
(resp. HrAr-nonpositive) subspace L such that L � N and dim L = ó+(HrAr) (resp.
dim L = ó�(HrAr)). Moreover, if the set S of eigenvalues of ArjN with nonzero real
parts is such that ï 2 S ) �ï Û2 S, then for every r-set T of Ar containing S the
subspace L can be chosen with the additional property that T is the set of eigenvalues
of ArjL with nonzero real parts.

PROOF. We proceed in two steps. Only the part concerning Ar-invariant HrAr-
nonnegative subspaces will be proved; the corresponding result for Ar-invariant HrAr-
nonpositive subspaces can be proved analogously.

STEP 1. In addition to the hypotheses of the lemma, it will be assumed that N = f0g.
We use the canonical form of of the pair (ArÒHr) (see [DPWZ], [RR], or [T], for example).

Let E =
"

0 1
�1 0

#
, and for a positive real number b denote

Jk(šib) =

2
666666664

bE I2 Ð Ð Ð 0 0
0 bE Ð Ð Ð 0 0
...

...
...

...
...

0 0 Ð Ð Ð bE I2

0 0 Ð Ð Ð 0 bE

3
777777775
Ò

the real Jordan block of size 2k ð 2k with the pure imaginary eigenvalues šib. In view
of the canonical form, and since Ar is invertible, we have to consider only two cases:

(1) Ar =
"

K 0
0 �KT

#
, Hr =

2
4 0 ImÛ2

�ImÛ2 0

3
5, where the matrix K has no pure imaginary

or zero eigenvalues;
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(2) Ar = Jn1 (šib) ý Ð Ð Ð ý Jnp(šib),

Hr = î1

2
6666664

0 0 Ð Ð Ð 0 En1

0 0 Ð Ð Ð �En1 0
...

...
...

...
...

(�1)n1�1En1 0 Ð Ð Ð 0 0

3
7777775ý Ð Ð Ð ý îp

2
6666664

0 0 Ð Ð Ð 0 Enp

0 0 Ð Ð Ð �Enp 0
...

...
...

...
...

(�1)np�1Enp 0 Ð Ð Ð 0 0

3
7777775 Ò

where îj are +1 or �1.
Theorem 6.1 in [LR3] shows that in the case (1) there exists an Ar-invariant Hr-neutral

subspace L of dimension mÛ2 = ó+(HrAr), and the proof of Theorem 6.1 in [LR3] shows
that the additional property concerning the set of eigenvalues of ArjL with nonzero real
parts can be satisfied as well. In the case (2) observe that for the pair of blocks

Ãr = Jnj (šib)Ò H̃r = îj

2
6666664

0 0 Ð Ð Ð 0 Enj

0 0 Ð Ð Ð �Enj 0
...

...
...

...
...

šEnj 0 Ð Ð Ð 0 0

3
7777775(4)

an Ãr-invariant H̃rÃr-nonnegative subspace of the required dimension is given by
Spanfe1Ò    Ò enj+1g if nj is odd and îj = �1, by Spanfe1Ò    Ò enj�1g if nj is odd and
îj = 1, and by Spanfe1Ò    Ò enjg if nj is even (we denote here by ep the standard unit
coordinate vector, having the p-th coordinate equal to 1 and all other coordinates equal
to 0; the number of coordinates in ep will be clear from the context).

STEP 2. We drop the additional assumption that N = f0g.
In view of the canonical form, we need only to consider separately the cases (1) and

(2) above. In the case (1), by Theorem 6.1 of [LR3] there exists an Ar-invariant Hr-neutral
mÛ2-dimensional subspace L � N ; but also ó+(HrAr) = mÛ2, so we are done (the proof
of Theorem 6.1 in [LR3] guarantees the additional property involving the r-set T ).

Consider now the case (2). We follow the idea of the proof of Theorem 3.1 in [LR3].
Let d = dim N , and assume d Ú ó+(HrAr) (if d = ó+(HrAr) there is nothing to prove).
Consider the subspace

N [?] = fx 2 Rm j xTHry = 0 for all y 2 N g

(the Hr-orthogonal companion of N ). As N is Hr-neutral, we clearly have N �

N [?]. Furthermore, dim N [?] = m � d (because N [?] coincides with the (euclidean)
orthogonal complement to the d-dimensional subspace HrN ). The subspace N [?] is
also Ar-invariant. So, choosing (euclidean) orthonormal bases in N , in N [?] 	N , and
in Rm 	N [?], we represent the matrices Ar and Hr in the following forms:

A0
r =

2
664

A11 A12 A13

0 A22 A23

0 0 A33

3
775 H0

r =

2
664

0 0 H13

0 H22 H23

�HT
13 �HT

23 H33

3
775 
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The matrix H22 is skew-symmetric and invertible (because H0
r has these properties), and

H22A22 is symmetric. Since both H0
r and A0

r are invertible, it easily follows that

ó+(H22A22) = ó+(HrAr) � d Ù 0

By step 1, there exists an A22-invariant H22A22-nonnegative subspace N0 such that
dim N0 = ó+(H22A22). Put L = N + N0 to satisfy the requirements of Lemma 5.2.

Next, we state the analogue of Lemma 3.3.

LEMMA 5.3. Let Hr = �HT
r be a real invertible m ð m matrix, and let Ar be a real

matrix such that HrAr = �AT
r Hr. Then for every r-set S of eigenvalues of Ar there exists

an Ar-invariant Hr-neutral real subspace L of dimension çr(ArÒHr) such that S is the
set of eigenvalues of ArjL having nonzero real parts.

This lemma is contained in Theorem 6.1 in [LR3] and its proof.

Now the proof of Theorem 2.2 proceeds in the same way as the proof of Theorem 2.1,
using the Lemmas 5.1, 5.2, and 5.3 in place of Lemmas 4.1, 3.2, and 3.3, respectively,
and using Ĥr and Mr in place of Ĥ and M.

Finally, we turn to Proposition 2.3. It follows (by letting Ĥr = Hr, Mr = Ar) from a
general statement on pairs of matrices:

LEMMA 5.4. Let Hr = �HT
r and Ar be as in Lemma 5.3. If the symmetric matrix HrAr

has equal number of positive and of negative eigenvalues (counted with multiplicities),
then Ar has an mÛ2-dimensional real invariant subspace.

PROOF. We can assume that Ar has no real eigenvalues (otherwise the lemma is
trivial). Again by the canonical form for the pair (ArÒHr) (cf. the proof of Lemma 5.2),
we further assume that Ar and Hr have the forms of the cases (1) and (2) of the proof
of Lemma 5.2. In the case (1) the statement of Lemma 5.4 is evident. In the case (2)
construct an Ar-invariant subspace M (as in the proof of Lemma 5.2) by selecting for
each pair of blocks (5.4) the subspace given by Spanfe1Ò    Ò enj+1g if nj is odd and
îj = �1, by Spanfe1Ò    Ò enj�1g if nj is odd and îj = 1, and by Spanfe1Ò    Ò enjg if nj is
even. Clearly,

dim M =
m
2

+ #fj j nj is oddÒ îj = �1g � #fj j nj is oddÒ îj = +1g(5)

On the other hand, for the pair of blocks (ÃrÒ H̃r) given by (2.6), an easy inspection shows
that

óš(H̃rÃr) =

8><
>:

nj if nj is even
nj š 1 if nj is odd and îj = �1
nj Ý 1 if nj is odd and îj = 1

and by the hypothesis of the lemma the right hand side of (5.5) is equal to mÛ2.
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6. Discrete algebraic Riccati equations. Consider the DARE,

X = AŁXA + Q� (AŁXB)Ł(R + BŁXB)�1BŁXAÒ(1)

where the given complex matrices A, B, Q = QŁ and R = RŁ are of sizes n ð n, m ð n,
n ð n, and m ð m, respectively. A complex n ð n matrix X (not necessarily hermitian)
satisfying (6.1) is sought. In this section we will obtain results analogous to Theorems 2.1
and 2.2. The main method of proof will consist of reduction of the DARE (6.1) to the
CARE (1.1). Because of the limitations of this method, it will be assumed throughout
this section that A and R are invertible matrices.

Introduce the matrix

T =
"

A + BR�1BŁAŁ�1Q �BR�1BŁAŁ�1

�AŁ�1Q AŁ�1

#
Ò(2)

and the rational matrix function

Ψ(z) = R + [�BŁAŁ�1QÒBŁAŁ�1]
 

zI �
"

A 0
�AŁ�1Q AŁ�1

#!�1 "
B
0

#
Ò(3)

whose inverse is given by

Ψ(z)�1 = R�1 � [�R�1BŁAŁ�1QÒR�1BŁAŁ�1](zI � T)�1
"

BR�1

0

#


The approach to study the hermitian solutions of DARE using T and Ψ(z) was used
first in [LRR] (this approach had many precursors, see, e.g., [PLS]) and exposed with
full details in Chapter 12 of [LR2]. Here we use this approach to study non-hermitian
solutions of DARE.

If X is an n ð n matrix, the subspace Im
"

I
X

#
is called the graph subspace of X.

PROPOSITION 6.1. The graph subspace of X is T-invariant if and only if X is a solution
of (6.1).

For the proof, simply repeat a part of the proof of Proposition 12.2.2 in [LR2].

PROPOSITION 6.2. An nð n matrix X is a solution of (6.1) if only if X is a solution of
the CARE,

XDX � XC � CŁX � E = 0Ò(4)

where
D = �2(ëI � A)�1BΨ(ë)�1BŁ(ë̄I � AŁ)�1Ò(5)

C = (A�1 � ë̄I)�1(A�1 + ë̄I)

+2(ëI � A)�1BΨ(ë)�1BŁ
�
ë̄I � AŁ

��1
QA�1(ë̄I � A)�1)�1Ò(6)

and E is a suitable hermitian matrix (the exact form of E is not important here). The
function Ψ(z) is defined in the equation (6.3), and ë is a unimodular number such that the
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matrices Ψ(ë)Ò ëI� A, ë̄I�A�1 and ëI� T are invertible, where T is given by equation
(6.2) (and the existence of such an ë is guaranteed).

The proof proceeds as in the proof of Proposition 12.2.2 of [LR2]. For future reference
we indicate that in fact

û(T) =
"
�C D
E CŁ

#
Ò

where û(ï) = (ï + ë)(ï � ë)�1, and the matrices T, C, and D are given by (6.2), (6.4),
and (6.5), respectively.

Let J =
"

0 �iI
iI 0

#
. A straightforward calculation shows that TŁJT = J; in other words,

T is J-unitary. We define the neutrality index ç(TÒ J) of the pair (TÒ J) analogously to that
of self-adjoint matrices with respect to an indefinite scalar product. Namely, ç(TÒ J) is
the dimension of a maximal T-invariant J-neutral subspace.

A pair (AÒB) with n ð n matrix A is called d-sign controllable if for every ï0 6= 0
at least one of the subspaces Ker(ï0I � A)n and Ker(ï̄�1

0 I � A)n is contained in the
controllable subspace C (AÒB) (defined by (2.1)).

THEOREM 6.3. Assume that A and R are invertible, and there exists a unimodular
number ë such that Ψ(ë) is positive definite. If the pair (AÒB) is d-sign controllable, then
the equation (6.1) has a solution X such that

rank
�
i(X � XŁ)

�
� 2

�
n � ç(TÒ J)

�


For the proof we need a lemma.

LEMMA 6.4. Let A be n ð n, and B be n ð m. Then (AÒB) is sign controllable (resp.
d-sign controllable) if and only if (SAS�1 + SBKÒ SBL) is sign controllable (resp. d-sign
controllable) for any mð n matrix K, any mð p matrix L such that Im(BL) = Im B, and
any invertible n ð n matrix S.

PROOF. The set of transformations (AÒB) ! (SAS�1 + SBKÒ SBL), where K, L, S
satisfy the conditions of the lemma, is easily seen to be a group. It is therefore sufficient
to prove the lemma for the three particular cases: (1) K = 0, L = I; (2) S = I, K = 0; (3)
S = I, L = I. In the case (1) the result follows immediately from the obvious observation
that C (SAS�1Ò SB) = SC (AÒB) and Ker(SAS�1 � ï0I)n = S[Ker(A � ï0I)n]. The case
(2) is trivial because the condition Im(BL) = Im B guarantees that C (AÒB) = C (AÒBL).
Finally, assume S = I, L = I, and consider the sign controllability property (the proof
for the d-sign controllability is completely analogous). Write A and B as 2 ð 2 block
matrices with respect to the orthogonal decomposition Cn = C (AÒB) ý C (AÒB)?:

A =
"

A1 A12

0 A2

#
Ò B =

"
B1

0

#


The sign controllability condition implies that for every pair of complex numbers ï, �ï̄
at least one ofï and�ï̄ is not an eigenvalue of A2 (in particular, A2 has no pure imaginary
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or zero eigenvalues). Indeed, for every such pair ï, �ï̄ at least one of them, call it ï0,
has the property that Rï0 (A) � C (AÒB). Therefore, dim Rï0 (A) = dim

�
Rï0 \ C (AÒB)

�
=

dim Rï0

�
AjC (AÒB)

�
= dim Rï0 (A1). On the other hand, dim Rï0 (A) (resp. dim Rï0 (A1))

is just the multiplicity of ï0 as a zero of det(ïI � A) (resp. of det(ïI � A1)). Since
det(ïI � A) = det(ïI � A1) det(ïI � A2), it follows that ï0 is not a zero of det(ïI � A2).

Now A + BK =
"

A1 + B1K A12 + B1K
0 A2

#
. Hence A + BK also has the property that for

every pair of eigenvalues ï, �ï̄ of A + BK at least one of them is not an eigenvalue
of A2. Reversing the above argument, we obtain that at least one of ï, �ï̄ (call it ï0)
satisfies the property Rï0 (A) � C (AÒB). Since clearly C (A + BKÒB) = C (AÒB), the sign
controllability of (A + BKÒB) follows.

PROOF OF THEOREM 6.3. Lemma 6.4 implies that the pair (CÒD) is sign controllable,
where C and D are given by (6.6) and (6.5), respectively. Now apply Proposition 6.2 and
Theorem 2.1.

A real version of Theorem 6.3 can be obtained, under the additional hypotheses that
ë can be chosen to be either 1 or �1 in Theorem 6.3 and that the matrix

"
C �D
�E �CT

#

is invertible. Here C, D and E are taken from Proposition 6.2. We state the result, omitting
the proof.

THEOREM 6.5. (F = R). Assume that A and R are invertible, the pair (AÒB) is d-sign
controllable, and there exists ë0 2 f1Ò �1g such that the matrices ë0I � A, ë0I � A�1,
ë0I š T are invertible and the matrix Ψ(ë0) is positive definite. Then the equation (6.1)
admits a real solution X such that

rank(X � XT) � 2
�
n � ç(TÒ Ĵ)

�
Ò

where Ĵ =
"

0 I
�I 0

#
.

As in Theorems 2.1 and 2.2, additional information can be given concerning the
spectral properties of the solutions whose existence is asserted in Theorems 6.1 and 6.5.
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