POLYNOMIALS WITH A PRESCRIBED ZERO AND THE BERNSTEIN'S INEQUALITY

P. F. OLIVIER AND A. O. WATT

ABSTRACT Let \mathcal{P}_{n1} be the class of all polynomials p of degree at most n such that $|p(z)| \leq 1$ for $|z| \leq 1$ In view of the example z^n it follows from Bernstein's inequality for polynomials that $\sup_{p \in \mathcal{P}_{n1}} |p'(z_0)| = n$ at each point z_0 of the unit cirle It was shown by A Giroux and Q I Rahman [2] that if \mathcal{P}_{n1}^* denotes the subclass of polynomials in \mathcal{P}_{n1} which vanish at 1, then

$$n - \frac{c_1}{n} < \sup_{p \in \mathcal{P}_{n+1}^*} \max_{|z| = 1} \left| p'(z) \right| < n - \frac{c_2}{n}$$

where c_1 and c_2 are constants not depending on *n* Here we find the exact value of $\sup_{p \in \mathcal{P}_{n_1}^*} |p'(z)|$ at z = -1 which has some special significance and also at certain other points of the unit circle

1. **Introduction.** Let \mathcal{P}_n be the class of all polynomials $p(z) := \sum_{\nu=0}^n a_{\nu} z^{\nu}$ of degree at most *n*. We shall abbreviate $\max_{|z|=1} |p(z)|$ by ||p||. The subclass of \mathcal{P}_n consisting of polynomials *p* with $||p|| \le 1$ will be denoted by $\mathcal{P}_{n,1}$. Polynomials in $\mathcal{P}_{n,1}$ which vanish at 1 will be said to belong to $\mathcal{P}_{n,1}^*$.

According to Bernstein's inequality for polynomials

(1)
$$\sup_{p\in\mathcal{P}_{n+1}}|p'(z)|=n$$

at each point z of the unit circle. Further, the supremum is attained only for $p(z) := e^{i\gamma} z^n$, $\gamma \in \mathbb{R}$.

In this paper we seek to determine how large |p'(z)| can be at a prescribed point z of the unit circle if p is restricted to the subclass $\mathcal{P}_{n,1}^*$ of $\mathcal{P}_{n,1}$. A priori the supremum can be different at different points. We obtain the sharp answer for z belonging to a certain set E_n which will be specified below.

2. Statement of result. For $n \in \mathbb{N}$ let T_n denote as usual the *n*-th Chebyshev polynomial of the first kind. For each integer ν , $1 \le \nu \le 2n - 1$ let ρ_{ν} be the only root of the equation

(2)
$$T_n(\rho) = \frac{1}{n\sin(\nu\pi/2n)} \sqrt{\frac{1-\rho^2}{1-\rho^2\cos^2(\nu\pi/2n)}}$$

Key words and phrases polynomials, Bernstein's inequality, Chebyshev polynomials

Received by the editors October 17, 1991

AMS subject classification Primary 30C10, 26D05, secondary 41A17

[©] Canadian Mathematical Society 1993

in $(\cos(\pi/2n), 1)$ if ν is even; otherwise let $\rho_{\nu} = \cos(\pi/2n)$. Denote by φ_{ν} the unique root of the equation

(3)
$$\cos\frac{\varphi}{2} = \rho_{\nu}\cos\frac{\nu\pi}{2n}$$

in $(0, 2\pi)$. The set E_n alluded to above consists of the points $z_{n,\nu} = e^{i\varphi_1}$, $1 \le \nu \le 2n-1$. It was proved in [1] that if *n* is odd then for $p \in \mathcal{P}_{n,1}^*$ we have

$$(4) |p'(-1)| \le n\cos^2\frac{\pi}{4n}.$$

In (4) equality holds if and only if $p = e^{i\gamma}P$, $\gamma \in \mathbb{R}$ where P is defined by

(5)
$$P(z^2) = z^n \left\{ T_n \left(\rho \frac{z + z^{-1}}{2} \right) + \frac{1}{n} \frac{z - z^{-1}}{2} T'_n \left(\rho \frac{z + z^{-1}}{2} \right) \right\}, \quad \rho = \cos \frac{\pi}{2n}.$$

Here we are able to find the polynomials in $\mathcal{P}_{n,1}^*$ which maximize |p'(z)| at any *prescribed* point *z* belonging to the set E_n .

Let

$$\zeta_{\nu}(z) := \rho_{\nu} \frac{z + z^{-1}}{2} - i \frac{1 - \rho_{\nu}^2}{\rho_{\nu}} \frac{\cos(\varphi_{\nu}/2)}{\sin(\varphi_{\nu}/2)} \frac{z - z^{-1}}{2}, \quad 1 \le \nu \le 2n - 1.$$

Since T_n is even or odd according as *n* is even or odd respectively it is easily seen that for $1 \le \nu \le 2n - 1$ the function

$$z \mapsto z^{n} e^{-i(n/2-1)\varphi_{\nu}} \left\{ \left(\frac{1}{n} \sqrt{1-\rho_{\nu}^{2}} T_{n}'(\rho_{\nu}) \right) T_{n}(\zeta_{\nu}(z)) - \left(\frac{1}{n} \sqrt{1-\rho_{\nu}^{2}} T_{n}(\rho_{\nu}) \frac{z+z^{-1}}{2} - \frac{\sqrt{\rho_{\nu}^{2}-\cos^{2}(\varphi_{\nu}/2)}}{n\rho_{\nu}\sin(\varphi_{\nu}/2)} \frac{z-z^{-1}}{2} + i \frac{1}{n} \sqrt{1-\rho_{\nu}^{2}} T_{n}(\rho_{\nu}) \frac{\cos(\varphi_{\nu}/2)}{\sin(\varphi_{\nu}/2)} \frac{z-z^{-1}}{2} \right) T_{n}'(\zeta_{\nu}(z)) \right\}$$

is an *even* polynomial of degree 2n and so can be written as $P_{n,\nu}(z^2)$ where $P_{n,\nu}$ is a polynomial of degree n.

We prove the following

THEOREM. The polynomial $P_{n,\nu}$ belongs to $\mathcal{P}_{n,1}^*$ for $1 \leq \nu \leq 2n-1$ and

(6)
$$\sup_{p\in\mathcal{P}_{n,1}^{\star}}|p'(e^{i\varphi_{\nu}})|=\frac{n}{2}\left|\frac{\sqrt{\rho_{\nu}^{2}-\cos^{2}(\varphi_{\nu}/2)}}{\sin(\varphi_{\nu}/2)}+\frac{1}{n}\sqrt{1-\rho_{\nu}^{2}}T'_{n}(\rho_{\nu})\right|=|P'_{n,\nu}(e^{i\varphi_{\nu}})|.$$

The supremum is attained if and only if $p = e^{i\gamma} P_{n,\nu}$ where $\gamma \in \mathbb{R}$.

REMARK 1. From (2) and (3) it follows that

$$T_n(\rho_{\nu}) = \frac{1}{n\sin(\varphi_{\nu}/2)} \frac{\rho_{\nu}\sqrt{1-\rho_{\nu}^2}}{\sqrt{\rho_{\nu}^2 - \cos^2(\varphi_{\nu}/2)}}$$

and

$$T'_{n}(\rho_{\nu}) = \frac{n}{\sqrt{1 - \rho_{\nu}^{2}}} \sqrt{1 - \frac{\rho_{\nu}^{2}(1 - \rho_{\nu}^{2})}{n^{2}\sin^{2}(\varphi_{\nu}/2)(\rho_{\nu}^{2} - \cos^{2}(\varphi_{\nu}/2))}}$$

628

REMARK 2. In order to simplify the presentation we introduce for $1 \le \nu \le 2n - 1$ the functions

(7)
$$\xi_{n,\nu}(\theta) := \zeta_{\nu}(e^{i\theta/2}) = \rho_{\nu}\cos(\theta/2) + \frac{1-\rho_{\nu}^2}{\rho_{\nu}}\frac{\cos(\varphi_{\nu}/2)}{\sin(\varphi_{\nu}/2)}\sin(\theta/2)$$

(8)
$$R_{n,\nu}(\theta) := \frac{\sqrt{1-\rho_{\nu}^2}}{n} \left\{ T'_n(\rho_{\nu}) T_n\left(\xi_{n,\nu}(\theta)\right) - T_n(\rho_{\nu}) \frac{\sin\left((\varphi_{\nu}-\theta)/2\right)}{\sin(\varphi_{\nu}/2)} T'_n(\xi_{n,\nu}(\theta)) \right\}$$

(9)
$$I_{n,\nu}(\theta) := \frac{1}{n\rho_{\nu}\sin(\varphi_{\nu}/2)}\sqrt{\rho_{\nu}^2 - \cos^2(\varphi_{\nu}/2)}\sin(\theta/2)T'_n(\xi_{n,\nu}(\theta))$$

(10)
$$\omega_{n,\nu}(\theta) := T_n(\rho_\nu)T_n\big(\xi_{n,\nu}(\theta)\big) + \frac{1-\rho_\nu^2}{n^2}T'_n(\rho_\nu)\frac{\sin\big((\varphi_\nu-\theta)/2\big)}{\sin(\varphi_\nu/2)}T'_n\big(\xi_{n,\nu}(\theta)\big),$$

which are defined on $[0, 2\pi)$. It is clear that

(11)
$$P_{n,\nu}(e^{i\theta}) = e^{-i(n/2-1)\varphi_i} e^{in\theta/2} \Big(R_{n,\nu}(\theta) + iI_{n,\nu}(\theta) \Big).$$

3. Some properties of $P_{n,\nu}$. In Lemmas 1–4 presented below we give certain properties of $P_{n,\nu}$ which are relevant in the present context.

LEMMA 1. The polynomial $P_{n,\nu}$ belongs to $\mathcal{P}_{n,1}^*$ for $1 \leq \nu \leq 2n-1$.

PROOF. We have already seen that $P_{n,\nu}$ is a polynomial of degree *n*. Now using formulas (8), (9), (10) and (11) of Remark 2 we obtain

$$\begin{split} |P_{n,\nu}(e^{i\theta})|^2 &\leq |P_{n,\nu}(e^{i\theta})|^2 + \omega_{n,\nu}^2(\theta) \\ &= R_{n,\nu}^2(\theta) + I_{n,\nu}^2(\theta) + \omega_{n,\nu}^2(\theta) \\ &= \frac{1 - \rho_{\nu}^2}{n^2} \left\{ T_n'(\rho_{\nu}) T_n(\xi_{n,\nu}(\theta)) - T_n(\rho_{\nu}) \frac{\sin((\varphi_{\nu} - \theta)/2)}{\sin(\varphi_{\nu}/2)} T_n'(\xi_{n,\nu}(\theta)) \right\}^2 \\ &+ \frac{1}{n^2} \frac{\rho_{\nu}^2 - \cos^2(\varphi_{\nu}/2)}{\rho_{\nu}^2 \sin^2(\varphi_{\nu}/2)} \sin^2(\theta/2) T_n'^2(\xi_{n,\nu}(\theta)) \\ &+ \left\{ T_n(\rho_{\nu}) T_n(\xi_{n,\nu}(\theta)) + \frac{1 - \rho_{\nu}^2}{n^2} T_n'(\rho_{\nu}) \frac{\sin((\varphi_{\nu} - \theta)/2)}{\sin(\varphi_{\nu}/2)} T_n'(\xi_{n,\nu}(\theta)) \right\}^2 \\ &= T_n^2(\xi_{n,\nu}(\theta)) + \left(1 - \xi_{n,\nu}^2(\theta)\right) \frac{1}{n^2} T_n'^2(\xi_{n,\nu}(\theta)) \\ &= 1. \end{split}$$

Finally a simple verification gives

$$P_{n,\nu}(1)=0.$$

REMARK 3. The proof of Lemma 1 shows in particular that

$$|P_{n,\nu}(e^{i\theta})|^2 + \omega_{n,\nu}^2(\theta) = 1.$$

In Lemma 2 we describe the points where $|P_{n,\nu}(z)|$ attains its maximum on the unit circle.

LEMMA 2 Let ν be an integer such that $1 \le \nu \le 2n - 1$ The maximum of $|P_{n_1}(z)|$ on the unit circle is 1 which is attained at n points $z_k = e^{i\theta_k}$ $1 \le k \le n$ where $0 < \theta_1 < \theta_2 < \ldots < \theta_n < 2\pi$ The numbers θ_k depend on n and ν , if ν is odd they are characterized by

(12)
$$\begin{cases} \xi_{n\,\nu}(\theta_k) = \cos k\frac{\pi}{n}, & 1 \le k \le \frac{\nu+1}{2} - 1 \text{ (to be discounted if } \nu = 1) \\ \xi_{n\,\nu}(\theta_{(\nu+1)/2}) = \cos \frac{\nu}{2}\frac{\pi}{n}, & \theta_{(\nu+1)/2} = \varphi_i \\ \xi_{n\,\nu}(\theta_k) = \cos(k-1)\frac{\pi}{n}, & \frac{\nu+1}{2} + 1 \le k \le n \text{ (to be discounted if } \nu = 2n-1) \end{cases}$$

whereas if ν is even they satisfy

$$T_n\Big(\xi_{n\,\nu}(\theta_k)\Big) = (-1)^{k+1} \frac{\sqrt{n^2(\rho_\nu^2 - \cos^2(\varphi_\nu/2))\sin^2(\varphi_\nu/2) - \rho_\nu^2(1-\rho_\nu^2)}}{\sqrt{\rho_\nu^2 - \cos^2(\varphi_\nu/2)}\sqrt{n^2\sin^2(\varphi/2)\sin^2((\varphi_\nu - \theta_k)/2) + \sin^2(\theta_k/2)}} \sin \frac{\varphi}{2} \frac{\theta_k}{2}$$
$$T'_n\Big(\xi_n\ (\theta_k)\Big) = (-1)^k \frac{n\rho_\nu\sin(\varphi_\nu/2)}{\sqrt{\rho_\nu^2 - \cos^2(\varphi_\nu/2)}\sqrt{n^2\sin^2(\varphi_\nu/2)\sin^2((\varphi - \theta_k)/2) + \sin^2(\theta_k/2)}} \quad 1 \le k < n$$

PROOF Let us write $\xi_{n\nu}(\theta)$ in the form $\xi_{n\nu}(\theta) = \rho_* \cos(\theta_* - \theta/2)$ where

$$\rho_* = \sqrt{\rho_{\nu}^2 + \frac{(1 - \rho_{\nu}^2)^2}{\rho_{\nu}^2} \frac{\cos^2(\varphi_{\nu}/2)}{\sin^2(\varphi_{\nu}/2)}}$$

and $\theta_* \in (-\pi/2, \pi/2)$ is such that $\cos \theta_* = \frac{\rho_{\nu}}{\rho_*}$ and $\sin \theta_* = \frac{1}{\rho} \frac{1-\rho_1^2}{\rho^2} \frac{\cos(\varphi/2)}{\sin(\varphi/2)}$ As is easily seen, $\xi_{n\nu}(\theta)$ decreases from ρ_{ν} to $-\rho_{\nu}$ on the interval $[4\theta_*, 2\pi] \subseteq [0, 2\pi]$ in case $\theta_* \in [0, \pi/2)$ and decreases from ρ_{ν} to $-\rho_{\nu}$ on the interval $[0, 4\theta_* + 2\pi] \subseteq [0, 2\pi]$ in case $\theta_* \in (-\pi/2, 0]$ It is also clear that $|P_{n\nu}(e^{i\theta})| = 1$ if and only if $\omega_{n\nu}(\theta) = 0$

Let ν be odd We have $T_n(\rho_{\nu}) = T_n(\cos(\pi/2n)) = 0$ Then, from (10) it follows that $\omega_{n\nu}(\theta)$ is zero if and only if $\sin((\varphi_{\nu} - \theta)/2)T'_n(\xi_{n\nu}(\theta)) = 0$, ιe if $\theta = \varphi_i$ or $\xi_{n\nu}(\theta_{\mu}) = \cos(\mu \pi/n)$ for some integer μ , $1 \le \mu \le n-1$ Referring to (7) and recalling that φ_{ν} satisfies the equation (3) we obtain

(13)
$$\xi_{n\nu}(\varphi_{\nu}) = \frac{1}{\rho_{\nu}}\cos(\varphi_{\nu}/2) = \cos\frac{\nu\pi}{2n}$$

In view of these considerations the zeros of $\omega_{n_1}(\theta)$ get arranged in increasing order if we increase the subscript μ of θ_{μ} by 1 for $\mu \ge (\nu + 1)/2$ and set $\theta_{(\nu+1)/2} = \varphi_i$

Now let ν be even Since $e^{in\theta/2}\omega_{n\nu}(\theta) = Q(e^{i\theta})$ where Q is a polynomial of degree $n, \omega_{n\nu}(z)$ has exactly n zeros in the strip $0 \leq \Re(z) < 2\pi$ We will show that in fact all these zeros are real Suppose first that $\theta_* \in [0, \pi/2)$ and examine $T_n(\xi_{n\perp}(\theta))$ for θ be longing to the interval $[0, 2\pi)$ For $1 \leq k \leq n-1$ let θ_k be the value in $(0, 2\pi)$ for which $\xi_{n\perp}(\theta_k) = \cos(k\pi/n)$ Then $T_n(\xi_{n\nu}(\theta_k)) = (-1)^k$ and $T'_n(\xi_{n\perp}(\theta_k)) = 0$ So according to (10), $\omega_{n\nu}(\theta_k) = (-1)^k T_n(\rho_\nu)$ Studying $\xi_{n\perp}(\theta)$ we see that $T_n(\xi_{n\perp}(\theta))$ increases from $T_n(\rho_\nu)$ to $T_n(\rho_*)$ on the interval $[0, 2\theta_*]$ and decreases from $T_n(\rho_*)$ to -1 on $[2\theta_*, \theta_1]$ On

the interval $[\theta_1, \theta_{n-1}]$ the graph of $T_n(\xi_{n,i}(\theta))$ has n-2 branches going up from -1 to +1 or going down from +1 to -1 Finally, when θ varies from θ_{n-1} to 2π , $T_n(\xi_{n,\nu}(\theta))$ increases or decreases from $(-1)^{n-1}$ to $(-1)^n T_n(\rho_{\nu})$ according as n is even or odd Further, a simple calculation shows that $\omega_{n,\nu}(0) = 1$ and $\omega_{n,\nu}(2\pi) = (-1)^n$ The preceding observations allow us to conclude that $\omega_{n,\nu}(\theta)$ vanishes at least once in each of the n intervals $(0, \theta_1), (\theta_1, \theta_2), \dots, (\theta_{n-1}, 2\pi)$

In case $\theta_* \in (-\pi/2, 0]$ the disposition of the curve $T_n(\xi_{n\nu}(\theta))$ changes, but arguing in roughly the same way as above we arrive at the desired conclusion about the zeros of $\omega_{n\nu}(\theta)$

If as before we denote the zeros of $\omega_{n\nu}$ by θ_k , $1 \le k \le n$, then from (10) it follows that (14)

$$T_{n}(\rho_{\nu})T_{n}(\xi_{n\nu}(\theta_{k})) + \frac{1-\rho_{\nu}^{2}}{n^{2}}T_{n}'(\rho_{\nu})\frac{\sin((\varphi_{\nu}-\theta_{k})/2)}{\sin(\varphi_{\nu}/2)}T_{n}'(\xi_{n\nu}(\theta_{k})) = 0, \quad 1 \le k \le n$$

Using the expressions for $T_n(\rho_{\nu})$ and $T'_n(\rho_{\nu})$ contained in Remark 1 we obtain

$$\rho_{\nu}\sqrt{1-\xi_{n\,\nu}^{2}(\theta_{k})}\sin\frac{\varphi_{\nu}}{2}T_{n}\left(\xi_{n\,\nu}(\theta_{k})\right) + \sqrt{n^{2}(\rho_{\nu}^{2}-\cos^{2}\frac{\varphi_{\nu}}{2})\sin^{2}\frac{\varphi_{\nu}}{2}-\rho_{\nu}^{2}(1-\rho_{\nu}^{2})}\sin\frac{\varphi_{\nu}-\theta_{k}}{2}\sqrt{1-\xi_{n\,\nu}^{2}(\theta_{k})}\frac{T_{n}'\left(\xi_{n\,\nu}(\theta_{k})\right)}{n} = 0$$

This, in conjunction with

$$n^2 T_n^2 \left(\xi_{n\nu}(\theta_k) \right) + \left(1 - \xi_{n\nu}^2(\theta_k) \right) T_n^2 \left(\xi_{n\nu}(\theta_k) \right) = n^2$$

gives us

$$T_{n}\left(\xi_{n\nu}(\theta_{k})\right) = \pm \frac{\sqrt{n^{2}\left(\rho_{\nu}^{2} - \cos^{2}(\varphi_{\nu}/2)\right)\sin^{2}(\varphi_{\nu}/2) - \rho_{\nu}^{2}(1 - \rho_{\nu}^{2})}\sin\left((\varphi - \theta_{k})/2\right)}{\sqrt{\rho_{\nu}^{2}(1 - \xi_{n\nu}^{2}(\theta_{k}))\sin^{2}(\varphi /2) + \left(n^{2}\left(\rho_{\nu}^{2} - \cos^{2}(\varphi_{\nu}/2)\right)\sin^{2}(\varphi_{\nu}/2) - \rho_{\nu}^{2}(1 - \rho_{\nu}^{2})\right)\sin^{2}\left((\varphi_{\nu} - \theta_{k})/2\right)}}$$

and

$$T'_{n}(\xi_{n\nu}(\theta_{k})) = \pm \frac{n\rho_{\nu}\sin(\varphi_{\nu}/2)}{\sqrt{\rho_{\nu}^{2}(1-\xi_{n}^{2}(\theta_{k}))\sin^{2}(\varphi_{\nu}/2) + (n^{2}(\rho_{\nu}^{2}-\cos^{2}(\varphi_{\nu}/2))\sin^{2}(\varphi_{\nu}/2) - \rho_{\nu}^{2}(1-\rho_{\nu}^{2}))\sin^{2}((\varphi_{\nu}-\theta_{k})/2)}}$$

Now let $\theta_* \in [0, \pi/2)$ Since ν is even and φ_{ν} satisfies (13) it follows that

$$T_n\left(\xi_{n\,\nu}(\varphi_{\nu})\right) = T_n\left(\cos\frac{\nu\pi}{2n}\right) = \cos\frac{\nu\pi}{2} = (-1)^{\nu/2},$$

and so φ_{ν} is one of the values θ_k , $1 \le k \le n-1$. We observe in addition that $T'_n(\xi_{n,\nu}(\theta))$ is alternately negative and positive in the intervals $(2\theta_*, \theta_1), (\theta_1, \theta_2), \dots, (\theta_{n-1}, 2\pi)$; further $T_n(\xi_{n,\nu}(\theta_k))T'_n(\xi_{n,\nu}(\theta_k))$ is negative or positive according as $\varphi_{\nu} > \theta_k$ or $\varphi_{\nu} < \theta_k$ respectively. These remarks and the identity

$$\rho_{\nu}^{2} \left(1 - \xi_{n,\nu}^{2}(\theta_{k})\right) \sin^{2} \frac{\varphi_{\nu}}{2} + \left(n^{2} \left(\rho_{\nu}^{2} - \cos^{2} \frac{\varphi_{\nu}}{2}\right) \sin^{2} \frac{\varphi_{\nu}}{2} - \rho_{\nu}^{2} (1 - \rho_{\nu}^{2})\right) \sin^{2} \frac{\varphi_{\nu} - \theta_{k}}{2} \\ = \left(\rho_{\nu}^{2} - \cos^{2} \frac{\varphi_{\nu}}{2}\right) \left(n^{2} \sin^{2} \frac{\varphi_{\nu}}{2} \sin^{2} \frac{\varphi_{\nu} - \theta_{k}}{2} + \sin^{2} \frac{\theta_{k}}{2}\right)$$

easily lead us to the result stated in the second part of the Lemma. The above argument remains valid in case $\theta_* \in (-\pi/2, 0]$.

Lemma 3 gives the values of $P_{n,\nu}(z)$ at the points $z_k := e^{i\theta_k}$, $1 \le k \le n$.

LEMMA 3. Let ν be an integer such that $1 \le \nu \le 2n-1$. Then at the points $z_k := e^{i\theta_k}$, $1 \le k \le n$ defined in Lemma 2 we have for odd ν

$$P_{n,\nu}(e^{i\theta_k}) = (-1)^k e^{-i(n/2-1)\varphi_1} e^{in\theta_k/2}, \quad 1 \le k \le \frac{\nu+1}{2} - 1$$
$$P_{n,\nu}(e^{i\theta_{(\nu+1)/2}}) = e^{i\nu\pi/2} e^{i\varphi_\nu}, \quad \theta_{(\nu+1)/2} := \varphi_\nu$$
$$P_{n,\nu}(e^{i\theta_k}) = (-1)^{k-1} e^{-i(n/2-1)\varphi_\nu} e^{in\theta_k/2}, \quad \frac{\nu+1}{2} + 1 \le k \le n$$

whereas for even ν

$$P_{n,\nu}(e^{i\theta_k}) = (-1)^k e^{-i(n/2-1)\varphi_1} e^{in\theta_k/2} \frac{-n\sin(\varphi_\nu/2)\sin((\varphi_\nu - \theta_k)/2) + i\sin(\theta_k/2)}{\sqrt{n^2\sin^2(\varphi_\nu/2)\sin^2((\varphi_\nu - \theta_k)/2) + \sin^2(\theta_k/2)}},$$

1 \le k \le n.

PROOF. Let ν be odd, then by definition $\rho_{\nu} = \cos(\pi/2n)$. Using (11), (8) and (9) we have for $1 \le k \le n$,

$$P_{n,\nu}(e^{i\theta_k}) = e^{-i(n/2-1)\varphi_i} e^{in\theta_k/2} \bigg(T_n(\xi_{n,\nu}(\theta_k)) + i \frac{\sqrt{\rho_\nu^2 - \cos^2(\varphi_\nu/2)}}{n\rho_\nu \sin(\varphi_\nu/2)} \sin \frac{\theta_k}{2} T'_n(\xi_{n,\nu}(\theta_k)) \bigg).$$

Then, by the first part of Lemma 2 we obtain the result for odd ν .

Now let ν be even. According to (8), (9), Remark 1 and the second part of Lemma 2 it follows

$$R_{n,\nu}(\theta_k) = (-1)^{k+1} \frac{n\sin(\varphi_\nu/2)\sin((\varphi_\nu - \theta_k)/2)}{\sqrt{n^2\sin^2(\varphi_\nu/2)\sin^2((\varphi_\nu - \theta_k)/2) + \sin^2(\theta_k/2)}}$$
$$I_{n,\nu}(\theta_k) = (-1)^k \frac{\sin(\theta_k/2)}{\sqrt{n^2\sin^2(\varphi_\nu/2)\sin^2((\varphi_\nu - \theta_k)/2) + \sin^2(\theta_k/2)}}.$$

Hence, by (11) we obtain the result.

In Lemma 4 we calculate $|P'_{n,\nu}(z)|$ at the points of E_n.

LEMMA 4. Let ν be an integer such that $1 \leq \nu \leq 2n - 1$, φ_{ν} and $P_{n,\nu}$ defined as in Section 2. Then we have

$$|P'_{n,\nu}(e^{i\varphi_{\nu}})| = \frac{n}{2} \left| \frac{\sqrt{\rho_{\nu}^2 - \cos^2(\varphi_{\nu}/2)}}{\sin(\varphi_{\nu}/2)} + \frac{1}{n} \sqrt{1 - \rho_{\nu}^2} T'_n(\rho_{\nu}) \right|, \quad 1 \le \nu \le 2n - 1.$$

PROOF. From (11), (8) and (9) it is easily seen that the derivative of $P_{n,\nu}(e^{i\theta})$ with respect to θ at $\theta = \varphi_{\nu}$ gives

$$P'_{n,\nu}(e^{i\varphi_1}) = A_{n,\nu} + iB_{n,\nu} \quad 1 \le \nu \le 2n-1,$$

where

$$\begin{split} A_{n,\nu} &:= \frac{\sqrt{1 - \rho_{\nu}^2}}{2} T'_n(\rho_{\nu}) T_n\big(\xi_{n,\nu}(\varphi_{\nu})\big) + \frac{\sqrt{\rho_{\nu}^2 - \cos^2(\varphi_{\nu}/2)}}{2n\rho_{\nu}\sin(\varphi_{\nu}/2)} \cos\frac{\varphi_{\nu}}{2} T'_n\big(\xi_{n,\nu}(\varphi_{\nu})\big) \\ &+ \frac{\sqrt{\rho_{\nu}^2 - \cos^2(\varphi_{\nu}/2)}}{n\rho_{\nu}} \xi'_{n,\nu}(\varphi_{\nu}) T''_n\big(\xi_{n,\nu}(\varphi_{\nu})\big) \\ B_{n,\nu} &:= \Big(\frac{\sqrt{\rho_{\nu}^2 - \cos^2(\varphi_{\nu}/2)}}{2\rho_{\nu}} - \frac{\sqrt{1 - \rho_{\nu}^2}}{n} \xi'_{n,\nu}(\varphi_{\nu}) T'_n(\rho_{\nu}) \\ &- \frac{\sqrt{1 - \rho_{\nu}^2}}{2n\sin(\varphi_{\nu}/2)} T_n(\rho_{\nu}) \Big) T'_n\big(\xi_{n,\nu}(\varphi_{\nu})\big). \end{split}$$

From (7) we derive

(15)
$$\xi'_{n,\nu}(\varphi_{\nu}) = -\frac{\rho_{\nu}^2 - \cos^2(\varphi_{\nu}/2)}{2\rho_{\nu}\sin(\varphi_{\nu}/2)}.$$

Let ν be odd, then $\rho_{\nu} = \cos(\pi/2n)$. With the help of (3), (13), (15) and the differential equation $(1 - x^2)T''_n(x) - xT'_n(x) + n^2T_n(x) = 0$ we conclude

$$A_{n,\nu} = 0, \quad B_{n,\nu} = \frac{n}{2} e^{i(\nu-1)\pi/2} \left(\frac{\sqrt{\rho_{\nu}^2 - \cos^2(\varphi_{\nu}/2)}}{\sin(\varphi_{\nu}/2)} + 1 \right),$$

and then

$$P'_{n,\nu}(e^{i\varphi_{\nu}}) = \frac{n}{2}e^{i\nu\pi/2} \bigg(\frac{\sqrt{\rho_{\nu}^2 - \cos^2(\varphi_{\nu}/2)}}{\sin(\varphi_{\nu}/2)} + 1 \bigg).$$

Now let ν be even. Using again (3), (13), (15) and the quoted differential equation we obtain

$$B_{n,\nu} = 0, \quad P'_{n,\nu}(e^{i\varphi_{\nu}}) = A_{n,\nu} = \frac{n}{2}e^{i\nu\pi/2} \bigg(\frac{\sqrt{\rho_{\nu}^2 - \cos^2(\varphi_{\nu}/2)}}{\sin(\varphi_{\nu}/2)} + \frac{\sqrt{1 - \rho_{\nu}^2}}{n}T'_n(\rho_{\nu}) \bigg).$$

Thus the Lemma is proved.

4. **Proof of the theorem.** Let $n \in \mathbb{N}$ and ν be an integer such that $1 \le \nu \le 2n - 1$. Further let $p \in \mathcal{P}_{n,1}^*$. By Lagrange's interpolation formula

(16)
$$p(z) = \sum_{k=1}^{n+1} p(z_k) L_k(z) = \sum_{k=1}^n p(z_k) L_k(z), \ z_k = e^{i\theta_k}, \quad 1 \le k \le n, \ z_{k+1} = 1$$

with

$$L_{k}(z) = \frac{z-1}{z_{k}-1} \prod_{\substack{m=1 \ m \neq k}}^{n} \frac{z-z_{m}}{z_{k}-z_{m}}$$

and $z_k = e^{i\theta_k}$, $1 \le k \le n$ are the *n* points at which $|P_{n,\nu}(z)|$ attains its maximum on the unit circle. From (16) it follows

(17)
$$p'(e^{i\varphi_1}) = \sum_{k=1}^n p(e^{i\theta_k}) L'_k(e^{i\varphi_1}), \quad 1 \le \nu \le 2n-1.$$

Since the θ_k $1 \le k \le n$ are the zeros of $\omega_{n,\nu}(\theta)$ we have

$$L_k(e^{i\theta}) = \frac{\sin(\theta/2)e^{in\theta/2}}{\sin(\theta_k/2)e^{in\theta_k/2}} \frac{\omega_{n,\nu}(\theta)}{2\sin((\theta-\theta_k)/2)\omega'_{n,\nu}(\theta_k)}$$

and then

(18)
$$L'_{k}(e^{i\theta}) = -\frac{ie^{i(n/2-1)\theta}}{2\sin(\theta_{k}/2)\omega'_{n,\nu}(\theta_{k})e^{in\theta_{k}/2}} \left\{ \frac{1}{2}\cos\frac{\theta}{2}\frac{\omega_{n,\nu}(\theta)}{\sin((\theta-\theta_{k})/2)} + \sin\frac{\theta}{2}\left(\frac{\omega_{n,\nu}(\theta)}{\sin((\theta-\theta_{k})/2)}\right)' + i\frac{n}{2}\sin\frac{\theta}{2}\frac{\omega_{n,\nu}(\theta)}{\sin((\theta-\theta_{k})/2)} \right\}.$$

We first prove that for odd ν

(19)
$$L'_k(e^{i\varphi_\nu}) = e^{i\nu\pi/2}\overline{P_{n,\nu}(e^{i\theta_k})}|L'_k(e^{i\varphi_\nu})|, \quad 1 \le k \le n,$$

whereas for even ν

(20)
$$L'_k(e^{\iota\varphi_\iota}) = e^{\iota(\nu/2+1)\pi} \overline{P_{n,\nu}(e^{\iota\theta_k})} |L'_k(e^{\iota\varphi_\nu})|, \quad 1 \le k \le n.$$

Observe that $\omega'_{n,\nu}(\theta_k) = (-1)^k |\omega'_{n,\nu}(\theta_k)|$ for $1 \le k \le n$. Indeed, since $\omega_{n,\nu}(\theta_1) = 0$ and $\omega_{n,\nu}(0) = 1 > 0$ as seen before, then $\omega'_{n,\nu}(\theta_1) < 0$. The same reasoning shows that $\omega'_{n,\nu}(\theta_2) > 0$, $\omega'_{n,\nu}(\theta_3) < 0$, ... *etc.* So $\omega'_{n,\nu}(\theta)$ has alternating signs at the values θ_1 , $\theta_2, \ldots, \theta_n$.

If ν is odd we distinguish three cases.

CASE (i). $1 \le k \le (\nu+1)/2 - 1$. According to (10) and (13) we have $\omega_{n,\nu}(\varphi_{\nu}) = 0$, further $\varphi_{\nu} \ne \theta_k$. Simple calculations give

$$\frac{\omega_{n,\nu}(\theta)}{\sin((\theta-\theta_k)/2)} = \frac{1-\rho_{\nu}^2}{n^2} T'_n(\rho_{\nu}) \frac{\sin((\varphi_{\nu}-\theta)/2)}{\sin(\varphi_{\nu}/2)} \frac{T'_n(\xi_{n,\nu}(\theta))}{\sin((\theta-\theta_k)/2)},$$

634

$$\left(\frac{\omega_{n,\nu}(\theta)}{\sin((\theta-\theta_k)/2)}\right)_{\theta=\varphi_{\nu}}' = e^{i(\nu+1)\pi/2} \frac{\rho_{\nu}\sqrt{1-\rho_{\nu}^2}}{2\sin(\varphi_{\nu}/2)\sin((\varphi_{\nu}-\theta_k)/2)\sqrt{\rho_{\nu}^2-\cos^2(\varphi_{\nu}/2)}}.$$

Then, from (18) it follows that

$$L'_{k}(e^{i\varphi_{1}}) = -e^{i\pi/2}e^{i(n/2-1)\varphi_{1}}e^{-in\theta_{k}/2}\frac{\rho_{\nu}\sqrt{1-\rho_{\nu}^{2}}(-1)^{k}e^{i(\nu+1)\pi/2}}{4|\omega'_{n,\nu}(\theta_{k})|\sin(\theta_{k}/2)\sin((\varphi_{\nu}-\theta_{k})/2)\sqrt{\rho_{\nu}^{2}-\cos^{2}(\varphi_{\nu}/2)}}$$

= $e^{i\nu\pi/2}(-1)^{k}e^{i(n/2-1)\varphi_{1}}e^{-in\theta_{k}/2}|L'_{k}(e^{i\varphi_{\nu}})|$
= $e^{i\nu\pi/2}\overline{P_{n,\nu}(e^{i\theta_{k}})}|L'_{k}(e^{i\varphi_{\nu}})|$ by Lemma 3.

CASE (ii). $k = (\nu + 1)/2$. We have $\theta_{(\nu+1)/2} = \varphi_{\nu}$ and $\frac{\omega_{n\nu}(\theta)}{\sin((\theta - \varphi_{\nu})/2)} = -\frac{\sqrt{1-\rho_{\nu}^2}}{n\sin(\varphi_{\nu}/2)}T'_n(\xi_{n,\nu}(\theta))$. Then, it is easily seen that

$$\left(\frac{\omega_{n,\nu}(\theta)}{\sin((\theta-\varphi_{\nu})/2)}\right)_{\theta=\varphi_{\nu}} = e^{i(\nu+1)\pi/2} \frac{\rho_{\nu}\sqrt{1-\rho_{\nu}^2}}{\sin(\varphi_{\nu}/2)\sqrt{\rho_{\nu}^2-\cos^2(\varphi_{\nu}/2)}}$$

and

$$\left(\frac{\omega_{n,\nu}(\theta)}{\sin((\theta-\varphi_{\nu})/2)}\right)'_{\theta=\varphi_{\nu}} = (-1)^{(\nu+1)/2} \frac{\rho_{\nu}\sqrt{1-\rho_{\nu}^{2}}}{\sin(\varphi_{\nu}/2)\sqrt{\rho_{\nu}^{2}-\cos^{2}(\varphi_{\nu}/2)}} \frac{\xi_{n,\nu}(\varphi_{\nu})\xi'_{n,\nu}(\varphi_{\nu})}{1-\xi_{n,\nu}^{2}(\varphi_{\nu})}$$
$$= -e^{i(\nu+1)\pi/2} \frac{\cos(\varphi_{\nu}/2)}{2\sin^{2}(\varphi_{\nu}/2)} \frac{\rho_{\nu}\sqrt{1-\rho_{\nu}^{2}}}{\sqrt{\rho_{\nu}^{2}-\cos^{2}(\varphi_{\nu}/2)}}.$$

Using (18) in conjunction with the last two relations we obtain

$$L'_{k}(e^{i\varphi_{\iota}}) = e^{-\iota\varphi_{\nu}} \frac{n\rho_{\nu}\sqrt{1-\rho_{\nu}^{2}}}{4|\omega'_{n,\nu}(\varphi_{\nu})|\sin(\varphi_{\nu}/2)\sqrt{\rho_{\nu}^{2}-\cos^{2}(\varphi_{\nu}/2)}}$$
$$= e^{-\iota\varphi_{\nu}}|L'_{k}(e^{i\varphi_{\nu}})|$$
$$= e^{\iota\nu\pi/2}\overline{P_{n,\nu}(e^{i\varphi_{\nu}})}|L'_{k}(e^{i\varphi_{\nu}})| \text{ by Lemma 3.}$$

CASE (iii). $(\nu+1)/2+1 \le k \le n$. As in case (i) we have $\omega_{n,\nu}(\varphi_{\nu}) = 0$ and $\varphi_{\nu} \ne \theta_k$. Then

$$\left(\frac{\omega_{n,\nu}(\theta)}{\sin((\theta-\theta_k)/2)}\right)'_{\theta=\varphi_1} = e^{i(\nu-1)\pi/2} \frac{\rho_\nu \sqrt{1-\rho_\nu^2}}{2\sin(\varphi_\nu/2)\sin((\theta_k-\varphi_\nu)/2)\sqrt{\rho_\nu^2-\cos^2(\varphi_\nu/2)}}$$

and

$$L'_{k}(e^{i\varphi_{i}}) = e^{i\nu\pi/2}(-1)^{k-1}e^{i(n/2-1)\varphi_{\nu}}e^{-in\theta_{k}/2}$$

$$\frac{\rho_{\nu}\sqrt{1-\rho_{\nu}^{2}}}{4|\omega'_{n,\nu}(\theta_{k})|\sin(\theta_{k}/2)\sin((\theta_{k}-\varphi_{\nu})/2)\sqrt{\rho_{\nu}^{2}-\cos^{2}(\varphi_{\nu}/2)}}$$

$$= e^{i\nu\pi/2}(-1)^{k-1}e^{i(n/2-1)\varphi_{i}}e^{-in\theta_{k}/2}|L'_{k}(e^{i\varphi_{i}})|$$

$$= e^{i\nu\pi/2}\overline{P_{n,\nu}(e^{i\theta_{k}})}|L'_{k}(e^{i\varphi_{i}})|$$
 by Lemma 3.

Now let ν be even. From (10) and (13) it follows that $\omega_{n,\nu}(\varphi_{\nu}) = e^{i\nu\pi/2}T_n(\rho_{\nu})$, $\omega'_{n,\nu}(\varphi_{\nu}) = 0$ and

$$\left(rac{\omega_{n,
u}(heta)}{\sin((heta- heta_k)/2)}
ight)_{ heta=arphi_{
u}}' = -rac{\cos((arphi_{
u}- heta_k)/2)}{2\sin^2ig((arphi_{
u}- heta_k)/2)}e^{
u
u\pi/2}T_n(
ho_
u).$$

Then,

$$L'_{k}(e^{i\varphi_{\nu}}) = e^{i(\nu/2+1)\pi}(-1)^{k}e^{i(n/2-1)\varphi_{\nu}}e^{-in\theta_{k}/2}$$
$$\frac{-n\sin(\varphi_{\nu}/2)\sin((\varphi_{\nu}-\theta_{k})/2) - i\sin(\theta_{k}/2)}{4|\omega'_{n,\nu}(\theta_{k})|\sin(\theta_{k}/2)\sin^{2}((\varphi_{\nu}-\theta_{k})/2)}T_{n}(\rho_{\nu})$$
$$= e^{i(\nu/2+1)\pi}\overline{P_{n,\nu}(e^{i\theta_{k}})}|L'_{k}(e^{i\varphi_{\nu}})| \text{ by Lemma 3.}$$

Finally, applying Lagrange's interpolation formula to $P_{n,\nu}$ we have

$$P_{n,\nu}(z) = \sum_{k=1}^{n} P_{n,\nu}(e^{i\theta_k}) L_k(z).$$

For odd ν

(21)

$$P'_{n,\nu}(e^{i\varphi_{\tau}}) = \sum_{k=1}^{n} P_{n,\nu}(e^{i\theta_{k}})L'_{k}(e^{i\varphi_{\tau}})$$

$$= \sum_{k=1}^{n} e^{i\nu\pi/2} \frac{\overline{L'_{k}(e^{i\varphi_{\tau}})}}{|L'_{k}(e^{i\varphi_{\tau}})|}L'_{k}(e^{i\varphi_{\tau}}) \text{ by (19)}$$

$$= e^{i\nu\pi/2} \sum_{k=1}^{n} |L'_{k}(e^{i\varphi_{\tau}})|,$$

whereas for even ν

(22)
$$P'_{n,\nu}(e^{i\varphi_{\tau}}) = \sum_{k=1}^{n} e^{i(\nu/2+1)\pi} \frac{\overline{L'_{k}(e^{i\varphi_{\tau}})}}{|L'_{k}(e^{i\varphi_{\tau}})|} L'_{k}(e^{i\varphi_{\tau}}) \text{ by (20)}$$
$$= e^{i(\nu/2+1)\pi} \sum_{k=1}^{n} |L'_{k}(e^{i\varphi_{\tau}})|.$$

Then from (17) it follows that

$$\begin{aligned} |p'(e^{\iota\varphi_{\iota}})| &\leq \sum_{k=1}^{n} |p(e^{\iota\theta_{k}})| |L'_{k}(e^{\iota\varphi_{\iota}})| \\ &\leq \sum_{k=1}^{n} |L'_{k}(e^{\iota\varphi_{\iota}})| \\ &= |P'_{n,\nu}(e^{\iota\varphi_{\iota}})| \text{ by (21) or (22),} \end{aligned}$$

which is what we wanted to prove.

It remains to show that equality holds if and only if $p = e^{i\gamma}P_{n,\nu}$ where $\gamma \in \mathbb{R}$. Suppose that

$$|p'(e^{i\varphi_i})|=|P'_{n,\nu}(e^{i\varphi_i})|,$$

636

ı.e.

$$\left|\sum_{k=1}^{n} p(e^{i\theta_k}) L'_k(e^{i\varphi_\nu})\right| = \left|\sum_{k=1}^{n} P_{n,\nu}(e^{i\theta_k}) L'_k(e^{i\varphi_\nu})\right|$$
$$\left|\sum_{k=1}^{n} p(e^{i\theta_k}) L'_k(e^{i\varphi_\nu})\right| = \sum_{k=1}^{n} |L'_k(e^{i\varphi_\nu})| \text{ by (21) or (22).}$$

This holds if and only if

$$p(e^{i heta_k}) = \epsilon \, rac{L_k'(e^{iarphi_{arphi_{arphi}}})}{|L_k'(e^{iarphi_{arphi_{arphi}}})|}, \quad 1 \leq k \leq n, ext{ with } |\epsilon| = 1.$$

Then, according to (19) and (20) we obtain

$$p(e^{i\theta_k}) = \epsilon e^{-i\nu\pi/2} P_{n,\nu}(e^{i\theta_k})$$

or

$$p(e^{i\theta_k}) = \epsilon e^{-i(\nu/2+1)\pi} P_{n,\nu}(e^{i\theta_k}), \quad 1 \le k \le n;$$

further, $p(1) = P_{n,\nu}(1) = 0$. Hence, $p = e^{i\gamma} P_{n,\nu}$. This completes the proof of the Theorem.

REMARK 4. If $\nu = n$ and *n* is odd then $\rho_{\nu} = \cos(\pi/2n)$, $\phi_{\nu} = \pi$ and $P_{n,\nu}$ coincide with the polynomial *P* defined by (5).

ACKNOWLEDGMENTS. We wish to thank Professor Q. I. Rahman for proposing this problem to us. We would also like to express our gratitude for his guidance.

REFERENCES

- **1.** C Frappier, Q I Rahman and St Ruscheweyh, *On polynomials with a prescribed zero*, Constr Approx **2**(1986), 171–177
- 2. A Giroux and Q I Rahman, *Inequalities for polynomials with a prescribed zero*, Trans Amer Math Soc 193(1974), 67–98

Dalhousie University Department of Mathematics Halifax, Nova Scotia B3H 3J5 email patrick@cs dal ca

Ecole Polytechnique de Thies B P 10 Thies Senegal