
BULL. AUSTRAL. MATH. SOC. 30D55 , 47G10, 47B38

VOL. 75 (2007) [431-446]

INTEGRATION OPERATOR ACTING ON HARDY AND
WEIGHTED BERGMAN SPACES

JOUNI RATTYA

Questions related to the operator Jg(f)(z) := I /(C)ff'(C) d(,, induced by an analytic
function g in the unit disc, are studied. It is shown that a function G is the derivative
of a function in the Hardy space HP if and only if it is of the form G = F ^ ' where
F 6 Hq, ip € H* and 1/s = 1/p - 1/q. Moreover, a complete characterisation of
when Jg is bounded or compact from one weighted Bergman space A% into another
is established, and an asymptotic formula for the essential norm of Jg, the distance
from compact operators in the operator norm, is given. As an immediate consequence
it is obtained that if p < 2 + a and a > - 1 , then any primitive of / e AS belongs
to A% where q = ((2 + a)p)/(2 + a - p). For a = - 1 this is a sharp result by Hardy
and Littlewood on primitives of functions in Hardy space Hp = Ap_v 0 < p < 1.

1. INTRODUCTION AND MAIN RESULTS

Every analytic function g in the open unit disc B of the complex plane induces the
linear integration operator

)••= F'
Jo

acting on the space H(B) of all analytic functions in D. If g(z) = z or g(z) = - log(l -z),
then Jg is the integration operator or the Cesaro operator, respectively. The operator
Jg has been studied, for instance, in [1, 2, 3, 20, 23]. Further, the operator Jg arises
naturally in the study of semigroups of composition operators acting on spaces of analytic
functions [22].

In this paper questions related to the operator Jg and Hardy and weighted Bergman
spaces are studied. A representation for derivatives of ^"-functions, Theorem 1, is first
derived from results, related to the operator Jg, in the existing literature. Then, in
the same spirit as in the theory of composition operators [21], the essential norm of
Jg mapping from one Banach space of analytic functions in D into another is defined
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432 J. Rattya [2]

as the distance of Jg from compact operators in the operator norm. An asymptotic
formula for the essential norm of Jg acting on the Hardy space H2 is given in Theorem 1.
A complete characterisation of when Jg is a bounded operator between two weighted
Bergman spaces is established in Theorem 2. This yields Corollary 3 and its strengthened
version, Theorem 4, of which the first one can be understood as a generalisation of a
sharp result by Hardy and Littlewood on primitives of if-functions. Theorem 5 gives
a characterisation for Jg to be bounded from the Hardy space Hp into the weighted
Bergman space A^ when p ^ q. An asymptotic formula for the essential norm of Jg

acting from one weighted Bergman space into another is given in Theorem 6. This yields
a characterisation, Corollary 7, of when Jg acts as a compact operator between two
weighted Bergman spaces. Finally, two of observations on exponentials of BMOA- and
Bloch-functions are made, see the discussion related to Proposition 8.

Before continuing further, one more observation is made. Namely, if the target space
is the weighted Bergman space A"p, @ > - 1 , then the operator Jg from Ap

a, a ^ — 1,
to Aqp is bounded if and only if the multiplication operator Mg>, defined by Mg>{f)(z)
:= f(z)g'(z), is bounded from Ap

a to Aq
q^. Therefore Theorems 2 and 5 can also be

deduced by Zhao's results on multiplication operators [29]. However, since the aim of
the present paper is slightly different and also for convenience of the reader, the proofs
of these results are presented in the setting of the operator Jg.

Pommerenke [20] showed that Jg is bounded on the Hardy space H2 if and only if g
belongs to BMOA, the space of analytic functions of bounded mean oscillation. This was
extended to other Hardy spaces by Aleman, Cima and Siskakis [1, 2]: Jg is bounded on
Hp, 0 < p < co, if and only if g belongs to BMOA. It is worth noticing that g G BMOA
if and only if sup||<7 o tpa — g(a)\\HI> < co, where cpa is the automorphism of D which

interchanges zero and the point a € D, [5]. For p > 0, the Hardy space Hp consists of
those functions / 6 H{p) that satisfy

H"
p := lim — / \f{reiB)\pdO < oo.

Moreover, Aleman and Cima [1] gave a complete characterisation of bounded and com-
pact operators Jg : H

p -*• Hq in terms of the symbol g. Furthermore, Siskakis and Zhao
[23] found a necessary and sufficient condition for g such that Jg is bounded or compact
on BMOA.

A result by Cohn on factorisation of derivatives of /P-functions is related to the
operator Jg acting on Hp. Cohn [9, Theorem 1] showed that a function G is the derivative
of an //p-function if and only if it can be represented in the form G = Ftp' where F 6 Hp

and ip e BMOA. This clearly implies that Jg is bounded on Hp if g € BMOA, and
4

improves [1, Lemma 2] which states that G must be of the form G = J2 Fjip', where

Fj G Hp and ipj G BMOA for all j = 1,2,3,4. The result by Cohn together with the
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characterisation of Aleman and Cima of when Jg : Hp —• Hq, q < p, is bounded yield the
following representation of derivatives of Hp-functions.

THEOREM A. Let 0 < p < q < oo. A function G is the derivative of a function in

Hp if and only if it can be represented in the form G — Ftp' where F € H9, ip G H' and

l/s = l/p-l/q.

If G is of the form G = Ftp', where F G H9 and ip G H' such that 1/s = 1/p - 1/q,

then any primitive of G belongs to Hp since the operator J^, : H9 —> Hp, p < q, is
bounded by the result of Aleman and Cima [1, Theorem l(i)].

Conversely, if p < q and / G Hp, then / ' can be represented in the form
/ ' = Flip' where Fj G H" and ip € BMOA by the result of Cohn. Further, by the
general factorisation of i/p-functions Fi can be represented in the form F\ = FF2, where
F € H", F2 G H' and 1/s = 1/p - 1/q, so that / ' = FF2<p'. But F2<p' must be the
derivative of a function in H' by the result of Cohn, say ip1 = F2<p', where ip G H'. Thus
/ ' = Ftp' where F G H" and V € if* such that 1/s = 1/p - 1/q as desired.

For two Banach spaces X, Y c H(B), the easentiaZ norm ||J9||« of the bounded
operator Jg : X -* Y is defined as the distance of Jg from compact operators in the
operator norm, that is, ||J9||e := inf^ \\Jg — K\\ where the infimum is taken over all
compact operators K : X -*Y.

The following result gives an asymptotic formula for the essential norm of Jg acting
on H2, and yields the known fact that Jg is compact on H2 if and only if g belongs to
VMOA, the space of analytic functions of vanishing mean oscillation [1]. Its proof, as
well as other rather lengthy and technical proofs are postponed to Section 3. Here and
hereafter dA denotes the Lebesgue area element normalised such that A(V>) = 1.

THEOREM 1 . If Jg is bounded on H2, then there is a positive constant C such

that

(1.1) limsup f\g'{z)\2(l - \<pa(z)\2) dA(z)

< \\Jg\l ^ Climsup /V(*)|2(l - \fa(z)\2) dA(z)./

A generalisation of Theorem 1 for Dirichlet type space Dp, 0 < p ^ 2, consisting of

those / G i/(B>) for which the integral / | / ' | p ( l - |z|2)p~1d>l converges, is established in

Section 3, where a characterisation of when Jg is bounded on Dp is also given.

Aleman and Siskakis [3] showed that Jg is bounded on the weighted Bergman space
Ap

a, 0 < p < oo and —1 < Q < oo, if and only if g belongs to the Bloch space B, that
is, Jg is bounded on Ap

a if and only if sup||<? o ipa — 9(p)^\Ar < oo. They also considered

weighted Bergman spaces defined by using certain more general weights and characterised

the compact operators Jg on Ap
a: Jg is compact on Ap

a if and only if g belongs to the

https://doi.org/10.1017/S0004972700039356 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700039356


434 J. Rattya [4]

little Bloch space BQ. For 0 < p < oo and - 1 < a < oo, the weighted Bergman space Av
a

consists of those functions / € H{p) for which

i/p

< co.ll/lk == (("+1) Jo\f(z)\"{l-\z\2)adA(z)j

As usual, writing Ap_1 := Hp, the space Hp is identified with the limit space of the
weighted Bergman space Ap

a as a -> —1+ [28]. Further, a function / 6 H(U) belongs to
the a-Bloch space Ba, 0 < a < oo, if

The little a-Bloch space B£, 0 < a < oo, consists of those / € H(B) for which |/ '(z)|(l
- |z|2)a ->• 0, as \z\ -¥ 1. The standard Bloch and little Bloch spaces are B1 := B and
BQ := Bo- It is known that Ba is the analytic Lipschitz class Aj_a for 0 < a < 1. A
similar result holds for the corresponding little spaces.

Theorem 2 gives a complete characterisation of bounded operators Jg mapping from
the weighted Bergman space Ap

a into another weighted Bergman space A9
0 in terms of

the symbol g. The case when Jg acts on Ap
a is due to Aleman and Siskakis [3].

THEOREM 2 . Let 0 < p, q < oo and - 1 < a, 0 < oo.

(i) Up ^ q and (2 + a)/p - (2 + 0)/q ^ 1, then Jg : Ap
a -> ^ is bounded if

and only if g e Bi+(2+^)/?-(2+a)/P

(ii) If q < p and (2 + a)/p - (2 + 0)/q ^ 1. Tien J9 : >!£ ->• ̂  is bounded if
and only if g' e A's+1, where 1/s = l/q - l/p and 7 = (p/3 - aq)/(p - q).
In particular, Jg : A^ -*• Aq

a is bounded if and only if g € A"a, where
1/3 = l/q - l/p.

(iii) If (2 + a)/p - (2 + &)/q > 1 and Jg : Ap
a -> A\ is bounded, then g is

constant.

Ug{z) = z,a = @ and l/p-l/q = 1/(2 + a) in Theorem 2(i), Corollary 3 is obtained.
Taking in account the identification Hp = Ap_u it can be understood as a generalisation
of the sharp result by Hardy and Littlewood which states that any primitive function of
/ € Hp, 0 < p < 1, belongs to H" where q = p/(l - p), see [12].

COROLLARY 3 . Let 0 < p < 2 + a and - 1 < a < 00. Then any primitive of
f € Ap

a belongs to Aq
a where q = ((2 + a)p)/(2 + a-p).

The result of Hardy and Littlewood was in a sense improved in [1]. In a similar
manner Corollary 3 has the following strengthened version.

THEOREM 4 . Let 0 < p < 2 + a, -1< a < 00, 0 < pi < 00 and 2 + a < & < 00
such that l/p = 1/pi + I/P2. If f is analytic in D with a representation of the form
f = /1/2, where f\ G Ag1 and f2 6 B1+{2+a)/"2, then any primitive off belongs to A%
where q = ((2 + a)p)/(2 + oc-p).
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By the assumption, any primitive F2 of/2 belongs to Bl-a+2^P2. Therefore, by Theo-
rem 2(i), the operator J F , maps A% into A% where l + ( 2 + a)/q-(2 + a)/pi = (2 + a) /p 2 ,
that is, q = ((2 + a)p)/(2 + a —p). But JF,(/I) is a primitive of / , and so it belongs to
Aq

a where q = ((2 + a )p ) / (2 + a - p).

In the case when p ^ q and a = — 1 the following result is offered.

THEOREM 5 . Let 0 < p , q < oo and - 1 < y9 < oo.

(i) lip < q and \/p - (2+/3)/q ^ 1, then Jg : H" -» A\ is bounded if and
only ifg £ 01+P+/»/«-VP.

(ii) IfP^p + 1. Then Jg : H" -> ^ is bounded if and only if

(1.2) sup /|<7'(2)|
P(1 - M T ^ - V l - |^OW|2) rfA(z) < oo.

(iii) If \/p - (2 + /3)/g > 1 and Jg : Hp -> A\ is bounded, then g is constant.

An asymptotic formula for the essential norm of Jg acting from one weighted
Bergman space into another is given in Theorem 6. The symbol ~ in the statement
means that the quantities in other sides of the symbol are comparable, that is, their
quotient is bounded and bounded away from zero.

THEOREM 6 . Let 1 < p,q < oo and - 1 ^ a,0 < oo such that (2 + a)/p
- (2 + P)/q < 1, and let Jg : Ap

a^ A9
0 be bounded.

(i) Ifp ^ q and —1 < a, /? < oo, then

(1.3) \\Jg\\e - limsuP|ff'(,)|(l - ,,|

(ii) Ifp < q, a = — 1 and —1</3<OO, then

\\J,\\. =f limsup| <,'(*) |(1 - \

(iii) Ifq = p and — 1 < 0 < p + 1, tien

||7,||5 * limsup / | 5 ' W r ( l - \z\2)p+0-l(l - \>pa{z)\2) dA(z).
|o|->i- Jn v '

Theorem 6 yields the following characterisation of compact operators Jg : A^ —> A .̂

COROLLARY 7 . Let 1 < p, 9 < 00 and - 1 < a,0 < 00 suci tiat (2 + a)/p

(i) Ifp ^ q, then Jg : A
v
a -¥ Aq

0 is compact if and only ifg e

(ii) Ifp < q, then Jg : H" -> A% is compact if and only ifg € Bl
o
+i2+0)/9~1/p.

(iii) If f3 ^ p + 1, then Jg : Hp -¥ A^ is compact if and only if

Urn f\g'(z)\p(l - \z\2)p+p-l(l - \u>Jz)\2) dA(z) = 0.
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Finally, the exponentials of BMOA- and Bloch-functions are shortly discussed. Cima
and Schober [8] showed that for any function / in BMOA there is a p such that ef belongs
to Hp. This result has the following easy analogue.

PROPOSITION 8 . For any f € B and - 1 < a < oo there is a p > 0 such that
ef belongs to Av

a. Symbolically, expB C |J A*.
p>0

Since \f(z)\ ^ | | / | | 8 log2/(l - \z\) + |/(0)| it follows that

p/| |P ^ ^>I/(0)IOPII/IIB f dA{z)gPl/(0)l2Pll/llB f

er £ Jo(\- \Z\2)P\\f\\B-<*'

so if p < (1 + a)/ | | / | |B , then ef belongs to Ap
a as desired.

Proposition 8 and the result of Cima and Schober are sharp in the sense that there
is a function / in the little Bloch space Bo such that ef does not belong to \J Hp. To see

p>0

this, let f{z) := £ o.kz
nk = J2 k~{l/2)zk"- Then / is analytic in B and it has Hadamard

gaps; (njt+1)/nfc > 2 for all k € N. Further, since limsup |ajt| = 0, the function / belongs
kk—too

OO 00

2

OO 00

to Bo by [27, Theorem 1]. But £2 |a/t|2 = X) 1/* = °°i an<^ hence / has angular limits

almost nowhere on the boundary T of D by Zygmund's theorem [31, p. 203]. Further,
by the Privalov uniqueness theorem [19, Theorem 10.14], angular limits are non-zero
for almost all points where they exist, and it follows that e! has angular limits almost
nowhere on T. Thus e} is not of bounded characteristic and therefore ef does not belong
to |J Hp as claimed.

p>0

The remaining part of the paper is organised as follows. Section 2 contains the
necessary background material and auxiliary results needed in the proofs of the main
results. The proofs themselves can be found in Section 3 where some extension of the
main results are also shortly discussed.

2. BACKGROUND AND AUXILIARY RESULTS

For 0 < s < oo, a positive measure // on BJ is a bounded s-Carleson measure, if

where | / | denotes the arc length of a subarc / of T,

is the Carleson box based on /, and the supremum is taken over all subarcs / of T such
that | / | ^ 1. Moreover, if

(2.2)
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then n is a compact (or vanishing) s-Carleson measure.

A classical theorem of Carleson [6, 7] s ta tes tha t the injection map from the Hardy

space Hp into the measure space L?(dii) is bounded if and only if the positive measure fi

on D is a bounded Carleson measure. This together with Duren's [11] generalisation is

stated as follows.

THEOREM B . Suppose that n is a positive measure on B , and let 0 < p ^ q < oo.

Then y. is a bounded q/p-Carleson measure if and only if there is a positive constant C,

depending only on p and q, such that

(2.3)

for all analytic functions f in D, in particular for all f 6 Hp. Moreover, iffi is a bounded

q/p-Carleson measure, then C = CiC2, where C\ > 0 depends only on p and q, and

The following simple lemma is needed while estimating the constant C appearing
on the right hand side of (2.3) when the integral on the left hand side is only over some
annulus D \ A(0,£). Here and hereafter A(0, t) stands for the Euclidean disc centred at
the origin and of radius t £ (0,1).

LEMMA 9 . Suppose that y. is a positive measure on ID, and let t € (0,1) and

1 ^ s < oo. Then

SUp ryr- ^ 2 SUp
/ \I\

PROOF: Let / := {e^ : 6 ^ <\> < 6 + \I\} be a subarc of T such that | / | ^ 1. If
| / | ^ 1 - t then clearly

If | / | > 1 - t, let n := max{k e N : fc(l - t) < \I\), and define Ij := {e^ : d + j ( l - t)

^(f>^ 9 + (j + l)(l-t)} (orj = 0, . . . , n . Then | / , | = 1-tforj = 0 , . . . , n, and therefore

/ i (5(J) \A(0,0) 1

(2-7) ^TTjlfE/ Mz)+ f
s(in)
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The assertion follows by (2.6) and (2.7). D

For a € B, define <pa(z) '•= (a — z)/(l — az), so that tpa is the automorphism of D
which interchanges zero and the point a. It is known that a positive measure (j, on D is
a bounded s-Carleson measure if and only if

(2.8) sup / \<p'a(z)\'dn(z) < oo,

and moreover the supremums in (2.1) and (2.8) are comparable, see [4,14]. The following
partial boundary version of this result will be needed later.

LEMMA 10. Suppose that n is a positive measure on H>, and let t e (0,1) and
0 < s < oo. Then

(2.9) sup ^ f f i l ^ io ' sup f \v'a{z)\'d»(z).

PROOF: Let / C T such that | / | ^ 1 -t, and let z € S(I). Choose a := (l - \I\)ei0,
where e'e is the midpoint of / , so that every / on T with | / | < 1 — t corresponds to a
unique o £ D with \a\ ^ t, and vice versa. Since |1 — az\ ^ 1 — \a\2 + \z — a\, and

one obtains \<p'a{z)\ ^ ( l0| / |) for all z € S(I), and the inequality (2.9) follows. D

The following result on radial growth of functions in weighted Bergman spaces can
be found in [25].

LEMMA C. Suppose that 0 < p < oo, - l < a < o o and / € Ap
a. Then

with equality only for constant multiples of the function

3. PROOFS AND GENERALISATIONS

The proof of Theorem 1 is now given in detail. It is constructed such that it does
not depend too much on Hilbert space techniques, and therefore the reasoning may be
followed mutatis mutandis while proving Theorem 6. The notation o < b means that
a ^ Cb for some positive constant C, independent of a and b, and o > b is understood in
an analogous manner.
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[9] Hardy and Bergman spaces 439

00

PROOF OF THEOREM 1: For an analytic function /(z) = £) a*** in B>, let
fc=O

Tnf(z) := ]Tafc**, ^/(z) := £ akz
k.

fc=O t=n+l

Since Tn is compact on H2,

/Q i \ II T It II T fT1 i D \ | l ^ II 7 TP II _L II 7 E> II I) 7 Z> H ^ It r D II

(J.I; iKplle = ll^sl-'n + -Kn;||e ^ |l>'s-'n||e + IKs-H-nlle = \\JgKn\\e ^ iKs^nllj
and it follows that

| |79| |2 < liminf HypiZnll2 < lim inf sup | |(79/?n)(/)| |H.2

(3.2) =liminf sup 2 f]!^f(z)\2\g'(z)\2log-^t

= lim inf sup 2 /

for any 0 < r < 1, since

lim inf sup f |i^/(z)|2|5'(z)|2log|^<fA(z)<(max|ff^z)|)^iminfr2(n+1)=0.

By Theorem B, and Lemmas 9 and 10,

f ,2. l2 i
/ j^n/C2)! \9'(z)\ log prdA(z)

if 2 1
1 Kl Js(i) ' \z\

< 2C ™P_t ITT

^ 20C sup

sup

where the fact ||i?n/||ffJ ^ | | / | |H» and the inequality — log|z) ^ r~l(l - |z|2) for
r ^ |z| < 1 have also been used. As r —¥ 1 it follows that

||J,||» < 40Climsup / |5 ' (^) | 2( l - M * ) | 2 ) dA(z).

To obtain the lower bound, choose fa(z) := (v'o(2)) for a € D. Then | | /0 | |H2 = 1,
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and fa -> 0 uniformly on compact subsets of D as \a\ —• 1. If K is compact on H2, then

||J, - Kf > limsup|| Jg(fa) - K(fa)\\
2

H2

\a\-H~

(3.3) ^ l imsup | | J 9 ( / o ) | | ; 2 - :

= limsup||J9(/o)||2?2,

and it follows that

ll^lle ^ Iimsup2 / |^a(«)||5'(

^ limsup f\g'(z)\2(l - \Va{z)\2) dA{z),
|a|-+l- JO v '

where the last estimate follows by the inequality - 2 log |z| ^ 1 - |z|2 for z € D \ {0}. D
A generalisation of Theorem 1 is now shortly discussed. For 0 < p < oo, the

Dirichlet-type space Dp consists of those functions / 6 H (O) for which

^ := ( f\f'(z)\P(l - MY'1 dA(z)Y/P < oo.

If p = 2, then Dp is the Hardy space H2, and Hp c Dp for p > 2 by a classical result by
Littlewood and Paley [15, 17]. If 0 < p < 2, then Dp C # p by the following lemma due
to Flett, Vinogradov, and Wu [13, 24, 26].

LEMMA D. If f is an analytic function in D and 0 < p < 2, then \\f\\H'

< I I / I I I » + | / ( 0 ) | .
For p > 0, a function / € i/(B>) belongs to the Besov-type space Bp if

(3.4) II/||BI>
 : = I sup / \f'(z)\ (1 - |z| ) ff(2'a)dj4(z)) < oo.

\o6D JO '

Obviously Bp is a Mobius invariant subspace of Dp. The closure of polynomials in Bp

is denoted by Bp, and it consists of those functions / € H(D) for which the integral in
(3.4) tends to zero as |a| —»• 1.

PROPOSITION 1 1 . Let 0 < p ^ 2. Tien Jg is bounded on Dp if and only if
geB".

PROOF: The proof is straightforward and therefore it is merely sketched. By The-
orem B, Lemma D, and the fact that the supremums in (2.1) and (2.8) are comparable,

^- f \Az)\p{l-\z\2)p-ldA(z)\\f\\'BP

- \<pa(z)\2) dA(z)(\\f\\D,
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[11] Hardy and Bergman spaces 441

and it follows by the inequality 1 - |v?oCz)| ^ 2g(z,a), z ? l \ {a}, that Jg is bounded
on Dp if g € Bp. The only if part of the assertion can be deduced by using the test
functions (<p'a(z))1/p, a e D. D

Theorem 1 is the special case p = 2 of Proposition 12 below.

PROPOSITION 1 2 . Suppose that 1 <p ^ 2. IfJg is bounded on D" then

\\Ja\\> c limsup l\g'{z)\p{\ - | z | 2 r 2 ( l - M*)|2) dA(z).
|o|-»l" JO v '

PROOF: The proof is essentially same as the proof of Theorem 1. The only extra in-
gredient needed is Lemma 3, and the appropriate test functions are ones again (<p'a{z)) ,
a e D. In order to avoid unnecessary repetitions the details are omitted. 0

Proposition 12 has the following immediate consequence.

COROLLARY 1 3 . Let 1 < p ^ 2. Tien Jg is compact on Dp if and only ifg € Bp.

It is now proceeded to prove the rest of the results presented in the introduction.
The well-known fact that

(3-5) II/IUS-II/'IL?+Q + |/(O)|

for / € H{V>) is repeatedly used in the subsequent proofs. Since Jg(f)(0) = 0, formula

(3.5) gives || J jC/)!^, =± II ( 4 , ( / ) ) ' | „ for all 0 < p < c» and - 1 < a < oo.

P R O O F OF THEOREM 2: (i) If / e Ap
a, then by (3.5) and Lemma C,

\\jg{f)\\\,^f\f{z)\"\9'{z)\\l-\z\TPdA{z)

and therefore Jg : Ap -> A], is bounded if g e

Assume now that Jg : Ap
a-> A"p is bounded and let /«,(*) := (Va(^))(2+°)/P- T h e n .

by Lemma 2 and (3.5),
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and it follows that g e 0i+<a+«/«-<a+«O/p.

(ii) By the Holder inequality,

= f\f(z)\q\9'(z)\9(l-\z\T0dA(z)
J®

(z)\q(l ~ \z?){aq)'P\9'{z)\q(l - \z\y+0-{aq)/pdA(z)

\ \9\z)\ P — 9(1 — 1̂ 1 ) dA(z)\

IB /

and since 1/s = \/q - 1/p, that is, s = (jpq)/(p - q), and

pp — otq pq

{Q~P)/P

p-q\ p> p-q p-q

it follows that Jg : A
p
a -> Aq

0 is bounded if g' € A's+y, where 7 = (p/3 - aq)/(p - q).

If J9 : A^ -+ ^4^ is bounded, then a generalisation [16, 5.1] of a result by Luecking

[18, Theorem 1] implies

f |,'H|'(i-H2)'
f (JD{Z,1/2)C(g) :=

w : |¥>2(iu)| < 1/2 > is the pseudohyperbolic disc of centre z and

radius 1/2. But by the subharmonicity,

9(Z)\

\g'(w)\qdA(w)

and since 1 - \z\2 ~ 1 - |io|2 for w e D(z, 1/2), it follows that \\g'\\'A.+ < C(g), where
1/s = 1/q - 1/p and 7 = (p/3 - aq)/(p - q).

(iii) The assertion follows by (3.6). D

P R O O F OF T H E O R E M 5: (i) If / € Hp, then by Theorem B and the fact that the

supremums in (2.1) and (2.8) are comparable,

sup (\^{z)\{qlp)\g'{z)\q{l - \z\y+PdA{z)\\f\\

f

"HP

O J D
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and since the integral above is uniformly bounded by Forelli-Rudin estimates [30,
Lemma 4.2.2], it follows that Jg : H" -*• A} is bounded if g 6 BI+(2+/»)/«-VP.

Assume now that Jg : Hp -> Aqp is bounded and let fa{z) := (<fi'a(z))1/p. Then the
reasoning in (3.6) remains valid for a = - 1 , and it follows that g € Bl+{?+^lq~llv.

(ii) If / € Hp, then, by Theorem B and the fact that the supremums in (2.1) and
(2.8) are comparable,

,« /|/wivwr(i-wT
« Jn

<SUP [\<p'a(z)\\g'(z)\P{l-\z\2)P+f>dA(z)\\f\\P
HP

= sup f\g'(z)\p(l - \z\*)*«-l(l - \<pa(z)\2) dA(z)\\f\\"HP,

and therefore Jg : Hp -+ A^ is bounded if (1.2) is satisfied.

Assume now that Jg : H" -> AJ is bounded and let fa(z) := (vo(^))1/P- T n e n

s u p / | ^ ( ) | | ) | ( k T ( ) p

and (1.2) follows.

(iii) The assertion follows by (3.6) since the reasoning remains valid for a = —1. D

P R O O F OF THEOREM 6: (i) Denote

(3.7) C(g) := li

so that there is an re € (0,1) such that

(3.8) | 5 '

for all \z\ ^ re. Let the operators Tn and TZn be defined as in the proof of Theorem 1.
Then Tn is compact on Ap

a, and the reasoning in (3.1) and (3.2) yields

||JJ« < lim inf sup

lim inf sup f\Rnf(z)\%l-\zni{2+aWp)-2dA(z).
n—foo ||/||^p ^1 •'D

But now

rv
by Lemma 2, and since H-Rn/ll/tg £ 11/IUg it follows that || J9||e < C(g).
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To obtain the lower bound, choose fa{z) := (^(z))( 2 + a ) / p for a € P. Then l|/a|Ug
= 1, and fa —> 0 uniformly on compact subsets of D as \a\ —» 1. A similar reasoning as
in (3.3) shows that

|| J,||: > limsup [\9>(z)\<(l - W**™*^ _ \Mz)\y
(2+a))/P

dA(z).
|a|-fl- JO x '

By the subharmonicity of g' o <pa,

6" / 9'(Z)\UA(Z),\9(a)\ < h , ,2 /
7r(l - |a|2) JD{a,l/2)

and since 1 - |a|2 ~ 1 - \z\2 ~ |1 - az\ for z £ D{a, 1/2), this yields

fj9'(z)\\l - j,,.)

It follows that C(5) < ||Js||e, and the proof of (i) is complete.
(ii) Denote by C(q) the limit superior in (3.7) with a = - 1 , so that (3.8) with

a = —1 is satisfied for all |z| > r£. The reasoning in (3.1) and (3.2) gives

114,112 <liminf sup / \Rnf(z)\q\gf(z)\\l-\z\*)9+'>dA{z)

from which Theorem B and Lemmas 9 and 10 yield

f i/w(*)iywr(i-war'dA(*)
JD\A(0,re)

< sup / |^(^)|' /p|ff'(^)|'(l - \z\2Y+0 dA(z)\\Rnf\\'>HP

Since the integral above is uniformly bounded by Forelli-Rudin estimates [29, Lemma 4.2.2],
it follows that ||79||e < C(g).

The lower bound can be obtained by using the functions fa(z) := {f'a{z)ylv and
following the second part of the proof of Case (i).

(iii) The upper bound follows by applying Theorem B and Lemmas 9 and 10, and
the lower bound can be obtained by using the functions fa{z) := (<p'a(,z)) . The details
are omitted. D
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