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Abstract

A simple graph G = (V, E) admits an H-covering if every edge in E belongs to at least one subgraph
of G isomorphic to a given graph H. Then the graph G is (a, d)-H-antimagic if there exists a bijection
f:VUE - {1,2,...,|V| + |E|} such that, for all subgraphs H" of G isomorphic to H, the H’'-weights,
wtp(H'") = ¥ eviy f(V) + Xeepry f(e), form an arithmetic progression with the initial term a and the
common difference d. When f(V) ={1,2,...,|V]}, then G is said to be super (a, d)-H-antimagic. In this
paper, we study super (a, d)-H-antimagic labellings of a disjoint union of graphs for d = |E(H)| — |V(H)|.
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1. Introduction

Let G = (V, E) be a finite simple graph. An edge covering of G is a family of subgraphs
Hy, H,, ..., H, such that each edge of E belongs to at least one of the subgraphs H;,
i=1,2,...,t. Then it is said that G admits an (Hy, H», ..., H;)-(edge) covering.
If every subgraph H; is isomorphic to a given graph H, then the graph G admits
an H-covering. A bijective function f: VUE — {1,2,...,|V| + |E]} is an (a, d)-H-
antimagic labelling of a graph G admitting an H-covering whenever, for all subgraphs
H’ isomorphic to H, the H'-weights

wi(H) = Y f0+ D fle)
veV(H'") ecE(H')

form an arithmetic progressiona,a +d,a+2d,...,a+ (t—1)d, wherea>0andd >0
are two integers, and ¢ is the number of all subgraphs of G isomorphic to H. Such a
labelling is called super if the smallest possible labels appear on the vertices. A graph
that admits a (super) (a, d)-H-antimagic labelling is called (super) (a, d)-H-antimagic.
For d =0, it is called H-magic and H-supermagic, respectively.

The H-(super)magic labellings were first studied by Gutiérrez and Llad¢ [8] as an
extension of the edge-magic and super edge-magic labellings introduced by Kotzig
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and Rosa [11] and Enomoto et al. [7], respectively. In [8], there are considered
star-(super)magic and path-(super)magic labellings of some connected graphs and it
is proved that the path P, and the cycle C,, are P,-supermagic for some 4. Lladé and
Moragas [13] studied the cycle-(super)magic behaviour of several classes of connected
graphs. They proved that wheels, windmills, books and prisms are C;-magic for some
h. Maryati et al. [16] and also Salman et al. [18] proved that certain families of trees
are path-supermagic. Ngurah et al. [17] proved that chains, wheels, triangles, ladders
and grids are cycle-supermagic. Maryati et al. [15] investigated the G-supermagicness
of a disjoint union of ¢ copies of a graph G and showed that the disjoint union of any
paths is ¢Pj-supermagic for some ¢ and h.

The (a, d)-H-antimagic labelling was introduced by Inayah ef al. [9]. In [10],
there are investigated the super (a, d)-H-antimagic labellings for some shackles of a
connected graph H. In [4], wheels are proved to be cycle-antimagic. The (super)
(a, d)-H-antimagic labelling is related to a super d-antimagic labelling of type (1, 1,0)
of a plane graph that is the generalisation of a face-magic labelling introduced by Lih
[12]. Further information on super d-antimagic labellings can be found in [2, 6].

For H = K,, (super) (a, d)-H-antimagic labellings are also called (super) (a, d)-
edge-antimagic total labellings [19]. More results on (a, d)-edge-antimagic total
labellings can be found in [5, 14]. The vertex version of these labellings for generalised
pyramid graphs is given in [1].

In this paper we mainly investigate the existence of super (a,d)-H-antimagic
labellings for disconnected graphs. The main result of the paper is that if a graph
G admits a (super) (a, d)-H-antimagic labelling, where d = |E(H)| — |V(H)|, then the
disjoint union of m copies of the graph G, denoted by mG, admits a (super) (b, d)-H-
antimagic labelling.

2. Super (a, d)-H-antimagic labelling

In this section we will study super (a, d)-H-antimagicness for the disjoint union of
graphs. Since, for every simple connected graph H,

VEI(VEH) - 1)

> )
then |E(H)| — |V(H)| = —1. Thus, only for the purposes of the following theorem we
allow (a, d)-H-antimagic labelling of G also for negative differences d. This amounts
to (a + (t — 1)d, —d)-H-antimagic labelling of G, where ¢ is the number of all subgraphs
of G isomorphic to H.

V(H)| -1 < |E(H)| <

THEOREM 2.1. Let m,t > 1 and d > —1 be integers. For i=1,2,...,m, let G; with
an (Hl.],Hl.z, ..., H)-covering be a super (a,d)-H-antimagic graph of order p and
size q, where every graph Hl.j, j=1,2,...,t is isomorphic to the graph H and
d =|EH)| - |V(H)|. Then the disjoint union \Ji-, G; is a super (b, d)-H-antimagic
graph.
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Proor. Let m > 1, t > 1 be positive integers. Let d > —1 be an integer and, for a graph
H,let |[E(H)| - |V(H)|=d. Let G;, i=1,2,...,m, be a graph with p vertices and ¢
edges that admits an (H/, H?, ..., H))-covering, where every graph H, j=1,2,...,1,
is isomorphic to the given graph H. Note that G; is not necessarily isomorphic to G; for
i # j. Assume that every G;, i = 1,2,...,m, has a super (a, d)-H-antimagic labelling
fi: V(G) UE(G) = {1,2,...,p+ q}. Thus, the set of the corresponding Hl.’-weights
forms an arithmetic sequence with difference d:
{wtf,.(Hl.j) j=12,...,t}={a,a+d,...,a+ (t—1)d}. (2.1)
We define the labelling f for the vertices and edges of [ J! | G; in the following way:
m(fi(x)-1)+i if xe V(Gy),
fx) = ..
mfi(x)+1—i if x € E(G)).
First we prove that f is a bijection and that the vertices of | J{; G; under the labelling

f are labelled with the smallest possible numbers. As f;, i =1,2,...,m, is a super
labelling, then

{fi(v):ve V(G ={12,...,p},
{file):ec E(G)}={p+1,p+2,...,p+q}.
Thus, fori=1,2,...,m,
{(fW):veVGHY={liim+i,....m(p—1)+i},
{fle):ec EG)y={mp+1+m—imp+1+2m—1i,....mp+1+qgm—i}.

This means that "

{f(v) ve V(UG,-)} —{1,2,....mp)

i=1
and

{f(e):eeE(gGi)}:{mp+ IL,mp+2,...,(p+q)m}.

For the weight of every subgraph H: l’ isomorphic to the graph H under the labelling f,
wi(H) = Y f+ D fle)

veV(H)) ecE(H))

DL ) =D+ Y (mfile)+1-1i)

veV(H!) ecE(H])
=m Y (O =mVE) +AVEDN+m > fite) + |EH)| - | EH)]
veV(H) e€E(H)
=m( PIOEEY ﬁ(e))—m|v<H;'>|+|E<H;')|+i|v<H,.f>|—i|E<H{)|
veV(HY) ecE(HY)

= mwi(H]) = mlV(H)| + |ECH))| + ilVH]D] = |E(H)).
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As every H;.i, i=1,2,....,m, j=1,2,...,t, is isomorphic to the graph H and as
|[ECH)| - |V(H)| =d,

\V(HD)| = |V(H)| = k,

E(H))| = |E(H)] = k +d.

Thus, for the H-weights,
wit (HY) = mwt(H?) + k(1 — m) + d(1 - i).
According to (2.1), fori = 1,2,...,m, the H-weights in the components are

{wtf(Hl.j):j:1,2,...,t}={ma+k(1—m)+d(1—i),
ma+d)+k(l1-m)+d(l—-10),...,m@a+ - 1)d)+ k(1 —m)+d( —1i)}.

It is easy to see that the set of all H-weights in [ Ji2, G; forms an arithmetic sequence
with difference d,

wip(H) = 1,2, ..,m, j=1,2,...,1)
={ma+k(l-m)+d(l —m),ma+k(l—-m)+d2-m),...,
ma+ k(1 —m)—d,ma+ k(1 —m),ma+k(l —m)+d,...,
ma+d)+k(1-m),...,ma+ (t - 1)d) + k(1 —m)}.

Thus, the graph (J!", G; is a super (ma + (k + d)(1 — m), d)-H-antimagic graph. O

Theorem 2.1 has many interesting corollaries. First we present the result for
H-antimagicness of an arbitrary number of copies of a super (a, d)-H-antimagic graph
G, where d = |[E(H)| — |V(H)|.

CorOLLARY 2.2. Let G be a super (a,d)-H-antimagic graph, where d = |E(H)| — |V(H)|.
Then the disjoint union of an arbitrary number of copies of G, that is, mG withm > 1,
admits a super (b, d)-H-antimagic labelling.

We can extend the previous result also for the nonsuper case.

TueorREM 2.3. Let G be an (a,d)-H-antimagic graph, where d = |E(H)| — |V(H)|. Then
mG, m > 1, is a (b, d)-H-antimagic graph.

Proor. Let H be a graph of order k and size k +d, k > 2, d > —1. Let G be an (a, d)-
H-antimagic graph of order p and size g. Let f be an (a, d)-H-antimagic labelling of
G, thatis, f: V(G)U E(G) — {1,2,..., p + g} and the corresponding H-weights are
a,a+d,a+2d,...,a+ (t—1)d, where t is the number of subgraphs of G isomorphic
to H.

Fori=1,2,...,m, let v; denote the vertex corresponding to the vertex v in the ith
copy of G in mG. Analogously, let u;v; be the edge corresponding to the edge uv in the
ith copy of G in mG.
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Define a labelling g of mG, m > 1, in the following way:

gv)=m(fv)—-1)+i forveV(G),i=1,2,...,m,
guyv)=mf(u)+1—-i foruve EG),i=1,2,...,m.

According to the proof of Theorem 2.1, we only need to show that g is a bijection. Let
ref{l,2,...,p+q}. If the number r is assigned by the labelling f to a vertex v of G,
then the labels of the corresponding vertices v;, i = 1,2,...,m, in the copies G; in mG
are

{gv):gv)=m(r-1)+i,i=12,....m}={m(r—-1)+1,m(r—-1)+2,...,mr}.

If the number r is assigned by the labelling f to an edge uv of G, then the labels of the
corresponding edges u;v;, i = 1,2,...,m, in the copies G; in mG are

{g(uiv)) : guviy=mr+1—-i,i=1,2,... . m}={mr,mr—1,...,m(r—-1)+ 1}.

Thus, neither the vertex labels nor the edge labels in mG are overlapping. Under the
labelling g, the minimum label is 1 and the maximum label is m(p + ¢). Thus, g is a
bijection. O

3. Cycle-antimagicness and tree-antimagicness of graphs

Immediately from Theorem 2.1, we can obtain many interesting corollaries if we
consider special H-coverings of a given H-antimagic graph G.

If H is a graph isomorphic to a cycle C,, then we get the following results for
cycle-supermagicness of a disjoint union of graphs.

THeEOREM 3.1. Let m,t > 1 be integers. Let G; with an (Hl.l,Hl.z, ..., H})-covering for
i=1,2,...,mbea C,-supermagic graph of order p and size q, where every graph Hij,
Jj=1,2,...,t is isomorphic to the cycle C,, n > 3. Then the disjoint union U;-’il G;is
also a Cy-supermagic graph.

Proor. The proof follows from the proof of Theorem 2.1 as |E(C,)| — |V(C,)| = 0 for
every cycle C,, n > 3. O

THeorREM 3.2. Let G be a C,-supermagic (C,-magic) graph with n > 3. Then the
disjoint union of an arbitrary number of copies of G, that is, mG, m > 1, is also a
C,-supermagic (C,-magic) graph.

Note that it is possible to generalise the result not only for cycle-(super)magicness
but also for general unicyclic graphs, providing the size and the order of the unicyclic
graphs are the same.

TueorREM 3.3. Let m,t > 1 be integers. Let G; with an (Hl.l,Hl.z, ..., H})-covering for
i=1,2,...,mbe a C-supermagic graph of order p and size q, where every graph Hij,
Jj=1,2,...,t is isomorphic to the unicyclic graph C. Then the disjoint union | J}" | G;
is also a C-supermagic graph.
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THeOREM 3.4. Let G be a C-supermagic (C-magic) graph, where C is a unicyclic graph.
Then the disjoint union of an arbitrary number of copies of G, that is, mG, m > 1, is
also a C-supermagic (C-magic) graph.

If H is a tree, then |V(H)| — |[E(H)| = 1. Also, by adding an edge e to a unicyclic
graph C, we obtain the graph H = C + e with |E(H)| — |V(H)| = 1. Thus, we get the
following result.

THeoREM 3.5. Let m,t > 1 be positive integers. Let G; with a (Tl, s, T))-covering
Jori=1,2,...,mbe a super (a, 1)-T-antimagic graph of order p and size q, where T
is a tree and every tree TI.J, j=1,2,...,t is isomorphic to T. Then the disjoint union
Ui, Gi is a super (b, 1)-T -antimagic graph.

TuEOREM 3.6. Let G be a (super) (a, 1)-T-antimagic graph, where T is a tree. Then
mG, m > 1, is also a (super) (b, 1)-T-antimagic graph.

Note that Theorems 3.5 and 3.6 are also proved in [3].

THEOREM 3.7. Let m,t > 1 be integers. Let G; with an (Hl, 2. , H)-covering for
i=1,2,...,mbean (a,1)-(C + e)-antimagic graph of order p and size g, where every
graph HI.J, j=1,2,...,t is isomorphic to the graph C + e, where C is a unicyclic
graph. Then the disjoint union \J;-, G; is a (b, 1)-(C + e)-antimagic graph.

Tueorem 3.8. Let G be a (super) (a, 1)-(C + e)-antimagic graph, where C is a unicyclic
graph. Then the disjoint union of an arbitrary number of copies of G, that is, mG,
m > 1, is a (super) (b, 1)-(C + e)-antimagic graph.

4. Conclusion

We have shown that the disjoint union of multiple copies of a (super) (a, d)-H-
antimagic graph is also a (super) (b, d)-H-antimagic graph for d = |E(H)| — |V(H)|.
It is a natural question whether a similar result holds also for other differences. For
further investigation, we propose the following open problem.

ProBLEM 4.1. Let G be a (super) (a,d)-H-antimagic graph. For the graph mG
determine if there is a (super) (a, d)-H-antimagic total labelling, for certain values
ofd # |[E(H)| — |V(H)| and for all m > 1.
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