ON H-ANTIMAGICNESS OF DISCONNECTED GRAPHS

MARTIN BAČA™, MIRKA MILLER, JOE RYAN and ANDREA SEMANIČOVÁ-FEŇOVČÍKOVÁ

(Received 3 December 2015; accepted 8 February 2016; first published online 1 April 2016)

Abstract

A simple graph G = (V, E) admits an H-covering if every edge in E belongs to at least one subgraph of G isomorphic to a given graph H. Then the graph G is (a, d)-H-antimagic if there exists a bijection $f: V \cup E \to \{1, 2, \ldots, |V| + |E|\}$ such that, for all subgraphs H' of G isomorphic to H, the H'-weights, $wt_f(H') = \sum_{v \in V(H')} f(v) + \sum_{e \in E(H')} f(e)$, form an arithmetic progression with the initial term a and the common difference d. When $f(V) = \{1, 2, \ldots, |V|\}$, then G is said to be super (a, d)-H-antimagic. In this paper, we study super (a, d)-H-antimagic labellings of a disjoint union of graphs for d = |E(H)| - |V(H)|.

2010 *Mathematics subject classification*: primary 05C78; secondary 05C70. *Keywords and phrases*: *H*-covering, (super) (*a*, *d*)-*H*-antimagic labelling, union of graphs.

1. Introduction

Let G = (V, E) be a finite simple graph. An *edge covering* of G is a family of subgraphs H_1, H_2, \ldots, H_t such that each edge of E belongs to at least one of the subgraphs H_i , $i = 1, 2, \ldots, t$. Then it is said that G admits an (H_1, H_2, \ldots, H_t) -(*edge*) *covering*. If every subgraph H_i is isomorphic to a given graph H_i , then the graph G admits an H-covering. A bijective function $f: V \cup E \rightarrow \{1, 2, \ldots, |V| + |E|\}$ is an (a, d)-H-antimagic labelling of a graph G admitting an H-covering whenever, for all subgraphs H' isomorphic to H, the H'-weights

$$wt_f(H') = \sum_{v \in V(H')} f(v) + \sum_{e \in E(H')} f(e)$$

form an arithmetic progression $a, a + d, a + 2d, \ldots, a + (t - 1)d$, where a > 0 and $d \ge 0$ are two integers, and t is the number of all subgraphs of G isomorphic to H. Such a labelling is called *super* if the smallest possible labels appear on the vertices. A graph that admits a (super) (a, d)-H-antimagic labelling is called (super)(a, d)-H-antimagic. For d = 0, it is called H-magic and H-supermagic, respectively.

The *H*-(super)magic labellings were first studied by Gutiérrez and Lladó [8] as an extension of the edge-magic and super edge-magic labellings introduced by Kotzig

The research for this article was supported by APVV-15-0116 and by KEGA 072TUKE-4/2014.

^{© 2016} Australian Mathematical Publishing Association Inc. 0004-9727/2016 \$16.00

and Rosa [11] and Enomoto *et al.* [7], respectively. In [8], there are considered star-(super)magic and path-(super)magic labellings of some connected graphs and it is proved that the path P_n and the cycle C_n are P_h -supermagic for some h. Lladó and Moragas [13] studied the cycle-(super)magic behaviour of several classes of connected graphs. They proved that wheels, windmills, books and prisms are C_h -magic for some h. Maryati *et al.* [16] and also Salman *et al.* [18] proved that certain families of trees are path-supermagic. Ngurah *et al.* [17] proved that chains, wheels, triangles, ladders and grids are cycle-supermagic. Maryati *et al.* [15] investigated the G-supermagicness of a disjoint union of c copies of a graph G and showed that the disjoint union of any paths is cP_h -supermagic for some c and h.

The (a, d)-H-antimagic labelling was introduced by Inayah $et\ al.$ [9]. In [10], there are investigated the super (a, d)-H-antimagic labellings for some shackles of a connected graph H. In [4], wheels are proved to be cycle-antimagic. The (super) (a, d)-H-antimagic labelling is related to a super d-antimagic labelling of type (1, 1, 0) of a plane graph that is the generalisation of a face-magic labelling introduced by Lih [12]. Further information on super d-antimagic labellings can be found in [2, 6].

For $H \cong K_2$, (super) (a, d)-H-antimagic labellings are also called (super) (a, d)-edge-antimagic total labellings [19]. More results on (a, d)-edge-antimagic total labellings can be found in [5, 14]. The vertex version of these labellings for generalised pyramid graphs is given in [1].

In this paper we mainly investigate the existence of super (a,d)-H-antimagic labellings for disconnected graphs. The main result of the paper is that if a graph G admits a (super) (a,d)-H-antimagic labelling, where d = |E(H)| - |V(H)|, then the disjoint union of m copies of the graph G, denoted by mG, admits a (super) (b,d)-H-antimagic labelling.

2. Super (a, d)-H-antimagic labelling

In this section we will study super (a, d)-H-antimagicness for the disjoint union of graphs. Since, for every simple connected graph H,

$$|V(H)| - 1 \le |E(H)| \le \frac{|V(H)|(|V(H)| - 1)}{2},$$

then $|E(H)| - |V(H)| \ge -1$. Thus, only for the purposes of the following theorem we allow (a, d)-H-antimagic labelling of G also for negative differences d. This amounts to (a + (t-1)d, -d)-H-antimagic labelling of G, where t is the number of all subgraphs of G isomorphic to H.

THEOREM 2.1. Let $m, t \ge 1$ and $d \ge -1$ be integers. For i = 1, 2, ..., m, let G_i with an $(H_i^1, H_i^2, ..., H_i^t)$ -covering be a super (a, d)-H-antimagic graph of order p and size q, where every graph H_i^j , j = 1, 2, ..., t, is isomorphic to the graph H and d = |E(H)| - |V(H)|. Then the disjoint union $\bigcup_{i=1}^m G_i$ is a super (b, d)-H-antimagic graph.

PROOF. Let $m \ge 1$, $t \ge 1$ be positive integers. Let $d \ge -1$ be an integer and, for a graph H, let |E(H)| - |V(H)| = d. Let G_i , i = 1, 2, ..., m, be a graph with p vertices and q edges that admits an $(H_i^1, H_i^2, ..., H_i^t)$ -covering, where every graph H_i^j , j = 1, 2, ..., t, is isomorphic to the given graph H. Note that G_i is not necessarily isomorphic to G_j for $i \ne j$. Assume that every G_i , i = 1, 2, ..., m, has a super (a, d)-H-antimagic labelling $f_i : V(G_i) \cup E(G_i) \rightarrow \{1, 2, ..., p + q\}$. Thus, the set of the corresponding H_i^j -weights forms an arithmetic sequence with difference d:

$$\{wt_f(H_i^j): j=1,2,\ldots,t\} = \{a,a+d,\ldots,a+(t-1)d\}.$$
 (2.1)

We define the labelling f for the vertices and edges of $\bigcup_{i=1}^m G_i$ in the following way:

$$f(x) = \begin{cases} m(f_i(x) - 1) + i & \text{if } x \in V(G_i), \\ mf_i(x) + 1 - i & \text{if } x \in E(G_i). \end{cases}$$

First we prove that f is a bijection and that the vertices of $\bigcup_{i=1}^{m} G_i$ under the labelling f are labelled with the smallest possible numbers. As f_i , i = 1, 2, ..., m, is a super labelling, then

$$\{f_i(v) : v \in V(G_i)\} = \{1, 2, \dots, p\},\$$

 $\{f_i(e) : e \in E(G_i)\} = \{p + 1, p + 2, \dots, p + q\}.$

Thus, for i = 1, 2, ..., m,

$$\{f(v): v \in V(G_i)\} = \{i, m+i, \dots, m(p-1)+i\},\$$

 $\{f(e): e \in E(G_i)\} = \{mp+1+m-i, mp+1+2m-i, \dots, mp+1+qm-i\}.$

This means that

$$\{f(v): v \in V(\bigcup_{i=1}^{m} G_i)\} = \{1, 2, \dots, mp\}$$

and

$$\left\{ f(e) : e \in E\left(\bigcup_{i=1}^{m} G_i\right) \right\} = \{mp+1, mp+2, \dots, (p+q)m\}.$$

For the weight of every subgraph H_i^j isomorphic to the graph H under the labelling f,

$$\begin{split} wt_f(H_i^j) &= \sum_{v \in V(H_i^j)} f(v) + \sum_{e \in E(H_i^j)} f(e) \\ &= \sum_{v \in V(H_i^j)} (m(f_i(v) - 1) + i) + \sum_{e \in E(H_i^j)} (mf_i(e) + 1 - i) \\ &= m \sum_{v \in V(H_i^j)} f_i(v) - m|V(H_i^j)| + i|V(H_i^j)| + m \sum_{e \in E(H_i^j)} f_i(e) + |E(H_i^j)| - i|E(H_i^j)| \\ &= m \bigg(\sum_{v \in V(H_i^j)} f_i(v) + \sum_{e \in E(H_i^j)} f_i(e) \bigg) - m|V(H_i^j)| + |E(H_i^j)| + i|V(H_i^j)| - i|E(H_i^j)| \\ &= mwt_{f_i}(H_i^j) - m|V(H_i^j)| + |E(H_i^j)| + i|V(H_i^j)| - i|E(H_i^j)|. \end{split}$$

204 M. Bača *et al.* [4]

As every H_i^j , i = 1, 2, ..., m, j = 1, 2, ..., t, is isomorphic to the graph H and as |E(H)| - |V(H)| = d,

$$|V(H_i^j)| = |V(H)| = k,$$

 $|E(H_i^j)| = |E(H)| = k + d.$

Thus, for the *H*-weights,

$$wt_f(H_i^j) = mwt_f(H_i^j) + k(1-m) + d(1-i).$$

According to (2.1), for i = 1, 2, ..., m, the *H*-weights in the components are

$$\{wt_f(H_i^j): j=1,2,\ldots,t\} = \{ma+k(1-m)+d(1-i), m(a+d)+k(1-m)+d(1-i),\ldots,m(a+(t-1)d)+k(1-m)+d(1-i)\}.$$

It is easy to see that the set of all H-weights in $\bigcup_{i=1}^{m} G_i$ forms an arithmetic sequence with difference d,

$$\begin{aligned} \{wt_f(H_i^j): i = 1, 2, \dots, m, j = 1, 2, \dots, t\} \\ &= \{ma + k(1-m) + d(1-m), ma + k(1-m) + d(2-m), \dots, \\ &ma + k(1-m) - d, ma + k(1-m), ma + k(1-m) + d, \dots, \\ &m(a+d) + k(1-m), \dots, m(a+(t-1)d) + k(1-m)\}. \end{aligned}$$

Thus, the graph $\bigcup_{i=1}^{m} G_i$ is a super (ma + (k+d)(1-m), d)-H-antimagic graph. \Box

Theorem 2.1 has many interesting corollaries. First we present the result for H-antimagicness of an arbitrary number of copies of a super (a, d)-H-antimagic graph G, where d = |E(H)| - |V(H)|.

COROLLARY 2.2. Let G be a super (a, d)-H-antimagic graph, where d = |E(H)| - |V(H)|. Then the disjoint union of an arbitrary number of copies of G, that is, mG with $m \ge 1$, admits a super (b, d)-H-antimagic labelling.

We can extend the previous result also for the nonsuper case.

THEOREM 2.3. Let G be an (a,d)-H-antimagic graph, where d = |E(H)| - |V(H)|. Then mG, $m \ge 1$, is a (b,d)-H-antimagic graph.

PROOF. Let H be a graph of order k and size k+d, $k \ge 2$, $d \ge -1$. Let G be an (a,d)-H-antimagic graph of order p and size q. Let f be an (a,d)-H-antimagic labelling of G, that is, $f: V(G) \cup E(G) \rightarrow \{1,2,\ldots,p+q\}$ and the corresponding H-weights are $a, a+d, a+2d,\ldots,a+(t-1)d$, where t is the number of subgraphs of G isomorphic to H.

For i = 1, 2, ..., m, let v_i denote the vertex corresponding to the vertex v in the ith copy of G in mG. Analogously, let u_iv_i be the edge corresponding to the edge uv in the ith copy of G in mG.

Define a labelling g of mG, $m \ge 1$, in the following way:

$$g(v_i) = m(f(v) - 1) + i$$
 for $v \in V(G)$, $i = 1, 2, ..., m$,
 $g(u_i v_i) = m f(uv) + 1 - i$ for $uv \in E(G)$, $i = 1, 2, ..., m$.

According to the proof of Theorem 2.1, we only need to show that g is a bijection. Let $r \in \{1, 2, ..., p + q\}$. If the number r is assigned by the labelling f to a vertex v of G, then the labels of the corresponding vertices v_i , i = 1, 2, ..., m, in the copies G_i in mG are

$$\{g(v_i): g(v_i) = m(r-1) + i, i = 1, 2, \dots, m\} = \{m(r-1) + 1, m(r-1) + 2, \dots, mr\}.$$

If the number r is assigned by the labelling f to an edge uv of G, then the labels of the corresponding edges u_iv_i , i = 1, 2, ..., m, in the copies G_i in mG are

$$\{g(u_iv_i): g(u_iv_i) = mr + 1 - i, i = 1, 2, \dots, m\} = \{mr, mr - 1, \dots, m(r-1) + 1\}.$$

Thus, neither the vertex labels nor the edge labels in mG are overlapping. Under the labelling g, the minimum label is 1 and the maximum label is m(p+q). Thus, g is a bijection.

3. Cycle-antimagicness and tree-antimagicness of graphs

Immediately from Theorem 2.1, we can obtain many interesting corollaries if we consider special H-coverings of a given H-antimagic graph G.

If H is a graph isomorphic to a cycle C_n , then we get the following results for cycle-supermagicness of a disjoint union of graphs.

THEOREM 3.1. Let $m, t \ge 1$ be integers. Let G_i with an $(H_i^1, H_i^2, \ldots, H_i^t)$ -covering for $i = 1, 2, \ldots, m$ be a C_n -supermagic graph of order p and size q, where every graph H_i^j , $j = 1, 2, \ldots, t$, is isomorphic to the cycle C_n , $n \ge 3$. Then the disjoint union $\bigcup_{i=1}^m G_i$ is also a C_n -supermagic graph.

PROOF. The proof follows from the proof of Theorem 2.1 as $|E(C_n)| - |V(C_n)| = 0$ for every cycle C_n , $n \ge 3$.

THEOREM 3.2. Let G be a C_n -supermagic (C_n -magic) graph with $n \ge 3$. Then the disjoint union of an arbitrary number of copies of G, that is, mG, $m \ge 1$, is also a C_n -supermagic (C_n -magic) graph.

Note that it is possible to generalise the result not only for cycle-(super)magicness but also for general unicyclic graphs, providing the size and the order of the unicyclic graphs are the same.

THEOREM 3.3. Let $m, t \ge 1$ be integers. Let G_i with an $(H_i^1, H_i^2, \ldots, H_i^t)$ -covering for $i = 1, 2, \ldots, m$ be a C-supermagic graph of order p and size q, where every graph H_i^j , $j = 1, 2, \ldots, t$, is isomorphic to the unicyclic graph C. Then the disjoint union $\bigcup_{i=1}^m G_i$ is also a C-supermagic graph.

Theorem 3.4. Let G be a C-supermagic (C-magic) graph, where C is a unicyclic graph. Then the disjoint union of an arbitrary number of copies of G, that is, mG, $m \ge 1$, is also a C-supermagic (C-magic) graph.

If *H* is a tree, then |V(H)| - |E(H)| = 1. Also, by adding an edge *e* to a unicyclic graph *C*, we obtain the graph $H \cong C + e$ with |E(H)| - |V(H)| = 1. Thus, we get the following result.

THEOREM 3.5. Let $m, t \ge 1$ be positive integers. Let G_i with a $(T_i^1, T_i^2, \ldots, T_i^t)$ -covering for $i = 1, 2, \ldots, m$ be a super (a, 1)-T-antimagic graph of order p and size q, where T is a tree and every tree T_i^j , $j = 1, 2, \ldots, t$, is isomorphic to T. Then the disjoint union $\bigcup_{i=1}^m G_i$ is a super (b, 1)-T-antimagic graph.

THEOREM 3.6. Let G be a (super) (a, 1)-T-antimagic graph, where T is a tree. Then mG, $m \ge 1$, is also a (super) (b, 1)-T-antimagic graph.

Note that Theorems 3.5 and 3.6 are also proved in [3].

THEOREM 3.7. Let $m, t \ge 1$ be integers. Let G_i with an $(H_i^1, H_i^2, \ldots, H_i^t)$ -covering for $i = 1, 2, \ldots, m$ be an (a, 1)-(C + e)-antimagic graph of order p and size q, where every graph H_i^j , $j = 1, 2, \ldots, t$, is isomorphic to the graph C + e, where C is a unicyclic graph. Then the disjoint union $\bigcup_{i=1}^m G_i$ is a (b, 1)-(C + e)-antimagic graph.

THEOREM 3.8. Let G be a (super) (a, 1)-(C + e)-antimagic graph, where C is a unicyclic graph. Then the disjoint union of an arbitrary number of copies of G, that is, mG, $m \ge 1$, is a (super) (b, 1)-(C + e)-antimagic graph.

4. Conclusion

We have shown that the disjoint union of multiple copies of a (super) (a, d)-H-antimagic graph is also a (super) (b, d)-H-antimagic graph for d = |E(H)| - |V(H)|. It is a natural question whether a similar result holds also for other differences. For further investigation, we propose the following open problem.

PROBLEM 4.1. Let G be a (super) (a, d)-H-antimagic graph. For the graph mG determine if there is a (super) (a, d)-H-antimagic total labelling, for certain values of $d \neq |E(H)| - |V(H)|$ and for all $m \geq 1$.

References

- [1] S. Arumugam, M. Miller, O. Phanalasy and J. Ryan, 'Antimagic labeling of generalized pyramid graphs', *Acta Math. Sin. (Engl. Ser.)* **30**(2) (2014), 283–290.
- [2] M. Bača, L. Brankovic and A. Semaničová-Feňovčíková, 'Labelings of plane graphs containing Hamilton path', Acta Math. Sin. (Engl. Ser.) 27(4) (2011), 701–714.
- [3] M. Bača, Z. Kimáková, A. Semaničová-Feňovčíková and M. A. Umar, 'Tree-antimagicness of disconnected graphs', Math. Probl. Eng. 2015 (2015), 504251, 4 pp., doi:10.1155/2015/504251.
- [4] M. Bača, M. Lascsáková, M. Miller, J. Ryan and A. Semaničová-Feňovčíková, 'Wheels are cycle-antimagic', Electron. Notes Discrete Math. 48 (2015), 11–18.

- [5] M. Bača and M. Miller, Super Edge-antimagic Graphs: A Wealth of Problems and Some Solutions (Brown Walker Press, Boca Raton, FL, 2008).
- [6] M. Bača, M. Miller, O. Phanalasy and A. Semaničová-Feňovčíková, 'Super d-antimagic labelings of disconnected plane graphs', Acta Math. Sin. (Engl. Ser.) 26(12) (2010), 2283–2294.
- [7] H. Enomoto, A. S. Lladó, T. Nakamigawa and G. Ringel, 'Super edge-magic graphs', SUT J. Math. 34 (1998), 105–109.
- [8] A. Gutiérrez and A. Lladó, 'Magic coverings', J. Combin. Math. Combin. Comput. 55 (2005), 43–56.
- [9] N. Inayah, A. N. M. Salman and R. Simanjuntak, 'On (a, d)-H-antimagic coverings of graphs', J. Combin. Math. Combin. Comput. 71 (2009), 273–281.
- [10] N. Inayah, R. Simanjuntak, A. N. M. Salman and K. I. A. Syuhada, 'On (*a*, *d*)-*H*-antimagic total labelings for shackles of a connected graph *H*', *Australas. J. Combin.* **57** (2013), 127–138.
- [11] A. Kotzig and A. Rosa, 'Magic valuations of finite graphs', *Canad. Math. Bull.* 13 (1970), 451–461.
- [12] K. W. Lih, 'On magic and consecutive labelings of plane graphs', Util. Math. 24 (1983), 165–197.
- [13] A. S. Lladó and J. Moragas, 'Cycle-magic graphs', Discrete Math. 307 (2007), 2925–2933.
- [14] A. M. Marr and W. D. Wallis, *Magic Graphs* (Birkhäuser, New York, 2013).
- [15] T. K. Maryati, A. N. M. Salman and E. T. Baskoro, 'Supermagic coverings of the disjoint union of graphs and amalgamations', *Discrete Math.* 313 (2013), 397–405.
- [16] T. K. Maryati, A. N. M. Salman, E. T. Baskoro, J. Ryan and M. Miller, 'On H-supermagic labelings for certain shackles and amalgamations of a connected graph', *Util. Math.* 83 (2010), 333–342.
- [17] A. A. G. Ngurah, A. N. M. Salman and L. Susilowati, 'H-supermagic labelings of graphs', Discrete Math. 310 (2010), 1293–1300.
- [18] A. N. M. Salman, A. A. G. Ngurah and N. Izzati, 'On (super)-edge-magic total labelings of subdivision of stars S_n', Util. Math. 81 (2010), 275–284.
- [19] R. Simanjuntak, M. Miller and F. Bertault, 'Two new (a, d)-antimagic graph labelings', *Proc. Eleventh Australas. Workshop Combinatorial Algorithms (AWOCA)* **11** (2000), 179–189.

MARTIN BAČA, Department of Applied Mathematics and Informatics,

Technical University, Košice, Slovakia

e-mail: martin.baca@tuke.sk

MIRKA MILLER, Department of Mathematics, University of West Bohemia, Pilsen, Czech Republic and

School of Mathematical and Physical Sciences,

The University of Newcastle, Australia e-mail: mirka.miller@newcastle.edu.au

JOE RYAN, School of Electrical Engineering and Computer Science,

The University of Newcastle, Australia e-mail: joe.ryan@newcastle.edu.au

ANDREA SEMANIČOVÁ-FEŇOVČÍKOVÁ,

Department of Applied Mathematics and Informatics,

Technical University, Košice, Slovakia

e-mail: andrea.fenovcikova@tuke.sk