Mg₃(VO₄)₂: Insight Into Catalytic Behavior Through Single Crystal Studies

C. Lanier*, N. Erdman**, L.D. Marks*, and K.R. Poeppelmeier***

- * Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive Room 2036, Evanston, IL 60208
- ** Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive Room 2036, Evanston, IL 60208, currently at Jeol USA, Inc., 11 Dearborn Road, Peabody, MA 01960
- *** Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208

 $Mg_3(VO_4)_2$ is known as an active catalyst for the oxidative dehydrogenation (ODH) of butane and propane [1,2]. In our previous studies, $Mg_3(VO_4)_2$ demonstrated remarkable turn over frequencies for the ODH of propane to propene. It was shown that when the catalytic operation was under reducing conditions (O_2 from the feed stream was completely consumed), the reaction became significantly more selective towards propylene [3]. Interestingly, $Mg_3(VO_4)_2$ and its reduced phase, $Mg_3V_2O_6$, are structurally very similar [5], as $Mg_3(VO_4)_2$ has a cation-deficient spinel-type structure [4] and $Mg_3V_2O_6$ has a cation-stuffed spinel-type structure. A single crystal of $Mg_3(VO_4)_2$ can undergo a topochemical reduction reaction to become a single crystal of $Mg_3V_2O_6$. It is the goal of this work to increase our understanding of the bulk and surface properties of $Mg_3(VO_4)_2$ under oxidizing and reducing conditions in order to gain insight into the observed catalytic behavior. In this study, transmission electron microscopy (TEM) is used to characterize synthetically grown $Mg_3(VO_4)_2$ single crystals of known orientation.

Transmission electron microscopy of various orientations of $Mg_3(VO_4)_2$ annealed at 750°C in O_2 showed formation of MgO islands on the surface of the sample (Fig. 1). The possibility of manipulating the surface stoichiometry of [010] samples was tested by adding V_2O_5 powder into the system during the annealing. Nucleation of MgO not was seen on the surface after annealing at 600° C, suggesting that annealing with V_2O_5 powder (thus increasing V_2O_5 partial pressure in the system) can prevent significant surface enrichment in MgO. Annealing an [010] sample with V_2O_5 at 700° C (above the melting temperature of V_2O_5) caused the sample to coarsen and become contaminated with V_2O_5 .

 $Mg_3V_2O_8$ samples of [20-1] orientation were reduced by annealing for 30 minutes at 560° C in a flow of 7% H_2 in N_2 . After reduction, the samples were black in color and transmission electron diffraction revealed that the sample was composed of $Mg_3V_2O_6$. The zone axis (that is, the direction normal to the plane of the sample) was determined to be the [111] direction (Fig 2). Therefore we have observed that [20-1] $Mg_3(VO_4)_2$ transforms to [111] $Mg_3V_2O_6$. This result is very interesting since both the [111] direction in $Mg_3V_2O_6$ and the [20-1] direction in $Mg_3(VO_4)_2$ are perpendicular to the close-packed oxygen planes of their respective spinel-type structures. We have therefore shown that the reduction of bulk $Mg_3(VO_4)_2$ to $Mg_3V_2O_6$ occurs with the orientation of the close-packed oxygen planes remaining constant with respect to the sample geometry.

In conclusion, we have used TEM to study oriented single crystals of $Mg_3(VO_4)_2$ under oxidizing and reducing conditions in order to gain insight into the catalytic behavior of $Mg_3(VO_4)_2$. The TEM observations showed that upon heating in an oxidizing environment, the surface of $Mg_3(VO_4)_2$

becomes covered with MgO islands. As a result, we suggest that MgO enrichment occurs at the surface of $Mg_3(VO_4)_2$ during practical catalytic operation. This enrichment caps the catalyst with a non-reactive layer, effectively poisoning the ODH reaction. This proposed phenomenon agrees well with the observed catalytic performance of $Mg_3(VO_4)_2$ in oxidizing environments: with excess O_2 present in the gaseous feed stream the catalytic activity progressively decreases with time/temperature. Furthermore we have observed the single crystal to single crystal phase transformation of $Mg_3(VO_4)_2$ to $Mg_3V_2O_6$. We conclude by noting that this reduction is extremely facile and occurs with the close-packed oxygen network remaining constant with respect to the sample geometry [6].

References

- [1] M. A. Chaar et al., J of Catal 109(2) (1988) 463.
- [2] M. A. Chaar et al., J of Catal 105(2) (1987) 483.
- [3] J. D. Pless et al., J of Catal 223(2) (2004) 419.
- [4] N Krishnamachari and C. Calvo, Can J Chemistry 49(10) (1971) 1629.
- [5] X. D. Wang et al., J Alloy Compd 270(1-2) (1998) 88.
- [6] This research is supported by the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy, Grant No. DE-FG02-03ER15457.

Figure 1: Bright field image of $Mg_3(VO_4)_2$ after 2 hour O_2 anneal at 750°C showing formation of MgO islands on the surface of the sample.

Figure 2: Transmission electron diffraction patterns of (a) [20-1] $Mg_3(VO_4)_2$ zone axis (before reduction) and (b) [111] $Mg_3V_2O_6$ zone axis (after reduction).