
INITIAL SEGMENTS OF MANY-ONE DEGREES 

A. H. LACHLAN 

Introduction. Our aim in this paper is to give a characterization of the 
order types of the countable initial segments of many-one degrees (m-degrees). 
The basic definitions and background information can be found in [2] from 
where we draw most of our notation and terminology. We expand the usual 
notion of m-reducibility by adopting the convention that R ^ m 0 and R ^ m N 
for every recursive set R. This has the effect of giving all recursive sets the 
same m-degree; that m-degree will be denoted by 0. We shall denote by ^ 
the partial ordering of m-degrees induced by 5*m, and shall denote b y a U b 
the least upper bound of the m-degrees a, b . We call a U b the union of 
a and b . 

Consider a map 9 from one partially ordered set into another. We say 
that 9 preserves unions if for any a, b in dom 9 having least upper bound 
a U b, 9{a \J b) is defined and equal to 9(a) U 9(b) ; similarly for intersections. 
The least member and greatest member of a partially ordered set will, if 
they exist, be denoted by 0 and 1, respectively. We say that 9 preserves 0 if 
(9(0) = 0; similarly for 1. 

Let (Di) be a sequence of finite distributive lattices each with 0 ^ 1 , and 
for each i let Xi'- Dt —> Di+i be a map preserving unions, 0, and 1, but not 
necessarily intersections. Then the direct limit L* of the sequence 

n Xo n Xi Xi n
 v z+ i 

DQ > Di > . . . > Di+i > . . . 

is an upper semilattice with 0 and 1. 
Our principal result is: X is the order type of an initial segment of m-degrees 

with greatest member (which is > 0 ) if and only if X is the order type of some 
upper semilattice L* formed in the manner described above. This provides a 
characterization of the order types of countable initial segments, which we 
shall not state any more explicitly, because any countable set of m-degrees 
has an upper bound. 

The plan of the paper is as follows: In § 1 we prove a closure property of 
the upper semilattice of m-degrees, in §2 we show that any order type of 
a countable initial segment is possible provided only that it is consistent 
with the closure property, and in § 3 we mention some corollaries and related 
results. 
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We conclude the introduction by mentioning some concepts that will 
be used below. Let D be a finite distributive lattice with 0 ^ 1 . Then D 
generates a unique Boolean algebra A with the same 0 and 1. The minimal 
non-zero elements of A are called atoms; since A is determined by D, we 
may speak of these atoms as being the atoms of D. Denote by jV the Boolean 
algebra formed by the subsets of N. By an isomorphism IT: D—^jV we mean 
a one-to-one map T of D into J/ preserving unions, intersections, and such 
that 7r(l) = N. If T is any such isomorphism, we extend w to the atoms of D 
by letting ir(a) = ir{d\) — ir(d2), where d\ — d2 is the unique expression of 
the atom a as a difference of elements of D. 

A class *$ of finite sets of natural numbers is called canonically enumerable 
[2, p. 76] if there exists an enumeration (d) of *$ such that the binary relation 
x 6 Cy is recursively enumerable (r.e.) and such that the cardinality of C\ 
is a recursive function of i. Any such enumeration (Ct) is called a canonical 
enumeration subject to the convention that canonical enumerations of infinite 
classes are to be without repetitions. 

We say that the sets A and B differ finitely if the symmetric difference 
(A — B) \J (B — A) is finite. Let Lm denote the upper semilattice of 
m-degrees. 

1. A closure property of m-degrees. Let U be a set of natural numbers 
with m-degree u . For any non-empty r.e. set W, let w b e a recursive function 
whose range is W. Define $(W) to be the m-degree of {x\ w(x) £ U}. If 
W = 0, define \//(W) = 0. It is easy to verify that \p(W) is independent 
of the choice of w, that \p is onto the m-degrees ^ u , and that yp(W\ \J W2) = 
\p(Wi) W \f/(W2) for any r.e. sets Wi, W2. Thus \f/ is an upper semilattice 
homomorphism from the r.e. sets onto the m-degrees ^ u . 

We now prove the first half of the characterization which is our main concern 
in the paper. 

LEMMA 1. Let S be a finite set of m-degrees closed under finite unions. There 
exists a finite distributive lattice D and mappings cp: S —» D and \p: D —> Lm 

both preserving unions such that \f/cp is the identity on S. 

Proof. Let U be a representative of the greatest member u of S. Let \p be 
as above and let Wo, Wi, . . . , Wm be r.e. sets such that 

For each i S m let wt be a recursive function with range Wt. For each triple 
of numbers (i,j,k), i,j,k S m, we define an r.e. relation Qijk as follows. 
If 4,(Wi) Û *(Wj) U MWk), then ^(Wt) £ t(Wj U Wk) and thus 

{x\wi(x) 6 U] ^m{x\wjk(x) 6 U}, 

where wJk is a recursive function whose range is Wj U Wk. It follows that 
a recursive function r can be chosen such that for each x, wt{x) and wjkr(x) 
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are either both in U or in its complement. Let Qijk consist of all the pairs 
(Wi(x), wjkr(x)). If 4,(Wi) $ fiWj) U f(Wk), let Qijk be the empty relation. 
Let Q be the least equivalence relation including all the relations Qijk. It is 
clear that Q is r.e. and that for all x, y, we have 

Q(x,y)-+ (* e U^y e U), 

since each Qijk has both these properties. For any r.e. set W define W = 
{x\ 3y[y G W&Q(x,y)]}; then W is r.e. and t(W') = $(W). To prove 
the latter, let w and w' be recursive functions whose ranges are W and W', 
respectively. Since Q is r.e., there exists a recursive function / such that 
Q(w'(x),wf(x)). Thus {x\w'(x) £ U] is m-reducible to {x\w{x) £ [/}, 
whence iKTF') ^ iKW). We also have \fr(W) ^ 1KW7) since W ÇZ W . 

Let D be the distributive lattice generated by Wo', . . . , Wm' under union and 
intersection. Suppose that yp(Wt) S f(Wj) U \p(Wk); then W{ C I F / W WV 
since Q contains Q*#; in particular, taking j = k we see that ^(W<) ^ ^(W^) 
implies W/ C H7/. Let <p be defined by ^(W7*) = W/; then from the 
preceding remarks it is clear that <p preserves unions. Finally, \[/(p is the identity 
on 5 since 4/(W') = $(W) for every r.e. set W and in particular for W0, . . . , 
Wm. 

Let L be a non-trivial upper semilattice; we say that "L has the closure 
property" if for every finite subset 5 of L closed under unions there exist a 
finite distributive lattice D and mappings <p: S —> D and yp: D —» L, both 
preserving unions such that ^ is the identity on S. 

LEMMA 2. Let L be a countable upper semilattice with 0 and 1,0 p* 1. There 
exists a sequence (Dt) of finite distributive lattices each with 0 ^ 1 , and maps 
Xt'.Di-^Di+i preserving unions, 0, and 1, such that L is isomorphic to the 
direct limit of the sequence 

n Xo n Xi Xi n Xz+i 
JJ0 » JJ1 » . . . > L>i+1 » . . . , 

if and only if L has the closure property. 

Proof. For the "only if" part suppose that the sequences (Dt) and (xt) 
are given such that L is isomorphic to the direct limit. From the definition 
of direct limit, for each i there is a map £*: Dt—^L preserving unions, 0, and 
1, and such that f* = £<+iX<- ForalH, 7 with i < j let Xij denote the composition 
Xj-iXj-2. . • Xt which maps Dt into Dj. Let S be a finite subset of L, closed 
under unions. Choose i such that 5 Ç £t(Di), choose j > i such that £y is 
one-to-one on x%j{Dt). Define D to be Dj, <p: S —» D by 

<p(s) = the unique member of Xa(Di) ^ ê/"1 ({$})» 

and T/' to be £j. It is easily verified that <p and \p both preserve unions and 
that \p<p is the identity on S. Hence L has the closure property. 

For the "if" part suppose that L has the closure property. Let uo, U\, . . . 
be an enumeration of L. For each i ^ 0 we define a subset S* of L, a finite 
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distributive lattice Dt and maps ipu \[/i as follows. Let S0 = {0, 1}. Suppose 
that St has been defined and is closed under unions, then let Dt be a finite 
distributive lattice and ipt: Si—^DU \pt: Di—>L be maps preserving unions 
such that \l/i<Pi is the identity on St. Finally, define S*+i to be the closure 
under unions of \pi(Di) U {ut}. Let xi = Vi+vPù then it is easily seen that 
the upper semilattice L is the direct limit of the sequence 

n Xo n Xi Xi n Xt+i 
Vo > Vi > . . . > Di+1 > . . . . 

2. The characterization of initial segments. In view of Lemma 2, the 
characterization of the order types of initial segments of the m-degrees with 
greatest member, which was stated in the introduction, is immediate from 
the following result. 

THEOREM. Let L be a countable upper semilattice with 0. There exists an 
initial segment of m-degrees isomorphic to L if and only if L has the closure 
property. 

The "only if" part of the theorem is immediate from Lemma 1. The "if" 
part will be proved in the remainder of this section. Thus suppose that L is 
a countable upper semilattice with 0 which has the closure property. Since 
a greatest member may be adjoined to any upper semilattice, we may suppose 
that L has a 1, 1 5* 0. 

We shall now state three propositions and prove the theorem from them, 
but first some definitions. A recursive partition 3% of the natural numbers is 
a canonically enumerable class of disjoint non-empty finite sets such that 
\J3% = N. If 31 is a recursive partition and A is a set, then the closure of A 
under 3%, denoted by 3?(A), is the set 

\J{R\R G 9t &Rr\A ^ 0}. 

A recursive partition 3? is a refinement of the recursive partition 3?* if 
every member of 3? is a subset of some member of 31*. The sets A and B 
are said to be equivalent with respect to 3% if 3%{A) = 31(B). When we speak 
of quintuples below we mean those of the form (J7, V, D, T, 3?), where 3? is a 
recursive partition, U and V are disjoint non-empty sets in 3? and are subsets 
of 7r(0), D is a finite distributive lattice with 0 and 1, ir: D—> ^V is an 
isomorphism, ir(a) is infinite, recursive, and closed under 3? for each atom 
a of Dy and 7r(0) is infinite. Observe that 7r(0) is necessarily recursive and 
closed under 3%. 

PROPOSITION 1. Let ([/, F, D, ir, 3?) be a quintuple, D* a finite distributive 
lattice with 0 9^ 1, and x' D—* D* a map preserving unions, 0, and 1. Then 
there exists a quintuple (Z7, V, D*, 7r*, 3$*) such that 3? is a refinement of 3%* 
and such that Tr*x(d) = 3?*ir(d) for all d in D. 

PROPOSITION 2. Let (£7, V, D, ir, 3%) be a quintuple, di, d2 members of D such 
that d\ % di, f a unary partial recursive (p.r.) function, and W\, W2 sets 

https://doi.org/10.4153/CJM-1970-010-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-010-6


MANY-ONE DEGREES 79 

equivalent to ir(di), ir{d2), respectively, with respect to 3%. Then there is a quintuple 
([/*, V*, D, TT*, ^ * ) MCA /Aa/ S% is a refinement of &*, ir*(d) = &*<ir(d) 

for all d in D, U Q U*, V C 7*, ([/* - J7) Pi TT(O) = 0, and « « * to/^ 
some n in W\ one of the following three possibilities holds: 

(i) f(n) is undefined or in N — W2, 
(ii) n is in U* and fin) £ V*, 

(iii) n is in F* and f(n) 6 [/*. 

PROPOSITION 3. Let (£/, V, D, T, 3%) be a quintuple and W an infinite r.e. 
set. There is a quintuple {U, V, D, 7r*, ^ * ) such that M is a refinement of £%*, 
ir*(d) = &*Tr(d) for all d in D, and for some d in D, w*(d) and 3S*(W) differ 
finitely. 

To prove the theorem from the propositions we start with the sequences 
(Df) and (xt) denned above. Since So = {0, 1}, note that each Dt has 0 and 
1 and that each xt preserves unions, 0, and 1. From the propositions, it is 
clear that there exists a sequence (Qt) = {{Uu V u Eu iru 0?i)) of quintuples 
with the following properties: 

(ql) Ui+i 3 Uu Vi+1 3 Vu and (Ui+1 - Ut) H TT,(0) = 0 for all i; 
(q2) ^ ? i i s a refinement of t%i+i for all i\ 
(q3) for all i there exists j such that Et is Dj and such that Ei+i is either 

Dj or Dj+i; define dt to be the identity if Et = Ei+i = Dj and to be Xj if 
Ei and Ei+\ are Dj, Dj+i, respectively; then iri+\Bi{e) = 3?i+i7Ti(e) for all 
i and all e in £*; 

(q4) for all j there exists i such that Et — Dj] 
(q5) for all i and £i, 2̂ in E* and each unary p.r. function / , either there 

exists k > i such that Oik(ei) ^ dik(e2), where 6ik = ^_i dk_2 . . . dt (i < k), 
or there exists k > i and w in 71-* (ei) such that one of the following three 
possibilities holds: 

(i) f(n) is undefined or in N — iri(e2), 
(ii) n is in Uk and f(n) is in Vkl 

(iii) « is in Vk and f(n) is in Uk] 
(q6) for every infinite r.e. set W there exists i and e in Ei such that 7r*(e) 

a n d ^ i W differ finitely. 
To see that the sequence (Qt) does indeed exist, notice that we may take 

Uo = {0}, Vo = {1}, E0 = Do, 8%o = {{x}\x e N], and TT0 to be any 
isomorphism of D0 into J/ satisfying the stated conditions. For the rest, 
(ql-q3) will automatically be satisfied provided that for each i, Qi+i is 
obtained from Qt by one of the propositions and that % is the appropriate 
Xj when Proposition 1 is used. We have (q4) provided that Proposition 1 
is used an infinite number of times. We can satisfy (q5) by including an 
infinite number of applications of Proposition 2 in the formation of (Qt) 
since by induction on k for each k > i we have Tk6ik(ei) = &kiri(ei) and 
Trkdik(e2) = &kTTi(e2). Finally, we can ensure (q6) by including an infinite 
number of applications of Proposition 3 in the formation of (Qi). 
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Since (Et) is merely (Di) with repetitions, it is clear that L is isomorphic 
to the direct limit L* of 

±L0 > ±Li > . . . > JtLi+i > . . . . 

We shall complete the proof of the theorem by showing that L* is the order 
type of the m-degrees ^ u, where u is the m-degree of U = U{ Ui\ i à 0}. 

Observe that U is closed under each 3% t since for each i, Ui is closed under 
Si. Also, let V = U{ Vi\ i è 0} ; then C/H F = 0 since 17, H F , = 0 for 
all i. Let yp be the upper semilattice homomorphism from the r.e. sets onto 
the m-degrees ^ u defined in § 1. We shall need the following lemmas. 

LEMMA 3. Let B be an r.e. set such that B C\ U and B — U are both non-empty 
and let A be any r.e. set; then \f/(A) ^ &(B) if and only if there is a unary p.r. 
function f mapping A into B such that for all n, we have n G U <^>f(n) G U. 

Proof. Suppose that A and B are as in the statement of the lemma. If A 
is finite, then \f/(A) = 0 and the lemma is trivially true; thus in what follows 
we suppose that A is infinite. Let a be a one-to-one recursive function 
enumerating A, let b be a recursive function whose range is B. Let c be a 
p.r. function such that bc(x) = x for x in B. 

If x[/(A) S\p(B), then {x\ a(x) G U) is m-reducible to {x\b{x) G U} ; 
whence there is a recursive function g such that for all n, a(n) G U <=> 
bg(n) G U. Clearly we can define/ by f(x) = bga~1(x) to satisfy the conclusion 
of the lemma. 

Now suppose that instead of \p(A) ^ \//(B) we are given the existence 
of a p.r. function/ mapping A into B such that x G U <=>/(#) G U. Defining 
gbyg(x) = cfa(x), it is clear that for all n, a(n) G U t=ïfa(n) G U<^>bg(n) G U. 
From this it follows immediately that i//(A) S i*(B). 

LEMMA 4. Let 3% be a recursive partition under which U is closed. If A and B 
are r.e. sets equivalent with respect to &, then \p(A) = \l/(B). 

Proof. Let A and B be r.e. sets equivalent with respect to 3?. For any 
m in A there exists n in B such that m and n are in the same member of 3%. 
Given mm A, such n can be found effectively since 3% is canonically enumerable 
and B is r.e. Hence there is a p.r. function / mapping A into B such that 
m and f(m) are always in the same member of 3%. Since U is closed under 
3$,x G U «=»/(*) G U. By Lemma 3, $(A) S <£(£). Similarly, f(B) ^ ^04) , 
which completes the proof. 

We now return to the proof of the theorem. Let p be any member of L* 
and let e in Et be a representative of p\ define K(J>) = ypir^e). For any k > i, 
Tt(e) and irkdik(e) are equivalent with respect to 3%kl whence by Lemma 4 
we have ypir^e) = \l/7rkdik(e), and so K(P) depends only on p. Let pi and p2 

be members of L* such that £i ^ p2\ then there exist i and eiy e2 in £z-
representing pi, p2, respectively, such that ei S e2. By definition, /c(£i) = 
^ i ( ^ i ) , ^(^2) = $TTi(e2). However, ir^ei) Ç 71̂ (02) since ?r* is an isomorphism, 
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whence n(pi) ^ ic(p2). Suppose now that pi, p2, £i, e2, and i are as defined 
above but that now pi ^ p2. For reductio ad absurdum suppose that ic(pi) g 
K(pi); then i M d ) ^ i M e 2 ) . Now vt(e2) 2 TT,(0) = ^ , T T 0 ( 0 ) D J70 U F0. 
Hence Wi(e2) C\ U and 7Ti(e2) — U are both non-empty. By Lemma 3 there 
exists a unary p.r. function/ mapping Wi(ei) into Tt(e2) such that for all n, 
we have n £ U <=>/(#) G Z7. But this contradicts (q5), whence K(£I) ^ ic(p2). 

We have shown above that /c is an embedding of L* in the m-degrees ^ u . 
It only remains to prove that K is onto. Let W be an infinite r.e. set; then 
by (q6) there exist i and e in Et such that iCi(e) and 0Hi(W) differ finitely. 
Since ^ preserves unions and $(F) — 0 for any finite F, we have ypir^e) = 
\p&t{W). Since FF and 0tt(W) are equivalent with respect to 0? h $(W) = 
\p&i(W). Hence \p(W) = K(P), where p is the member of L* represented 
by e. Finally, let W be a finite set; then as noted above, iK^O = 0- Clearly 
K(0) = ^TTO(O). Notice by setting e = 0 in (q3) that ir,+i(0) 2 ir<(0) for all i. 
From (ql), 7ro(0) P\ Z7 C f/o, which is finite, whence 

* M 0 ) ) = * M 0 ) - U) = 0 

by definition of ^. Thus when W is finite, ^(W) = K(0). Since ^ is onto the 
m-degrees ^ u, K is onto the m-degrees ^ u, and the proof of the theorem 
is complete. 

It only remains to prove the three propositions stated above. 

Proof of Proposition 1. Let A and A* be the Boolean algebras generated 
by D and D*, respectively. We first observe that for every atom a* of A* 
there is a class C(a*) of atoms of A such that for all d in D we have 

a* ^ x(d) ^3a[a £ C(a*)&a ^ d]. 

Suppose for reductio ad absurdum that for the atom a* of A* no such class 
C(A*) exists. It follows that for some d in D, a* ^ x(d) and every atom a 
of D, either a ^ d or there exists e in D such that a ^ e and a* ^ x(e)- Let 

ex = U { e | * € # & a * $ x(e)}. 

Since d is a union of atoms (d ^ e{), whence x(^) = x(ei)> Since x preserves 
unions, 

x(«i) = U{x(e)\eeD&a* $ x W } î 

whence a* ^ x(^i)- It follows that a* ^ x(^)- This contradiction shows 
that C(a*) exists. 

For each atom a of A let ^ [a] be the subclass of ^ consisting of those members 
of £% which are subsets of w(a). Note that ir{a) is infinite from the definition 
of quintuple and closed under 3% since ir(d) is closed under £% for each d in 
D. Clearly, 3%\a\ is infinite and \jS%\a\ = ir(a). For each atom a of D which 
occurs in at least one of the classes C(a*), partition ai [a] into n canonically 
enumerable infinite subclasses where n is the number of a*s such that 
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a Ç C(a*) , and assign a different member of the par t i t ion , 3$[a, a*] say, to 
each a* such t h a t a G C(a*). Le t (Ri[a, a*]) be a canonical enumerat ion 
of 3?[a, a*]. Le t 3$[Q] consist of those members of 3? which are subsets of 
TT(0) - {JJ\J F ) ; t h e n U ^ ? [ 0 ] = TT(0) - ( J 7 U F ) . Le t (2? JO]} be a canonical 
enumerat ion of 01 [0]. Le t ( 7 \ ) be a canonical enumerat ion of all the members 
of 3% — { U, V} which are nei ther in 3?[Q] nor in any 3%[a, a*]. W e recall 
t h a t by convention, canonical enumerat ions of infinite classes are to be 
wi thout repeti t ions. 

Define 3%* to be the recursive par t i t ion 

{u, v} u {£,[()] u 2\| ; ^0} 
U {U{i? i [a , a* ] | « 6 C(a*)}| i ^ 0 & a* is an a tom of £>*}. 

For each a tom a* of D* define 

**(«*) = U ( U { ^ [ a , o * ] | o 6 C(a*)}) , 
and define 

TT*(0) = C / U VKJ \J{Ri[Q]x^Ti\i £ 0} . 

Define 

T*(d*) = TT*(0) U U{7r*(a*)| a* ^ d*} 

for each d* in JD*. 
I t is easy to check t h a t (U, F , D*y 7r*, <^?*) is a quin tuple and t h a t ^ is a 

refinement of ^?* . W e have only to prove t h a t 7r*%(d) = 3%*ir{d). Consider 
n in 7r*x(^)- If w is in 7r*(0), then certainly n is in 3$*Tr(d) 3^?*7 r (0 ) , since 
each member of 3$*[Q] includes a member of ^?[0] . If n is no t in TT*(0), there 
exists an a tom a* of D* such t h a t n is in 7r*(a*) and a* rg x W - There exists 
a in C(a*) such t h a t a S d, and thus every member of ^?*[a*] conta ins a 
member of «^[a] and hence of ir(d). Again n is in 3?*ir(d). T h u s 7r*x(d) £ 
3$*w(d). W e can reverse the a rgumen t to show t h a t 3$*ir(d) ÇZ 7r*x(d) also. 
Th is completes the proof of Proposition 1. 

Proof of Proposition 2. Assume the hypothesis of the proposit ion. Since 
ir(di) ^ ir(d2) and ir(a) is infinite for each a tom a of Z}, i t follows t h a t ir(di) — 
w(d2) is non-empty and hence t h a t W\ — ir(d2) is non-empty . Le t n be any 
member of W\ — 7r(d2) and suppose t h a t f(n) is defined and in W2 (for 
otherwise the result is t r ivial ) . Since W2 C 7r(d2) and n(d2) is closed under 
£f, n and / (w) are in different members of 3$> say Rx and i?2 , respectively. 
Observe t h a t Rx Pi TT(0) = 0 since TT(0) C TT(^ 2 ) . Hence rc g f/ U F . The re 
are now two cases according as f{n) £ U or not . Suppose t h a t / ( « ) g U 
and define 

^ * = (^ _ {£/, V,Rl9R2}) V{UVRU FUi?2}, 

T T * 0 ) = T T W U ^ U R2 for all d in D. 

T h e n it is easy to verify the conclusion of the proposit ion. T h e case f(n) £ U 
may be t rea ted similarly. 
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Proof of Proposition 3. Assume the hypothesis of the proposition. Let 

sé — \a\ 7r(a) C\ W is infinite & [a is an atom of D or a = 0]}. 

Let e be the least member of D such that a ^ e for all a in s/. Let ^ consist 
of 0 together with all atoms ^e. Then there is a map 7: 38 —• J ^ such that 
for all & in «a?, we have 

(1) (d)d€D[y(b) ûd^b^d]. 

This is an elementary fact about finite Boolean algebras. We may assume 
that 7 is the identity of se. For each a in range 7, partition 3t\a\ into n + 1 
infinite canonically enumerable classes, where ^ is the cardinality of 7 -1(a)> 
such that at most one member of the partition has a member whose intersection 
with W is empty. Assign a different member of the partition, say 3? [a, b]t 

to each b such that y(b) = a, in such a way that the remaining member 
of the partition 3$~[a] is that one (if there is one) which has members not 
intersecting W. Let (Ri[a])t (Rr[a])9 and (Ri[a, b]) be canonical enumerations 
of the corresponding canonically enumerable classes. Define 

^ * = ( ^ _ U {@[a]\a £ &})U {Rt[b]V Rt[y(b)9b]\i^0&b G 3ë - s/} 

\J [Rr[a] \J Rt[a, a ] | ^ 0 & a C j / j . 

For all atoms a of D not in 38 define 7r*(a) = ir(a) ; for b in ^ - ( j / U {0} ) 
define 

TT*(6) = U{Rt[b]VRt[y(b),b]\i^0}. 

For a Ç s/ - {0} define 

7r*(a) = U { ^ " [ a ] U ^ k a ] | i ^ 0}. 

Define 

*" w \ [ / U 7 U U { i ? r [ 0 ] U i ^ [ 0 , 0 ] | * ^ 0} i f O G j / . 

Finally, for all d in D define 

T*(d) = TT*(0) U U {7r*(a)| a is an atom of D trnda ^d}. 

The reader will easily verify that (£/, F, Z>, 71-*, 3$*) is a quintuple, and that 
7r*(e) = 7r(e). Further, by our construction, every member of 31* [e] — { U, V) 
intersects W. However, by definition of e, W — ir(e) is finite. Hence ir*(e) 
and W differ finitely. It only remains to show that for all d in D, ir*(d) = 
3H*ir(d). Consider n in ir*(d); then n is in 7r*(a), where a is either 0 or an 
atom of D. If a g «â?, then n £ 71-(d) since 7r*(a) = 71-(a), whence ?z G &*ir(d). 
\i a ^ 38 — {s/ \J {0}), then there exists i such that 

Since Ri[a] C 71-(a), again w G ^?*7r(d). The cases a f j / - {0| and a = 0 
may be treated similarly. Thus ir*(d) ÇZ 3?*ir(d). To prove the inclusion 
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the other way suppose that n G &*ir(d); let R be the member of &* such 
that n £ R.li R £ 0? C\ &*, then n G U U V or n £ v(a) for some atom a 
of D not in 3ê. For any such a, 7r*(a) = ic(a). Hence n G ?r*(^) in this case. 
If there exist i and 6 in 38 — j / such that n G .#*[&] U i ^ f r O ) , 6], then 
^ [ i ] U ^ [ 7 ( i ) , J ] intersects TT(J). However, Rt[y(b), b] G &[y(b)], and 
from (1) we deduce that b tk d. Hence n G 7r*(Z?) C w*(d). The only other 
possibility is that there exist i and a in j / such that n ^ Rt~[a]U Rt[a, a]. 
Since i?*"~[a] \J Ri[a, a] intersects w(d) and is a subset of IT (a), a ^ d, and 
n G ?r*(a) Ç ir*(d). This completes the proof. 

3. Conclusion. One corollary to our theorem is that the order types of 
finite initial segments of the m-degrees are just the order types of finite initial 
segments of distributive lattices. To see this, let L be a non-trivial finite upper 
semilattice which has the closure property. Take S to be L in the definition 
of the closure property and let <p: L —> D and $: D —> L be the maps whose 
existence is required by that definition. We see at once that L has 0 since 
D has one. Therefore L is a lattice. Let a, b, and c be elements of L. To show 
that L is distributive, it suffices to prove that 

(a\Jb)r\c ^ ( f l H c J U (br\c). 

Since <p preserves unions and D is distributive, we have 

<p((a \Jb) r\c) g <p{a \Jb) r\ <p(c) = (<p(a) U <p(b)) Pi <p(c) 

= (<p(a)n<p(c))V(<p(b)n<p(c)). 

Applying \f/ to both sides we have 

{a \Jb)C\c ^ f(<p(a) H p(c)) U ^(^(6) H p(c)) g (a H c) U (6 H c). 

Another corollary is that the elementary theory of the upper semilattice of 
m-degrees is not axiomatizable; for details see [1, § 3]. The methods of this 
paper are closely related to those of [1] where it was shown that any countable 
distributive lattice with least member can be embedded as an initial segment 
of the Turing degrees. 

There is a characterization of the order types of initial segments of r.e. 
m-degrees which is very similar to that given here. The only difference is 
that the sequences (Et) and {Bt) mentioned in the introduction must now 
be suitably effective. Of course, the construction of initial segments is now 
a good deal more complicated but the underlying algebra is still the same. 

Finally, the method of § 2 can be modified so as to yield the following 
result about one-one degrees. Given any upper semilattice L with 0 ^ 1 
and consistent with the lemma, there exists a one-one degree u such that 
every one-one degree S u is either the one-one degree of a cylinder, or of 
a finite or co-infinite set, and such that the one-one degrees of the cylinders 
:S U form an upper semilattice isomorphic to L. The main change that has 
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to be made consists in working with partitions 3% of N into infinite recursive 
sets rather than finite sets. Otherwise the modification of our construction 
is quite straightforward. 
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