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SEMILINEAR FOURTH ORDER BOUNDARY VALUE PROBLEMS

GERHARD METZEN

We study a certain linear fourth order differential operator and show the existence
of solutions to corresponding nonlinear problems. It will be shown that a maximum
principle holds and that under certain conditions the linear operator has a positive
principal eigenvalue with corresponding positive eigenfunction.

1. INTRODUCTION

Recently a number of papers have appeared dealing with the existence of solutions
and, in some cases, with the uniqueness of solutions of fourth order boundary value
problems arising from the study of elastic beams (see for example Aftabizadeh [1],
Yang [12], Gupta [6], Agarwal [2], just to name a few). All of these papers treat
what are called "nonresonance problems" near the first eigenvalue and most results
are established for the boundary condition when the function and its second derivative
vanish on the boundary.

In this paper we separate parts of the second derivative from the nonlinearity and
make it part of the linear operator. Specifically, we consider boundary value problems
of the form

f u""(t) + h(t)u"(t) + g(t,u(t), «'(<)) = /(<), * € (0,TT),

\ u(0) = u(ir) = 0 = u"(0) = «"(*•)•

The special case when h(t) = —b g R, t 6 (0,TT), is of particular interest. The operator
tt"" — 5tt" occurs naturally in the context of the bending of a beam with axial load
(see, for example, Hu [7], Washizu [11]). In terms of the deformation of beams, the
boundary condition corresponds to a beam which is simply supported at both ends.

First we will study the linear problem tt"" + hu". A maximum principle will be
established which, in turn, will be used to prove further properties of the principal
eigenvalue. In particular, we will show that under certain assumptions on h we have a
positive operator.

Finally, we will prove some existence theorems, based in part on the results of the
previous section. These results complement those of the papers cited above and, in
some cases, extend them.
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102 G. Metzen [2]

Let us make a final remark about our notation. Ck([a,b]) denotes the Banach
space of fc-times continuously differentiable functions with norm

I/It '•— SUP

*6K6]

For p G [l,oo], Lp(a, 6) denotes the usual Lebesgue space with norm ||-|L. However,

the norm of the Hilbert space L2(a, b) is denoted simply by ||-||. For p G [l,oo) and

Jfe G N , we let Wk'p(a,b) denote the Sobolev space

Wk'p(a, b) := {u G Lp(a, b) \ u™ G Lp(a, b), i = 1,2,. . . , k}

with norm

where, of course, u^%' denotes the i th distributional derivative of u. If p = 2, we set

Hk(a,b):=Wk'2{a,b)

with norm ||-||Jk2-

2. T H E LINEAR PROBLEM

For a function u € W2'p(0,ir) let Bi(u) := u \ 9(0,TT) = u \ {O,TT}, and for

v G W**(0,ir) we let B2(v) := v" | 9(O,TT) = v" \ {0,TT}.

In this section we will prove the existence of a principal eigenvalue of the linear

problem. To do this, we will first prove a version of the maximum principle.

LEMMA 1 . Assume that a function h: [0,7r] —• R satisfies h(t) ^ 0 on [0,TT] and

is bounded on [0,TT]. Suppose that u(t) satisfies

r
\

( 0 ^ 0 . <G(0,TT)

If «"(<) is continuous on [0, IT] , then either

«(<) = 0 in [0,ir] or u(i) > 0 in (0,TT).

PROOF: Set v(t) := u"(t). Then v(t) satisfies

\ w(0) ^ 0, V[TT) < 0.
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[3] Semilinear boundary-value problems 103

Applying the standard maximum principle to this (see Protter-Weinberger [9]), we
deduce that either

(4) v(t) = 0 in [0,TT] or v(t) < 0 in (O.TT).

Now, if v(t) = 0 in [0,ir], then u"(<) = 0 in [0,TT] and JBitt = 0. This clearly implies
that u(i) = 0 in [0,TT].

If, on the other hand, v(i) < 0 in (0,ir), then u(t) satisfies

f «"(*) < 0, *€(<),*),

\ u(0) = 0 = U(TT).

Again, by the standard maximum principle we obtain u(t) > 0 in (0,7r). This proves
the lemma. D

REMARK 1. If one of the inequalities in (2) does not reduce to an equality, then, of
course, the conclusion of Lemma 1 is that u(t) > 0 in (0,TT). U

The next result is a boundary point lemma.

LEMMA 2 . Let h be as in Lemma. 1 and assume that u 6 Wi>1(Q,n) satisfies
u(t) > 0 in (0,TT) and

f «""(*)+ *(«)«"(*) > 0 , «€(<>,») ,

\ B = 0 = B2u.

Then w'(0) > 0 and U'(TT) < 0.

PROOF: Again, we set v(t) := w"(t). Then

f v"(i) + h(t)v(t) > 0, <e(0,7r),

\ v(0) = 0 = v{*),

implying that either v(t) — 0 in [0,7r] or v(t) < 0 in (0,7r). However, since u(t) > 0
in (0,TT) and B\U = 0, we must conclude that

v{t) = u"(t) < 0 in (0,TT).

Now, for each T £ (0,ir) there exists some s(r) £ (0,r) such that

«(r) = u(0) + u'(0)r + u"(s{r))r2/2.

Since u(0) = 0, we actually have

u(r) = u'(0)r + u"(3{r))r2/2.

https://doi.org/10.1017/S0004972700028197 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700028197


104 G. Metzen [4]

This shows that we cannot have «'(0) < 0. Suppose we had w'(0) = 0. Then

Now a(r) G (0,r) C (0,TT) and therefore u"(a(r)) < 0. This, again, contradicts our
assumption that u(t) > 0 in (0,TT). We therefore must have w'(0) > 0.

The argument that U'(TT) < 0 is similar. In this case we merely use the fact that

«(r) = »(ir) + u'(ir)(r - x) + «"(*(r))(r - TT)2/2

for some t(r) G {r,ir). D

Next, we will study the operator

Lhu := u"" + h(t)u",

where d o m ( i A ) := {u G 274(0,7r) | BXU = 0 = B2u} and where h G L°°(0,7r) satisfies
h(t) < 0 in [O,TT].

Let R(f) := v, where v is the unique solution of problem

f v"(t)= h(t)v(i) = /(<), t e ( 0 , i r ) ,

\ = 0.

and set S(f) :— w, where w is the unique solution of the problem

f «,"(«) = /(*), <e(0,7r),
\ = 0.

Then i i and 5 are the solution operators corresponding to those two problems, and it
is well-known that R,S: L2(0,n) —* C1([O,TT]) are compact linear operators. Also note
that

£ku = / < = > « = (So *)( / ) .

Using regularity theory, we see that T := S o R is a compact linear operator from
L2(0,TT) into C3([0,TT]).

Our goal is to show that T is a positive operator on some appropriate ordered
Banach space. To this end, we set X :- C0([0,7r]) := {u G C([0,TT]) | BXU = 0} with
positive cone

K :={ue CO([0,TT]) I v(t) >0, te [0,ir]}.

Since int(K) = 0, this setup is unsuitable. We therefore resort to a different Banach
space in the following manner. Set e(t) :- sint, t G [O.TT], and define Xe and ||-||e by

Xc := {u G C0([0,7T]) I 3o > 0 such that \u(t)\ < ae(i), t G [0,TT]}
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[5] Semilinear boundary-value problems 105

and
H I . := inf{a > 0 | |«(t)| < ae(t), t £ [0,*]}.

We also set
Ke :=KnXe.

It is well-known that (Xe, ||-||e) is a Banach space with normal order cone Ke and
int(Jife) ^ 0. For details see Amann [3], Deimling [5], Zeidler [13].

LEMMA 3 . The embedding (C^([0,7r]), |-|j) -> (Xe, ||-||e) is continuous.

PROOF: Note that 2e(t) > 1 on the interval Ix := [ l / \ / 2 , n - l / \ / 2 ] , 2e'(<) > 1
on I2 := [0, (l/-\/2)] and 2e'(<) < - 1 on J3 := [TT - l / \ / 2 , *"] . The first statement
implies that |u(<)| ^ 2 |u|j e(t) on / i , while the second and third statement imply that
the same inequality also holds on I2 and 73, respectively. Therefore

\u(t)\^2\u\ie(t), <e[0 ,7r ] ,

which implies that

IMI. £2M X .

This shows that the embedding is bounded (see Deimling [5]). D

It is also easily seen that the embedding (Xe, ||-||e) —> (Co(0,7r]), |- |O) is contin-
uous. Now set Te := T \ Xe and To := T | C0([0,7r]). Then Te: Xe -* Xe and
To: (CO([0,TT]), | - |O) -> (C^([0,n}), H j are compact. Since the linear operator TC has
the following factorisation

( * . , H - U - (Co([O,7r]),|.|o) - ^ (Cl([0,n]), M j -» (Xe,\\.\\e),

it follows that Te : Xe —> Xe is compact.

LEMMA 4 . We have Te{Ke\ {0})C int{Kc).

PROOF: Observe that u € C0([0,7r]) belongs to int(ife) if and only if u(t) > 0 in
(O,TT) and u'(ir) < 0 < u'(0). Now, if / G Ke \ {0}, then by Lemma 1 we conclude
that u :— Te(f) satisfies u(t) > 0 in (0,TT) and hence Lemma 2 implies that u'(ir) <
0 < w'(0). Therefore u e int(Ke). D

THEOREM 1 . The eigenvalue problem

Z/fcU = Au

has a simple real eigenvalue Ai > 0 and the corresponding eigenfunction <p 6 int(Kc).

Any other eigenvalue A of L^ satisfies Aj < |A| and any eigenfunction corresponding

to A must change sign.

PROOF: We note that 0 £ a(L) and therefore A e a(L) if and only if I/A G <r{Te).

Since, by Lemma 4, Te is strongly positive, we see that we can apply the Krein-Rutman
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106 G. Metzen [6]

theorem (see Zeidler [13], Amann [3], Deimling [5]). From this, Theorem 1 follows
immediately. D

Let us assume now that h £ C2([0,rr]) and let u,v £ dom(£fc). A simple calcula-
tion shows that

(Lhu,v) = (u,v'"> + (hv)").

Therefore dom(Zfc) C dom(££). In fact, the following is true.

LEMMA 5 . If h £ C2([0,TT]), then L\ : dom(IJ) C £2(0,TT) -+ L2(0,TT) is given
by

where dom(i ; ) = {»£ J?4(0,7r) | Bxv = 0 = B2v}.

PROOF: Let v e dom(ij) C L2(0,n). Then v"" + (hv)" is a distribution and
therefore

[«"" + (hv)"](f) = *(/"») + v(hf") = (v,Lhf) = (L*hv, f)

for all / G C~(0,7r). This implies that we in fact have

In particular, L\v € L2(0,ic) implies, by regularity, that v G fi^4(0,7r). Hence
l) C JT4(0,7r). NOW, if u £ dom(jDk) and v £ dom(£J), then

(Lku,v) = (u,L*hv).

Using integration by parts, we find that the left-hand side is given by

(Lhu,v) = (u"'v + u'v" + u'hv) \l +(u,X^).

Therefore
{u"'v + u'v" + u'hv) | ' = 0

for all u £ dom(ifc). It is now easily seen, by constructing appropriate functions
•u £ dom(-Efc), that B\v = 0 = B2v. This shows that dom(LJ) = dom(£fc) as
claimed. D

Next, let h £ C2([0,7r]) satisfy h(t) < 0 on [O,TT]. A further consequence of the
Krein-Rutman theorem is that 1/Ai is also a simple eigenvalue of T* with corresponding
strictly positive eigenfunction £ £ X*. Note also that Ai is an eigenvalue of L\ with
corresponding eigenfunction 8 £ dom(£J) and that dom(.L£) C X*.

Now let w £ Xe and set u :— Tew. Then

(io,0) = (Lhu,0) = (u,Ll0) - (T.w^B) = (\iTew,6)
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[7] Semilinear boundary-value problems 107

Therefore T*0 = 1/Aj0 and so 9 is strictly positive, that is,

(9,u) > 0 for all u £ Kt \ {0}.

This clearly implies that 9(t) > 0 for all t G (0,TT). Summarising, we have proved the
following theorem.

THEOREM 2 . Let h £ C2([0,7r]) satisfy h(t) < 0 for all t £ [0,TT]. Tien the

eigenvalue problem

L*hu = Au

iias tie simple eigenvalue Ai (the principle eigenvalue of L^) and a corresponding
eigenfunction 0 G dom(ij) such that B(t) > 0 for all t e (0,7r).

If the function h is constant, that is, if h(t) = —6, t 6 [0,7r], for some constant
b £ R+ , then of course o"(ifc) is easily calculated. In fact, in this case we have

*{Lh) = {n4 + nH | n € N}.

It is very useful to know what happens to the principal eigenvalue as the function
h(t) changes. In other words, assume that h,p £ £°°(0,7r) satisfy h(t) ^ p(t) < 0 and
let /xj denote the principal eigenvalue of Lp. In the next theorem we will show that
Hi ^X\.

THEOREM 3 . Let Ai and /xi denote the principal eigenvalues of Lh and Lp,
respectively. Here h,p £ L°°(0,n) are such that h(t) < p(t) ^ 0. Then

PROOF: Let Te,Pe: Xe —> JTe denote the restriction of the solution operator of L^
and Lp, respectively. Now let w G Ke\{0} and set tt := Te(w) and u := Pe(vj). Then
u and v satisfy the homogeneous boundary conditions and the respective differential
equations

(7) «"" + hu" = 10

and

(8) v " " + p « " = W .

Therefore
{u-v)"" + hu"-pv"=0.
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108 G. Metzen [8]

Applying the maximum principle (Lemma 1) to (8), we conclude that v" < 0 in (0,7r)
and hence —hv" ^ — pv". Now we have

(u - v)"" + h{u - v)" < 0.

Since {u — v) also satisfies the homogeneous boundary conditions, we must have
(u — v) < 0 in (0,7r) and therefore it < v in (0,TT). We have shown that w > 0 implies
Te(w) < Pe(w). Now we deduce from Corollary 7.28 in Zeidler [13] that the spectral
radius of Te is less than that of Pe, that is, 1/Ai < lf/ii. Therefore /Zj < Ai. U

Assume that b £ R+ . Then the principal eigenvalue of

J u"" - bu" = AlU

= 0 = B2u

is Ai = 1 + b. If now h e L°°(0,ir) is such that b < h(t), t € [O,TT] , and if fix denotes
the principal eigengalue of

j u"" - h(t)u" = pu

\ BiU = 0 = B2u,

then it follows from the above discussion that 1 + b < / i j .

Let again h G £°°(0,7r) be such that h(t) < 0 on [O,TT]. We know that if h is a

constant, then L\ is a positive operator, that is,

{Lhu,u) > 0 for all u € dom(Ifc) \ {0}.

One may wonder whether the same is true if h is not a constant. Below, we will give

an example showing that L^ is not necessarily positive for any h 6 ioc(0,7r) with

EXAMPLE. Let h e L°°(0, n) be defined by

y 0, otherwise,

where I := [0.4,0.6] U [IT - 0.6, IT - 0.4]. Also set

u(t) := [t(t - IT)]3, < G [ 0 , 7 r ] .

Then u £ dom(Zfc) and a simple, but tedious, calculation shows that

(Lhu,u) < 0.

(Note that ||u"|loo < 4 0 a n d o n I w e h a v e u ( ' ) < - 1 a n d ™"(0 < - 2 0 - )
However, if we impose some conditions on h(t), then L^ will be a positive operator.
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[9] Semilinear boundary-value problems 109

THEOREM 4 . Let h e H2(0,ir) and b G R be such that h(t) < -b, t G [O,TT].

Tien

PROOF: Note that for u G dom(X/,) we have

HKIIv'll and Htt'lKKH,

and for every / G Z 2 (0 ,TT) we have

Now

{Lu,u)= r\u"fdt- f"h(u'fdt- f h'uu'dt
Jo Jo Jo

[
o

'\\2\\h'\U\u'\\2>\\u"\\2 + b\\u'\\2-\\h'\U\u'

>(l+b-\\h'\U\\u'\\2.

This proves the theorem. • U

If h is constant, it is clear that the operator L^ is self-adjoint. As one might
suspect, this is the only case when L^ is self-adjoint.

THEOREM 5 . Let h e L°°(0,ir). Then Lh is self-adjoint if and only if h is
constant almost everywhere.

PROOF: It suffices to show that the self-adjointness of L^ implies that h is constant
almost everywhere. To that end, we assume that L\ is self-adjoint. Then we certainly
must have (£&«,«) = (u,Lh,u) for all u,v € dom(i^) and therefore

/ h[u"v - uv"]dt = 0, for all u,v G dom(Lh).
Jo

Let g be an arbitrary function in 27g(0,ir). Then there exists a sequence {<7t} Q
C£°(0,7r) such that

gie —» g in HQ(0,IT) as k —» oo.

Fix Jb £ N and set v(t) := sint and

U(t):=sini fi
J si
fe
o sin a
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110 G. Metzen [10]

It then follows that u,v 6 dom(Z/,) and

u " t > - W = g'k in [O.TT].

Therefore

for all fc £ N. From this we deduce that

h(t)g'(t)dt = 0i:
for all g € HH0,ir). Finally, by the lemma of Du Bois Raymond from the calculus of
variations we conclude that h is constant almost everywhere. U

In the next section we will show how some of the results from this section can be
used to extend, at least in some special cases, certain types of existence results.

3. NONLINEAR PROBLEMS

In this section we will prove the existence of solutions of certain nonlinear problems.
Our results compliment those of Gupta [6] and, in some special cases, improve them.

Many of the existence results (and also multiplicity results) which are known for
elliptic boundary value problems can be carried over to problems such as (1). This is
because one often makes use only of certain abstract properties of the elliptic problems.
The case when h(i) ^ 0, t 6 [0,ir], is particularly nice because in this case Lh. has
a positive principal eigenvalue with corresponding positive eigenfunction (p satisfying
<p'(ir) < 0 < ip'(Q) (see Theorem 1). This is very useful in many cases.

Below we will give an example of one such result for a so-called resonance problem.

THEOREM 6 . Let h(t) := -b £ R for allt £ [O,TT] and assume that g: [0,TT]XR -•
R is a Caratheodory function satisfying:

(i) for every R > 0 there exists a function fn 6 £'(0,^) such that

for all te [0,TT] and all s £ R with \s\ < R;
(ii) there exist functions c,d £ i°°(0,7r) sucii that

—1 — 6 ^ liminf ^ lim sup •— ^ c(t)

—1 — b ^ liminf ' ^ lim sup ' ^ d(t)

uniformly almost everywhere in t £ (0,TT).
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[11] Semilinear boundary-value problems 111

Let f e ^ ( O . T T ) be such that

J g(t,-oo)sintdt < I f(t)sintdt < I o(i,+00) sin * dt,
Jo Jo Jo

where g(t, — 00) := limsup[j(t,«) + ( 1 + b)a] and g(t, +00) := liminf[(7(t,.s)+ (1 + b)s}.
J-»-OO *->+OO

Tien t ie problem

(9) f «««(*)-fc»"(O+*(*,«(<))

has a solution u e W 4 I 1 ( 0 , T T ) .

PROOF: Since h(t) is constant, it follows that L^ is self-adjoint. A simple appli-
cation of spectral analysis shows that if u 6 dom (.£/,) is a solution of

(10) Lhu + fj.u+ - vu~ = 0,

where /i,i/ e I°°(0,7r) are such that (fi(t),u(t)) e [-1 - b,c{t)} x [-1 - b,d(t)) for
almost everywhere t £ (0,TT), then u 6 ker(£^ — (1 + 6)). Using this and the fact that
the differential operator Lh. gives rise to a differential operator in L1(0,7r), that is,

L : dom(L) C L\0,ir) -* ^(O.TT).

This operator has a compact resolvent as a map from Z1(0,7r) into (C~1([0,7r])) | - | i ) .
Actually, we have more regularity (see Section 2), but this is all we need. We now can
apply Theorem 3 in [8] to obtain a solution. D

REMARK 2. (a) Theorem 6 also holds true for an arbitrary function h € L°°(0,ir) if it
can be shown that a solution u £ dom(Xfc) of (10) must lie in ker (L^ — Ax). Of course,

1 + 6 must be replaced by Aj and sin t by a positive eigenfunction 9 corresponding to
the principal eigenvalue Ai. Again, this follows from a simple application of Theorem
3 in [8].

(b) Similar results also hold for higher eigenvalues. One can directly apply Theorem
2 of [8] or use the results and ideas of [4]. D

Our next theorem is a so-called nonresonance result. Here we allow h to be non-
constant but assume some regularity on h.

THEOREM 7 . Let h 6 H2(0,n) and b e R+ be such that h(t) ̂  -b for all

t €. [0,TT]. Suppose g: [O,TT] X R2 —+ R is a Caratheodory function satisfying:

(i) for some 01,02,03,04 € X°°(0,7r) we have

g(t,s,r)s > ai(t)s2 + a2(t)sr + a3(t)s
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for all (t,a,r) G [O,TT] X R2;
(ii) there exist constants &!, 62 G R+ and a function 60 G i1(0,7r) such that

|5(<,a,r)| < bo(t) + &! \s\ + b2 \r\

for all {t,r,s)£ [O,TT] X R2.

If the condition

(11) / a-(t)dt>-l-b+\\h'\\00 + -\\a2\\
4 Jo 2

holds, where a^(t) := min{oi(t) ,0}, then for every f G Z1(O,TT), the problem

(12)

has a soiution u G Vr4ll(0,7r).

PROOF: Again, let L: d o m ( i ) C Lx{Q,tr) -» Z-^O.TT) denote the differential op-
erator corresponding to (12) (clearly L^ C L). Let JV: J?1(0,7r) —> L1(0,TT) be defined

by

(JV«)(<) := / (<)-5(<,u(<) , «'(<)), <6 (O,TT).

We then employ the Leray-Schauder degree to solve the problem

Lu = Nu,

which is equivalent to (12). To this end, we consider the homotopy

(13) Lu = rNu, r e [0,1].

First we shall show that the set of all solutions to (13) is bounded with respect to the

||.||2)2-norm.

Now

(Lu,u) = r(Nu,u)

and from Theorem 4 we have

(Lu,u) > 7T-1/2 (1 + 6 - VSF||&'||J Hu'll2 .

Again, using ||u|| < ||u' | | , ||u||2 < -̂ /TT ||«2|| and condition (i) above, we obtain

" 1 2 / * — "" 1 2
r{Nu,u) < —- ||u || / o, (t)dt + — \\a2\\ ||u || 4- /(«),

4 Jn 2
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[13] Semilinear boundary-value problems 113

where in /(it) we have collected all lower order terms. Then

Ihn JW =0.
IWIHoo ||u'||2

Finally, we have

(1 + b - \\h'\U < £ T a;(t)dt + \ 110,11 + - ^ .
* Jo * \\u'\\

It follows from this and (11) that for some M £ R+ we have

Hu'll < M

for all solutions of (13). Since ||u|| < ||u'||, we see that all solutions of (13) are bounded
with respect to the ||-||3 2-norm.

It is now easily seen that |j7Vtt|| j is bounded for all solutions of (13). So, if we set
v := Lu, then Hv^ is also bounded. Without loss of generality we may assume that L
is invertible. Then (13) is equivalent to

(14) v = rNL^v.

We have shown that for some K £ R+ we have

IMIi < *

for every solution of (14). Since NL-1: £1(O,TT) —» L1(0,7r) is compact, the assertion
follows. D

REMARK 3. (a) It should be noted that condition (11) allows some flexibility between
a i (0> a 2 (0 and h(t), since it does not involve the H-H^-norms of aj and 02.

(b) Following ideas from [6, Theorem 2.1], it is also possible to allow the nonlin-
earity g to depend on u".
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