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COMPACTNESS AND WEAK COMPACTNESS IN 
SPACES OF COMPACT-RANGE VECTOR MEASURES 

WILLIAM H. GRAVES AND WOLFGANG RUESS 

1. Introduction. This paper features strong and weak compactness in 
spaces of vector measures with relatively compact ranges in Banach 
spaces. Its tools are the measure-operator identification of [16] and [24] 
and the description of strong and weak compactness in spaces of compact 
operators in [10], [11], and [29]. 

Given a Banach space X and an algebra j / o f sets, it is shown in [16] that 
under the usual identification via integration of X-valued bounded 
additive measures on se with J-valued sup norm continuous linear 
operators on the space S(s/) of j/simple scalar functions, the strongly 
bounded, countably additive measures correspond exactly to those 
operators which are continuous for the coarser (locally convex) universal 
measure topology T on S(sf). It is through the latter identification that the 
results on strong and weak compactness in [10], [11], and [29] can be 
applied to X-valued continuous linear operators on the generalized DF 
space S(s/)T to yield results on strong and weak compactness in spaces of 
vector measures. These measure-operator identifications are stated in 
Section 2. 

The main theorem on strong compactness is stated and proved in 
Section 3 as Theorem 3.1. It gives necessary and sufficient conditions that 
a subset of X-valued strongly bounded, countably additive (here called 
strongly countably additive) measures with relatively compact ranges on 
an algebra of sets be relatively compact in the strong topology of the 
semi-variation norm. Related results have recently been found by Brooks 
and Dinculeanu [9]. Among the several equivalent conditions given in 
Theorem 3.1, condition (3.1.6) seems, from the point of view of necessity, 
stronger than any heretofore known. 

It is the generality of the measure-theoretic setting (strongly countably 
additive measures on algebras of sets) of Theorem 3.1 which permits many 
applications in Section 4. These include strong compactness results for 
spaces of Pettis-integrable functions, spaces of unconditionally convergent 
series, spaces of compact-range bounded additive measures on Boolean 
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algebras, and spaces of compact operators on some classical function 
space. 

Theorem 3.1 can also be applied to a single measure and combined with 
a deep theorem of Rosenthal [25] to characterize measures with relatively 
compact ranges in terms of special sequences of expectation operators. 
This is done in Section 5. 

In Section 6, the measure-operator identifications of Section 2 are 
combined with results from [10] and [12] to equate weak sequential 
convergence in spaces of measures with relatively compact ranges to 
pointwise weak convergence and to describe various forms of compactness 
in the weak topology of such spaces. These results are then combined with 
compactness results from [17] and [22] to characterize relative weak 
compactness under the assumption that the measures in question are 
countably additive on a a-algebra of sets. 

In parallel with the studies of Batt [1] and Batt and Hiermeyer [2], more 
can be said when the dual X* of the range space X has the Radon 
Nikdodym property. In this case, the measure-operator identifications of 
Section 2 are combined in Section 7 with results from [11] to derive 
representations of the duals of spaces of measures with relatively compact 
ranges. 

2. Vector measures as operators. The main results in this paper are 
established by identifying vector-valued measures with continuous linear 
operators and applying theorems on compactness in spaces of operators. 
Accordingly, this section is devoted to explaining the measure-operator 
identifications and stating some related results for later use. 

Without additional specification, X is always a real or complex Banach 
space, j / i s an algebra of subsets of some non-empty set Œ, and <% is a 
Boolean algebra. The term "measure" is used generically to refer to 
functions 0 on stf or 38 to X which are at least bounded additive (ba). 
Measures may be strongly bounded (sb), countably additive (ca), or strongly 
countably additive (sea). These and other basic, measure-theoretic notions 
and notations included here can be found in [16]. The prefix "c", as in 
csca(j^ X), refers to the subspace of the given space of measures (here, 
sea (J^ X), the strongly countably additive measures on j / t o X) consisting 
of those with relatively compact ranges. 

All spaces of X-valued measures are henceforth assumed to be endowed 
with the topology of the semi-variation norm 

||$|| = sup {||JC* O$| | : | |JC* | | ^ 1}. 

This topology is easily seen to be that of uniform convergence on J / and is 
called the strong topology. 

For locally convex spaces E and F, E' (as opposed to X* for Banach 
space X) is the continuous dual of E, J?(E, F) is the space of continuous 
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linear operators from E to F and X[E, F) is its subspace of all compact 
operators. Implicit in notation such asJ%(ls, F),Jtb(E, F), and Eb is that in 
each case the underlying space of continuous linear maps is endowed with 
the topology of uniform convergence on bounded subsets of E. Ec is E 
endowed with the topology of uniform convergence on compact convex 
circled subsets of E'h. 

Playing a key role throughout is a property studied in [26], [27] and [28]: 
E is a gDF space provided Eb is a Frechet space and every linear operator 
on E which is continuous on bounded sets is continuous. Measures will 
now be seen to give rise to operators on a gDF space. 

Let S(stf) be the space of all scalar-valued ^/-simple functions on S 
(generated by the characteristic functions XA> A Œ ^)- If OIJ/—> X, then 
0 = O o x where 

X(A ) = XA for A <E sif and 

$(/) = j f<®> for/ G S(st). 

It is henceforth assumed that S(s/) is endowed with the universal measure 
topology T, described in [16] and [24] and subsequently studied in [4]-[8] 
and [17]-[19], so that the measure x is sea and the linear operator O is 
r-continuous for each <É> which is sea. Let L(s/)be the completion of S(s/) 
(with topology also denoted r but notationally suppressed), and let <%(s/) 
be the completion of S(s/) in the sup norm. Then O may be assumed to be 
defined (by continuous extension) on L(s/) for each 0 which is sea. Of 
course, O is just integration on &Ç2) when s/ = 2 is a a-algebra. The 
following fundamental representation theorem and related facts are 
proved in [16], [4], and [5] and will be used in this paper. 

THEOREM 2.1. (1) The map $ M> O is an isometrical isomorphism (onto) 
giving 

s c a K X) ~ &b(S(s/)9 X) = JS£(L(J*) , X). 

In particular, 

scaK) ~ S(s/yb = L(s/yb. 

(2) For H Q sca(j^ X) and the corresponding subset H of J£(L(stf), X), 
the following are equivalent: (i) H is equicontinuous. (ii) H(s/) is bounded 
(or H (A) is bounded for all A e s/y and there is JU e sca(j /)+ such that H 
(even \H\ in the scalar case) is uniformly [i-continuous. In the scalar case, 
these are equivalent to (iii) H is relatively weakly compact in sca(j/), and, 
when s/ = 2 is a o-algebra, to (iv) H is relatively a(ca(2), S(2) )-compact 
(w*-relatively compact). 

(3) Except when s/is finite, r is strictly coarser than the topology of the sup 
norm on S($/), yet both topologies have the same bounded sets. L(s/) is a 
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semi-reflexive Mackey space giving the following sequence of linear spaces: 

S(s/) ç B(sf) c L(jtf) = L(sf)" = sca(j/)*. 

With the identification L(s/) = sca(j/)*, the r-bounded and norm bounded 
subsets of L(jtf) coincide, and the norm closed unit ball in L(s/) is the 
r-closure of the sup norm closed unit ball in S(s/). For O e sea (stf, X) and 
each extreme point P in the closed unit ball in L(s/), there are A, B e s/such 
that 

$(P) = <b(A) - $(B). 

If additionally sf = 2 is a o-algebra, then S(2) is a Mackey space and for 
each $ G ca(2, X) and each F in the closed unit ball in L(2), there exists f 
in the closed unit ball of the space B(2) of bounded ^-measurable functions 
such that $(F) = J fd$. 

(4) Both S(s/) and L(s/) are gDF spaces. 

As a result of the fact [28, Theorem 3.1 (4)] that continuous linear 
operators from gDF spaces into Banach spaces which transform bounded 
sets into relatively compact sets are compact (i.e., transform some 
neighborhood of 0 into a relatively compact set), the basic representation 
of (2.1.1) adapts immediately to a representation of measures with 
relatively compact ranges. 

THEOREM 2.2. The map <& i—» $ w an isometrical isomorphism (onto) 
giving 

csca(j^ X) ~ &b(S(A)C9 X) = JTb(S(s/), X) 

= Xh(L(stf\ X) = &b(L(s/)c, X). 

The theory of sea measures on algebras of sets is sufficiently general to 
yield as a special case a seemingly more general theory. Let s# be the 
algebra of all closed and open (clopen) subsets of the Stone space 12 of a 
Boolean algebra <%. Let M(£2, X) be the space of all regular ca X-valued 
Borel measures on £2. Stonean considerations and the isometries above are 
shown in [4] and [19] to lead to natural isometries 

M(Q9 X) ~ sb(^, X) ~ s caK X) ^ S£h(L(^\ X). 

These combine with the fact that 

csb(^, X) = cba(^, X) ~ J^(C(Q), X) 

and the fact that C(12) may be considered to be subspace of L(s/) via the 
Stone-Weierstrass isometry of B(stf) and C(S2) to yield the following 
special case of Theorem 2.2 in which O is classical integration on C(12): 

THEOREM 2.3. The map $ H> $ w an isometrical isomorphism (onto) 
giving 
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cba(^, X) = cM(£2, X) ~ J^(C(fi)0 X) 

= J^(C(S2)T, X) = JÉ£(C(Q), X). 

Yet another special case of Theorem 2.2 is used in the sequel. Let P be 
the a-algebra of all subsets of the set N of all positive integers. It is well 
known that 

ca(P, X) = cca(P, X) 

and that this space may be identified with the space l\[X] of all 
unconditionally convergent series in X (the net of partial sums over all 
finite subsets of N converges). The identification is $ H> ($„) where 
<&„ = 0( {n} ) for each n e N. It is an isometry with the semi-variation 
norm on ca(P, X) transforming to a familiar norm on l\[X]\ 

II («Mil - sup { 2 |<**, OW>|:||JC*|| ^ 1}-

Moreover, 5(P) = (ra0, T) and L(P) = (/QQ, T) where m0 is the subspace of 
/oo of all sequences which take only finitely many values and r is Buck's 
strict topology, the Mackey topology of the l^ — l\ pairing. Taking s/= P 
in Theorem 2.2 now yields the following special case: 

THEOREM 2.4. If 

O = ( $ „ ) G lx[X\, X = ( X J G /oo flwrf 

$(X) = 2 AA, 

//ze/î 0 I—» O /s Û/7 isometry (onto) giving 

lx[X] ~ .*£( (m0, T), X) = ^ ( (m0, T), X) 

= Seb{ (/oo, T), X) = Xh{ (U T), X). 

3. Relative strong compactness in csca(j^ X). Before stating and proving 
the main, general theorem on strong compactness in spaces of compact-
range measures, the notion of expectation operator must first be 
recalled. 

The family &(s/) of all finite collections of pairwise disjoint members of 
j / i s directed by refinement. Associated to every IT G <P(jtf) and every 
scalar measure JU i^ 0 is the operator 

E(ir, /*)($) = 2 {ii(AyX[x(A n -)&(A):A e 77}, 

an operator of norm ^ 1 called the conditional expectation of O by \i. The 
basic role of conditional expectations on spaces of measures and related 
function spaces is established in [14, IV.8.18 and IV.13.19] in the context 
of characterizing strong compactness in spaces of scalar-valued measures. 
Thus, the role of expectation operators in the present discussion is a 
natural one, and its importance will become clear upon examination of 
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Example 6.8 in Section 6. Yet Theorem 3.1 below adds new dimensions to 
previous theorems [9, Theorem 11] of its type. Condition 6 reveals that 
strong compactness of H is indeed collective compactness, and the related 
construction of °l/(H) in the a-algebra case, set in B(2) rather than L(Z) 
without loss of generality according to Theorem 2.1.3 and so that 
H(°U{H) ) has an integral representation, is easily seen to yield a grossly 
unbounded neighborhood of 0 transformed by H to a relatively compact 
set. Moreover, the generality of the theorem allows its application, in the 
next section, to more explicit measure theoretic examples. 

THEOREM 3.1. The following are equivalent for H Q csca(j^ X). 
(1) H is relatively compact in the strong topology. 
(2) H(jrf) is relatively compact in X, and for each x* e X* and each 

sequence in x* o H there exist a subsequence, say (x* o 0„), a [i G sca(j/) , 
and a directed subset & of^(s/) such that 

lim { ||x* o $ „ - E(ir, [i)(x* o $„) ||:T7 e &} = 0 

uniformly in n. 
(3) H (A) is relatively compact in Xfor all A e s/, H (s/) is bounded, there 

exists fi G sca(j/)+ for which H is uniformly \i-continuous, and for any 
such jii, 

$ = lim {E(TT, /X)($):T7 G &>(S/) } 

uniformly over $ e H in the strong topology. 
(4) H (A) is relatively compact in Xfor all A e j ^ H(s/) is bounded, and 

every sequence in H admits a subsequence, say ($n),for which there exist a 
directed subset & of @(s#) and a \x e sca(j^)+ such that 

0„ = lim {£(TT, /A)($„):T7 e ^ } 

uniformly over n in the strong topology. 
(5) H {A) is relatively compact in X for all A e j ^ and there is a 

neighborhood °ll of 0 in S(s/)c(& = K° is the polar of some compact 
K Q sca(j^) ) such that 

is bounded in X. I 
(6) There is a neighborhood °l/ of 0 in L{s/)c{^/ = K° for some compact 

K Q sca(j/) ) such that H{°1/) is relatively compact in X. 
If any of these conditions holds and if s# = 2 is a o-algebra, then 

fd®:® G H,fŒ <tt(H) } 

is relatively compact in X where <%(H) is the restriction of the °ll from (6) to 
i?(2) and may be realized by the following process. For each countable 

/ 

/ 
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partition (At) of il by members of*2, select a strictly increasing sequence (Nk) 
of positive integers such that 

\x* o <*>\ ( U {Ai'.i ^ Nk] ) < 2~(2/c + 3) 

for all $ ^ H and all x* e X* w/7/z ||JC*|| ^ 1. Define g e 5 (2 ) 6y 
setting 

g(co) = 1 /or co G U {^z:/ < A^} ÛMÛ? 

g(co) = 2~* for co G U H : A ^ - i ^ i < Nk) and k ^ 2. 

Now define 

V{H,(At)) = { / e 5(2):||/g|| ^ 1}, 

//ze /76>rm Z>ĉ/>2g the sup norm. Finally, °U(H) may be taken to be the ^-closed 
convex hull of the union of the °U{H, (At) )'s taken over any cofinal subset of 
the set of all countable partitions {At) ofQ ordered by refinement. 

Proof. The proof proceeds in stages, the first revealing the connection 
between strong compactness and equicontinuity in J?(S(J?/)C, X). A direct 
application of Theorem 1.10 of [29] to the present circumstance allowed by 
Theorem 2.1.4 above gives the following lemma: 

LEMMA 3.2. With B and Bx denoting the closed sup norm unit balls 
in S(s/) and X respectively, the following are equivalent for any 
H ç jÇiSÇs/)» X). 

(1) H is relatively compact. 
(2) H(B) is relatively compact in X, and x O H is relatively compact in 

5 ( J ^ ) ' J = sca(jaO for all x* e X*. 
(3) H is e qui continuous in ̂ (S(s/)c, X) and H(f) is relatively compact in 

X for every f e S (S/). 
(4) H(f) is relatively compact in X for each f e S (S/), and H{°ll) is 

bounded for some neighborhood °ll of0 in S(s/)c. 
(5) H(°l/) is relatively compact in X for some neighborhood °U of 0 in 

S(s/)c. 
If any of these conditions holds, then the °U in (4) and (5) may be taken 

to be 

n {nB + -(H)~\Bxy.n e N}. 
n 

According to this result, characterizing equicontinuity inJ^(5(j/)c , X) is 
now a key issue in completing the proof of Theorem 3.1. The next two 
propositions do this, the first treating the scalar case as a modest 
generalization of a classical result [14, IV.8.18 and IV. 13.19] proved 
without recourse to L^-theory. 
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PROPOSITION 3.3. The following are equivalent for H Q sca(j/). 
(1) H is relatively compact in variation norm. 
(2) H is c-equicontinuous as a subset of S{stf)f = (S(s/)cy = (Jzf(s#)c)'. 
(3) H(stf) is bounded, there exists it e sca(j/)+ such that \H\ is uniformly 

\i-continuous, and for any such /x 

lira { | | \ - E(ir, /x)(\) \\:ir <= &>(st) } = 0 

uniformly over X G H. 
(4) H(s/) is bounded, and every sequence in H admits a subsequence, say 

(Xn),for which there exist a ju <E sca(j^)+ and a directed subset & oféPÇs/) 
such that 

l im{ | | \ „ - £(*,/t)(X„)||:*r e &} = 0 

uniformly in n. 

Proof. The equivalence of (1) and (2) is just a formal translation in view 
of the definition of the c-topology, the fact that S(s/) is c-dense in L(s/), 
and the identification in Theorem 2.1.1 above. To see that (3) follows from 
(1), first assume that H is relatively compact in variation norm. Then 
H(s/) is bounded and H is weakly relatively compact, and it follows from 
Theorem 2.1.2 that \H\ is uniformly /x-continuous for some /x G sca(j/) + . 
For any such /A, if X is indefinite integration against some simple function 
g, X(A) = jAgd\i lor A G j ^ then 

lim { ||A - E(TT, ii)(X) ||:T7 G ^(jaf) } = 0 

since eventually À = £(77, ju)(À). But according to the generalized 
Radon-Nikodym Theorem 9.5 in [16], such X's are norm dense in the 
subspace of /x-continuous members of sca(j/). The family 

{£(77, LI):TT G ^ ( J ^ ) } 

is uniformly bounded, and so an application of the Banach-Steinhaus 
Theorem reveals that the above limit is uniform over X in relatively norm 
compact H. It is clear that (4) follows from (3). To see that (1) follows 
from (4), first observe that each operator E{TT, 11) has finite-dimensional 
range and so is a compact operator, for it transforms sca(j^) into the span 
of {[iA-A G 77} where 

^ ( C ) = ii(A n C) for all C G stf. 

The hypotheses of (4) guarantee that every sequence in H admits a 
subsequence, say (Xn), such that for any k, there is a relatively norm 
compact set Q. and a sequence (X^w) from Q. such that 

\\K - ^kj\ < l/fc for all w. 

Thus, a standard diagonalization process produces a norm convergent 
subsequence of (Xn). 
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The above result has a vector analogue. 

PROPOSITION 3.4. The following are equivalent for H Q SCSL(S/, X). 
(1) H is equicontinuous in&(S(s/)C9 X) = &(L(s/)c, X). 
(2) H (A) is bounded, there exists fi G sca(j^)+ such that H is uniformly 

[i-continuous, and for any such \x, 

$ = lim {E(IT, /A)(0):7T G ^ ( J / ) } 

uniformly over <& ^ H in the strong topology. 
(3) H(s/) is bounded, and every sequence in H admits a subsequence, say 

($n), for which there exist [i G sca(j/)+ and a directed subset & of SP(stf) 
such that 

0„ = lim {£(77, /X)(OJ:T7 G ^ } 

uniformly over n in the strong topology. 

Proof. If H is c-equicontinuous, then it is r-equicontinuous. So 
according to Theorem 2.1.2, H(s/) is bounded while H is uniformly 
ju-continuous for some /i, G sca(j/) + . For any such /i, it follows that 
{x* o 7/:||x*|| ^ 1} is uniformly jti-continuous. But (x* o //: | |x*| | ^ 1} is 
c-equicontinuous in (L(s#)cy. Since 

x* o E(ir, /*)($) = £(TT, JU)(X* o O) for x* G X* and 

$ G sca(j^ X), 

an application of Proposition 3.3 reveals that 

O = lim {E(TT, /X)(0):T7 G ^ ( ^ ) } 

uniformly over $ G H. SO (2) follows from (1). It is clear that (3) follows 
from (2). To see that (3) implies (1), just observe that H is c-
equicontinuous if and only if {x* o //:||x*|| = 1} is c-equicontinuous and 
then note, according to Proposition 3.3, that the hypotheses of (3) ensure 
the c-equicontinuity of the latter. 

The proof of Theorem 3.1 is now completed by combining (3.2)-(3.4) 
above, and by using the idea of the proof of Theorems 10 and 11 of [17] to 
conclude that its/ = 2 is a a-algebra, then %{H) as described in Theorem 
3.1 is a c-neighborhood of 0 in B(Z) and is contained in the neighborhood 
described in Lemma 3.2. 

4. Applications of the main theorem on strong compactness. The 
statement of Theorem 3.1 is sufficiently general to allow application in 
several directions. It is at full strength when s/ = 2 is a a-algebra, for not 
only is strong compactness in cca(2, X) characterized but a construction is 
given for the unbounded r-neighborhood of 0 of bounded measurable 
functions with relatively compact integrals. Without the assumption that 
stf is a a-algebra, this neighborhood can still be constructed, but its 
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construction takes place in an abstract completion, L(sf), and so is not 
here given. In this section, Theorem 3.1 is first applied under the 
assumption that se is the a-algebra of all subsets of the positive integers, 
then is applied with the assumption that stf is a classical measure space 
and H is a set of indefinite integrals of Pettis integrable functions, and 
finally is applied with se being the algebra of clopen subsets of a Stone 
space. In Theorem 4.1, a full-blown translation of Theorem 3.1 is given. 
However, in the interest of brevity, we state in Theorems 4.2 and 4.3 only 
the counterparts of conditions (1) and (6) of Theorem 3.1. Translating 
conditions (2)-(5) is an easy task. 

THEOREM 4.1. With conventions and notation as in Theorem 2.4, the 
following are equivalent for H Q l\[X\. 

(1) H is relatively compact in l\[X\. 
(2) The set 

{ 2 &n'-A Q N, 0 G H} 

is relatively compact in Xy and for each x* G X*, 
oo 

lim 2 I < x*, <&„) | = 0 
k n = k 

uniformly over $ G H. 
(3) For each n, the set {0„:<l> G H) is relatively compact in X, and 

oo 

l imsup{ 2 |<JC*, <&„> |:||x*|| ^ 1} = 0 
k n = k 

uniformly over ^ G H. 
(4) For each n, the set {Ow:<I> G H} is relatively compact in X, and for 

some real sequence cn \ 0, the set 

{ 2 Xn$n:$
 G H, X G m0, \\ncn\ ^ I for all n} 

is bounded in X. 
(5) For some real sequence cn \ 0 the set 

{ 2 Xw$„:$ e //, X G /oo, |\wc„| ^ 1/or Û// «} 

z's relatively compact in X. 
If any of these conditions holds then the null sequence (cn) in (5) may be 

prescribed by first selecting a strictly increasing sequence (Nk) such that 

2 {I <**,$„> |:n ^Nk} <2~<2* + 3> 

for all ̂  ^ H and all x* G X* with \\x*\\ = 1 and then setting cn = 1 for 
n < Nx and cn = 2~k for Nk-} ^ n < Nk and k ^ 2. 
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Proof. Because the linear span of the unit vectors en (with value 1 at n 
and value 0 elsewhere) is r-dense in m$ and Z^, relative compactness of 
{<£„:<!> e H} for all n is equivalent to relative compactness of ( 2 , ? G ^ ^ V ^ 
<E H} for all A Q N. So in view of the fact that all ca measures on P have 
relatively compact range, the description in [16] of r-neighborhoods of 0 in 
ra0 and Zoo, and the fact that every partition of N into finitely many subsets 
is refined by one with finitely many singleton sets and finitely many 
cofinite sets, this result is but a translation of Theorem 3.1. 

Now assume that s/ = 2 is a a-algebra and that ii e ca(2) + is fixed. 
The linear space P(/x, X) of all Pettis integrable/:^ —> X is normed by the 
Pettis norm 

H/ll = sup { / | J C * O / I W H ^ l} 

and, with respect to this norm, isometrically embeds in ca(2, A") by 
/ i -> $f where for A e 2 , 

It is well known that <Ey has relatively compact range if / is strongly 
measurable and it has recently been shown in [15] that Oy has relatively 
compact range if (£2, 2, /x) is a perfect measure space and / is bounded. 
This gives the next theorem content. It is proved by translation of 
Theorem 3.1 via the identifications and notations of this paragraph after 
noting from [17] that L^ / i ) with the Mackey topology of L^ i i ) — L\(ji) 
may be regarded as a r-complementary subspace of L(2) and that the 
neighborhood °U of Theorem 3.1 may in this case be chosen from that 
subspace, the T-dual of which may be naturally identified with L\(ix). Keep 
in mind that P(fi, X) need not be complete. 

THEOREM 4.2. For a o-algebra 2 and a /x e ca(2)+ the following are 
equivalent for any subset H of P(fi, X) for which Qf has relatively compact 
range for all f e H. 

(1) H is precompact in Pettis norm. 
(6) There is a compact subset K of L\(pi) such that 

gfdp:g e #,/<= H J 

is relatively compact in X where °ll = K° is the polar of K in L^ t i ) . 
If any of these conditions holds, then °ll in (6) may be prescribed by the 

process in Theorem 3.1 after replacing B(2) by Loo(ju) and measures $ by 
measures &f,f ^ H. 

The next result is the most general result on strong compactness. 

/ 
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THEOREM 4.3. Let & be a Boolean algebra with Stone space £2. Let 

H Q cba(#, X) = cM(S2, X), 

and let H be the corresponding subset ofJf(C(Q), X). The following are 
equivalent. 

(I) H is strongly relatively compact (or, H is relatively compact in operator 
norm). 

(6) There is a strongly compact subset K ojba(^?) = M(S2) such that if °U 
is the polar in C(12) of K, then 

fd<$>\<$> G # , / e ^ J 

is relatively compact. 

Proof. After noting the identifications of Theorem 2.3, this follows by 
taking s/in Theorem 3.1 to be the algebra of clopen subsets of £2. 

Remark 4.4. Let 2 be a a-algebra of sets and /x G ca(2) + . Through a 
Stone-Weierstrass isometry, the above result gives a measure-theoretic 
characterization of relative compactness in operator norm in the space of 
compact operators on either of the classical function spaces BÇL) or 
Loo(/x). Simply take âS to be either 2 or 2/ju -1(0). 

5. Compactness of a single measure. In this section, a result of 
Rosenthal is combined with Theorem 3.1 to see that whether a measure 
has relatively compact range depends on uniform convergence of some 
sequences of expectations. 

Consider the Cantor space Q = { - 1 , 1}N, and, for each n, let 

Bn = {<o G Q:wn = 1}, 

— Bn = &\Bn, 

on = { - 1 , ijO.2,...,/!^ and 

e(Bu...,Bn) = elBl n e2B2 H . . . n tnBn 

for each € G on. Then 

*n = {t(B\, • • • > Bn):e G on} 

is a partition of 12 (a familiar one under the usual dyadic identification of 
12 with [0, 1] ). 

Extend in an obvious way the definition above of 6(2?i, . . . , Bn) to a 
sequence (Bk) from an arbitrary Boolean algebra 3$, and let fnn(^) be the 
partition of its Stone space corresponding to irn above. The sequence (Bk) 
is independent if 

e(Bh . . . , Bn) T̂  0 for each € G an and each «. 

/ 
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According to [34], this is equivalent to the existence of a Boolean 
isomorphism of the algebra generated by (Bk) onto the algebra of clopen 
subsets of the Cantor space (the two sets of Bks being identified by this 
isomorphism). 

THEOREM 5.1. For any Boolean algebra 38' and any <£ e sb(3iï\ X), O 
has relatively compact range if and only if for any independent sequence (Bk) 
from 38', 

n 

where 0 |^ is the restriction of ^ to the Boolean subalgebra 38 generated by 
(Bk), ix is some member o / b a ( ^ ) + for which $\@ is \i-continuous, and the 
limit is in uniform convergence on 38. 

Proof. Consider any sequence (Bk) from 38' as a sequence in the algebra 
srf' of clopen subsets of the Stone space 2' of 38*'. According to a result in 
[25], it may be assumed without loss of generality that either 

lim sup Bk = lim inf Bk in 2' 

or that (Bk) is an independent sequence. Employing the identifications 

sb(<T, X) = sc&(s/'9X) = M(Q', X) 

surrounding the discussion of Theorem 2.3 it is now easy to see that in the 
first case, lim $(Bk) exists. In view of the discussion of independence 
above, the proof will be complete if the following special case is proved. 

THEOREM 5.2. Let <& be a regular, count ably additive Bore I measure on the 
Cantor space Q, = { — 1, 1}N with values in X. Then $ has relatively compact 
range if and only if 

$ = lim E(<nm /x)($) 
n 

for some \x e M(£2)+ for which $ is fi-continuous with convergence in norm 
or, equivalently, uniform on the clopen subsets oftl. 

Proof First observe that there is a /i e M(£2)+ for which O is 
ju-continuous [16]. Since each E(irm /*)($) has its range in a finite-
dimensional subspace of X, the sufficiency of the condition is now clear. 
To prove necessity, invoke the identification 

csca(^ X) = cM(tt, X) 

of Theorem 2.3, stf being the algebra of clopen subsets of B-, and note that 
the result follows from Theorem 3.1 provided that the sequence (mn) 
is cofinal in 3^(s/). But a basic compactness argument reveals that 
each clopen subset of Q, is a finite disjoint union of sets of the form 
€(#!, . . . , Bn) and so the proof is complete. 
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6. Weak compactness inspaces of compact-range measures. The meas
ure-operator identifications of Section 2 are combined in this section with 
results from [10] on weak compactness in spaces of compact operators to 
derive characterizations of sequential weak convergence and relative weak 
compactness in spaces of measures having relatively compact range. The 
Vitali-Hahn-Saks property (VHS) plays a major role. If <% is a-complete, 
then <% has VHS. However, many interesting examples of non-a-complete 
® with VHS can be found in [19] and [31]. 

THEOREM 6.1. Let & be a Boolean algebra with VHS, and let ($„) be a 
sequence from either cba(^, X) or csca(^, X). 

(1) 0„ —> 0 weakly if and only if 

(x*,$n(A))-+(x*,$(A))forallA e & and all x* e X*. 

(2) (0„) is weakly Cauchy if and only if (x*, $n(A)) converges for all 
A e & and all x* e X*. 

Moreover, if($n(A) ) is bounded for each A e âS9 then the functional x* 
in (1) and (2) can be restricted to those which are extreme points of the closed 
unit ball in X*. 

Proof Let stf be the algebra of clopen subsets of the Stone space of 3& 
and apply Theorems 2.1 and 2.3 to conclude that 

L(s/)c ~ ba.(@)'c and cba(^, X) ~ &b(L(s/)C9 X). 

Then according to [10] Qn —» $ weakly if and only if 

(x*, $n(F) > -> (x*9 $(F) > 

for all x* <= X* and all F <= L(S/). Since @ has VHS, the latter 
convergence is equivalent to 

<**, Qn(A))-+(x*, 9(A)) 

for all x* G X* and all 4̂ e ^ . This proves (1) for the space 
cba(^, X), and it is easy to derive (2) from (1) for this space. Since 
csca(^, X) is a closed subspace of cba(^, X), (1) and (2) are proved for 
both spaces. The final statement of the theorem now follows from 
Rainwater's Theorem on the weak convergence of bounded sequences. 

The importance of weak convergence on members of & is now clear. Let 
the M <S> N-weak operator topology (M ® TV-wot) be the topology of the 
semi-norms 

PFtX*(*) = I (x*, $(F) > | 

where JC* is from a subset N of X* and F is from a subset M of LÇstf). Also 
let BY denote the closed unit ball of a Banach space Y, and let ext C 
denote the set of extreme points of subset C of a linear space. Recall that 
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weak conditional compactness requires a sequence to admit a weak 
Cauchy subsequence. The second result is a direct consequence of the first 
and Eberlein's Theorem. 

COROLLARY 6.2. Let & be a Boolean algebra with VHS. A subset H of 
either cba(^, X) or csca(^?, X) is weakly relatively (respectively, weakly 
conditionally) compact if and only if it is & ® X*-wot relatively sequentially 
(respectively, conditionally) compact. If H (A) is bounded for each ^ £ J , 
then & ® X* may be replaced by & ® QX\(BX*) in the preceding statement. 

Note that ^ i s being identified in L(stf) with the characteristic functions 
of clopen sets. A special case of the corollary is of interest in its own 
right. 

COROLLARY 6.3. Let 2 be a o-algebra of sets, and let /x e ca(2) + . A 
subset of either of the Banach spaces Jf(2?(2), X) andJ^iL^dx), X) is weakly 
relatively (respectively, weakly conditionally) compact if and only if it is 
2 ® X*-wot relatively sequentially (respectively, conditionally) compact. 

Proof. Let 38 be either 2 or 2/ju,~1(0) in Corollary 6.2 and apply 
Theorem 2.3 along with a Stone-Weierstrass isometry. 

Corollary 6.2 can be strengthened by combining results of [3] and [12] 
with those of [10] and [30]. 

THEOREM 6.4. (1) A bounded subset of csca(j^ X) is weakly relatively 
compact if and only if it is ext(BL) ® ext(Bx*)-wot relatively countably 
compact where BL is the closed unit ball in L(sf) = sca(j/)*. 

(2) Ifs/ = 2 is a o-algebra, then a convex subset o/cca(2, X) is weakly 
relatively compact if and only if it is 2 0 ext(Bx*)-wot relatively countably 
compact. 

Proof. Consider the isometric identification 

csca(j^ X) = JTb(L(s/)9 X) 

of Theorem 2.2 and apply Theorem 3.2 of [10] and Theorem 1.3 of [30] to 
conclude that ext(BL) ® ext(Bx*) is precisely the set of all extreme points 
of the closed unit ball of csca(j^ X)*. Now, (1) follows from Theorem 
1 of [3]. To prove (2), it remains to show, according to Theorem 5.1 of [12], 
that for any O <= cca(2, X), there exist / <E £(2) and 
x* e ext(Bx*) such that 

sup {T(®):T G cca(2, X)*, ||7l| ^ 1} = <**, J fd<&). 

It is well known that the sup is attained at an extreme point of the 
closed unit ball in cca(2, X)* and so, according to the first remark of the 
proof, has the form (x*, $(F) > for some x* e ext(2?^*) and some 
F e Qxt(BL). An application of (3) of Theorem 2.1 completes the proof. 

https://doi.org/10.4153/CJM-1984-057-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1984-057-9


VECTOR M E A S U R E S 1015 

The following measure-theoretic characterization of weak compactness 
is the main result of this section. 

THEOREM 6.5. For a o-algebra 2 of sets and a subset H o/cca(2, X), the 
following are equivalent. 

(1) H is weakly relatively compact. 
(2) H {A ) is weakly relatively compact for each A e 2, x* o H is uniformly 

sb for all x* e X*, and each 0 in the L(2) 0 X*-wot sequential closure of H 
has relatively compact range. 

(3) H (A) is weakly relatively compact for all A e 2, / / (2) /s bounded, 
x* o / / /s uniformly ca. for all x* G A^, #/7<i eac/z $ /« /7ze 2 0 X*-wot 
sequential closure of H has relatively compact range. 

Proof Assume that H is weakly relatively compact. Since the weak 
topology of cca(2, X) is finer than the 2 0 X*-wot, it follows that the last 
condition of (3) holds, that H {A) is weakly relatively compact for all 
A <= 2, and that x* o H* is relatively a(ca(2), 5(2) )-compact for each 
x* <E X*. So, according to Theorem 2.1, / / (2) is bounded, and x* o H is 
uniformly ca for all x* e X*. Hence, (3) follows from (1). Clearly, (3) 
implies (2). Assume now that (2) holds. Then H is weakly conditionally 
compact by Theorem 3.2 of [22]. So a sequence (<Ê>„) from H may now be 
assumed, without loss of generality, to be weakly Cauchy and must 
therefore, according to Theorem 7 of [17], cluster in the topology of 
pointwise convergence on L(2) on the space i?(L(2), Xa) at some 

O e JS?(L(2), X) = ^ ( L ( 2 ) , Xa). 

But ($„), being weakly Cauchy, is L(2) 0 X*-wot Cauchy and so must 
converge to 0 in the topology of pointwise convergence ino£?(L(2), Xa). 
H is then weakly relatively compact since the last condition of (2) insures 
that <I> <E cca(2, X) while (1) of Theorem 6.1 then guarantees that (<£„) 
weakly converges to O. 

Remark 6.6. The last condition in (3) above is quite strong as a 
necessary condition for relative weak compactness of H, for it reveals that 
the weak closure of H in cca(2, X) is 2 0 X*-wot sequentially closed in all 
of ca(2, X). On the other hand, the last condition in (2) is quite weak as 
one of several conditions collectively sufficient for weak relative 
compactness of H, for it is, in the presence of the other conditions, only 
the requirement that the weak closure of H in cca(2, X) be L(2) 0 X*-wot 
sequentially closed in all of ca(2, X) (or ca(2)* 0 X*-wot sequentially 
closed, since L(2) = ca(2)*). 

Remark 6.7. If 2 is a a-algebra of sets and /A G ca (2) + , then the space 
of all strongly measurable Pettis integrable functions embeds isometrically 
in cca(2, X). Thus, Theorem 6.1 and Corollary 6.2 have counterparts for 
this space. 
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The following example illustrates that, as suggested by inclusion of the 
last convergence conditions in (2) and (3) of Theorem 6.5, there is a 
difference between weak conditional and weak relative compactness in 
cca(2, X). 

Example 6.8. Let X = c0, 2 = the Borel subsets of [0, 1], and 
jit = Lesbesgue measure on 2. Let (rn) be the sequence of Rademacher 
functions. For each n and A e 2, let H = {$„} with 

®n(A) = 2 yj Arkd\i)ek 

where (ek) is the sequence of standard unit vectors in c0- Let 

Q(A) = 2 (jArkdli)ek for A e 2 . 

Since 

/ frkd\x —> 0 for a l l / G L^/x), 

it is easy to see (1) that H Q cca(2, X) and $ e ca(S, X), (2) that 7/(̂ 4 ) is 
weakly (indeed, strongly) relatively compact for all A <= 2 and / / (2 ) is 
bounded, (3) that x* o H is uniformly ca for all x* G X* (indeed, H is 
uniformly /x-continuous), (4) that 

<**, $„(F) > -> (x*, $(F) > 

(indeed, $„(F) -> 0 (F) ) for all F <= L(2) and x* e X*, (5) but that 0 
does not have relatively compact range in X = c$ (since for any n, there 
exists A e 2 with / ^ d / x = 0- ^ *s weakly conditionally compact by 
Theorem 3.2 of [22] but is not, according to Theorem 6.5, weakly relatively 
compact in cca(2, X). Notice also that this example displays the vital role 
of expectation operators in the characterization in Theorem 3.1 of strong 
compactness in cca(2, X), for with the exception of uniform convergence 
of expectations, the conditions of (3) of that theorem are met here by H, 
yet H is not even strongly precompact. 

7. Duals of spaces of compact-range measures. The duals of spaces of 
compact-range measures can be represented provided that the dual of the 
range space has the Radon-Nikokym property (RNP). 

THEOREM 7.1. If X* has RNP and 38 is any Boolean algebra, then there 
exist natural isometrical isomorphisms: 

(1) cba(^, X) ~ ba(#) <S>£ X, csca(^, X) ~ sca(^) ®e X. 

(2) cba(^, Xy ~ ba (^)* 0 , , X* ~ Nb(bz(@), X*), 
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csca(^, X)* ~ sca(J>)* 0 ^ ** - Nh(scà(@), X*). 

(3) cba(J>, X)** ~ jS£(ba(J*)*, X**), 

csca(^, X)** - «S£(sca(#)*, X**). 

Proof. The tensor products above are, in order, the complete injective 
and the complete projective tensor products while 7V(-, •) denotes a space 
of nuclear operators. If JU is a scalar measure, x e X, and A e ^ , then the 
isometries in (1) arise from treating jii 0 x as an X-valued measure by 
setting 

(li® x)(A) = IL(A)X. 

In (2), every functional T on compact-range ^-valued measures will be 
seen to have the form 

T = 2 KFn ® **n 

where (x*) is a null sequence in X*, (X„) e / b and (i%2) is a null sequence 
from the dual of the given space of scalar measures. The form of the 
isometry in (3) will then be a consequence of the form of the 
representation in (2). First consider the three asserted isometries for the 
case of ba measures on 38. That the indicated natural maps are indeed 
isometries onto is a consequence of the measure-operator identifications 
surrounding Theorem 2.3, of Theorem 3.1 of [11], and of the fact that 
ba(^)* has the approximation property. To treat the case of sea measures 
on 38, first recall that there is a projection of ba(^) onto its closed 
subspace sca(^) via the Hewitt-Yosida decomposition. It is easy to verify 
that the adjoint of this projection is r-continuous on L(s/) = b&(38)* 
where s? is the algebra of clopen subsets of the Stone space of 38. The 
resulting T-closed subspace of L(s/) represents all vector-valued sea 
measures on 38, and the proof for this case proceeds just as above. 

The next result follows from (2) of the above theorem. 

THEOREM 7.2. With assumptions as in Theorem 7.1, the weak topology 
and the ba(^)* ® X*-wot (respectively, sca(^)* ® X*-wot) coincide on 
bounded subsets of cba(^, X) (respectively, csca(^?, X) ). 

An interesting example can also be viewed as a corollary to Theorem 
7.1. Let 2 be a a-algebra of sets, jit G ca(2) + , and ca(2, /x, X) the space of 
ju-continuous X-valued measures on 2. Set 38 = 2 / J U _ 1 ( 0 ) in Theorem 7.1 
and apply classical L\ — L ^ duality to derive the next result. 

COROLLARY 7.3. IfX* has RNP and ju e CSL(2)^ for some o-algebra 2 of 
sets, then there are (natural) isometrical isomorphisms: 

(1) cca(2, /i, X) ~ Lx(ix) ® € X. 
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(2) cca(2, p, X)* ~ LOOCM) ® f f X* ~ Nh(L^), X*). 

(3) cca(2, n, X)** =* j^(LooOi), X**). 

Moreover, a bounded net (<!><,) /raw cca(E, JU, Z) converges weakly to 
4> G cca(2, ju, X) if and only if 

(x*,^a(A))^(x*^(A)) 

for all A G 2 tf«d all x* from the set sexp(Bx*) of strongly exposed points oj 
the unit ball Bx*. 

Proof. The isometries have already been explained. The remaining 
statement is just the analogue of Corollary 7.2 taking into account that the 
image of S(2) in LOOCM) is norm dense and that the convex circled hull of 
sexp(i?x*) is norm dense in Bx* when X* has RNP [13, VII.3.3]. 

Remark 1 A. Since lx = c$ has RNP, Example 6.8 reveals that the last 
condition in (2) of Theorem 6.5 cannot be avoided even with the 
representation of cca(2, X)* given above when X* has RNP. 

Question 7.5. Do the representations of this section hold under the 
assumption that X* has weak RNP? At the base of the representations of 
this section is the fact that a Banach space Z has RNP if and only if all 
integral operators from Y to Z are nuclear for every Banach space Y 
(which ultimately depends on the existence of Bochner derivatives of 
Z-valued measures rather than Pettis derivatives (cf. Chapter I, Theorems 
3 and 6 of [2] ). In the special case of Corollary 7.3, the question thus 
amounts to asking whether for a given X* with weak RNP but without 
RNP (such as the odd duals of the James tree space [23, Corollary 11] ) at 
least all integral operators from just LI(JU) into X* are nuclear. 

8. Generalizations. The main results of this paper, Theorem 3.1 and its 
applications in Sections 4 and 5 and Theorems 6.1-6.5, are valid when X is 
a Fréchet space. Of course, their statements must be modified accordingly. 
Because Theorem 2.1 with a minor modification to statement (2) holds for 
any quasi-complete X as do Theorems 2.2 and 2.3 in slightly modified 
forms, many of the main results hold for any quasi-complete, locally 
convex X. For example, conditions (l)-(4) of Theorem 3.1 are equivalent 
in this generality, and Theorem 6.1 remains valid. The strong topology 
becomes a locally convex topology of semi-variation semi-norms and the 
set ext(Bx*) must be replaced by the union of sets of extreme points of 
polars of basic neighborhoods of 0 in X. 
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