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ABSTRACT. A third-order solution is developed for the motions of arti-
ficial satellites moving in the gravitational field of the Earth, whose
potential includes the second-, third-, and fourth-order zonal harmon-
ics. Third-order periodic perturbations with fourth-order secular
perturbations are derived by Hori's perturbations method. All guantities
are expanded into power series of the eccentricity, but the solution is
obtained so as to be closed with respect to the inclination. A compari-
son with the results of numerical integration of the equations of
motion indicates that the solution can predict the position of a close-
earth satellite with a small eccentricity with an accuracy of better
than 1 cm over 1 month.

1. INTRODUCTION

Second-order theories of artificial satellites have been established
by many authors during the past 15 years; an excellent review is given
by Hori and Kozai (1975). A third-order solution was derived by Deprit
and Rom (1970), but their solution does not include J3 and J,. Accor-
ding to Aksnes's numerical experiments comparing his second-order solu-
tion (Aksnes, 1970) with numerical integration, residuals of a few
decimeters remain in position, most of which come from the third-order
interaction among Jp, J3, and J,. On the other hand, the accuracy of a
recently launched geodetic satellite equipped with retroreflectors for
laser ranging will reach 3 to 5 cm. Therefore, we can expect to obtain
more accurate information on satellite motions by taking into account
the third-order periodic perturbations. Here we consider only the
second-, third-, and fourth-order zonal-harmonics perturbations. We
chose a Keplerian motion as an intermediate orbit and adopted Hori's
(1966) perturbation method. We assumed that the eccentricity of a
geodetic satellite requiring highly accurate solutions is usually low;
therefore, all quantities in the present solution are expanded into
power series of the eccentricity, but the solution is obtained in
closed form with respect to the inclination. Delaunay variables were
selected as the canonical elements used to construct the new Hamiltonian
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and the determining functions eliminating periodic terms, which do not
depend on the chosen canonical variables as long as Keplerian motion

is adopted as an intermediate orbit. However, the final expressions of
the periodic perturbations are given in £ + g, h, e cos g, e sin g, and
L, which are not singular at zero eccentricity. All literal calculations
were carried out by means of the computer algebra program Smithsonian
Package for Algebra and Symbolic Mathematics (SPASM) (Hall and Cherniack,
1969). Final results were checked analytically in various ways and were
compared with the results of numerical integration.

2. OUTLINE OF THE METHOD OF SOLUTION

Let us consider an artificial satellite orbiting in an axially
symmetric gravitational field of the earth, whose force function is of
the form

Gmrli- LT e 0], v

where a 1is the equatorial radius of the Earth, r the radius vector of
the satellite, and B the declination. In this paper, the coefficient Jj
is assumed to be a small quantity of the first order and J3 and J, are
of the second order.

To solve for the motion of the satellite under the force function
(1), we adopted Hori's (1966) perturbation method, which utilizes Lie
transformation; all formulas are canonically invariant, and the per-
turbations of any quantity are given by simple formulas and in explicit
form. Because of the generality of Hori's method, we can choose any set
of canonical variables. In the present paper, we use Delaunay variables
as a canonical set for their simplicity, where

L = Vua} £ = mean anomaly,
G = LYl - e2, g = argument of perigee,

H

G cos i, h = longitude of ascending node.
The equations of motions are

a oF a OF
-— (L,G, lrerresne el ey ’ F S ATeTTTIT
ac TG E = Tgmy ¢ ac Re9h) 3(%,C,H) (2)

where

F=Fg + F, + Fp,
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ua2 .

Fl = - ‘;3"& J2P2(51n g), (3)
ua3 . uaé ;

Fy = - ;EE J3P3(sin B) - P JuPy (sinB).

Under the assumption that the eccentricity is small, we expanded the
disturbing functions F; and F, into a power series of the eccentricity:

4 1
| = HJ2 5 5 %2,2p (o) B (i) cos (k& + 2pg),
B k 2.2p
p:O k=~
g2 W93 LT 3pn (1) sin [k2 + (2p +1)
2 = I8 X ¢ F3,0p01 7T B0 ? s
p:O k==00
6 2 ®
PRI T 420 g (i) cos (k& + 2pg), (4)
LI p=0 komw X 4,2p

n,m , . s
where Xk' (e) is a Hansen coefficient,

B20=—%(—2 +3 sin? i), B22=%sin2 i,
3 ., .o, 5 . 3.

B3y = - g sin i (-4 + 5 sin“ i), By = g sin” 1,

Byp = - % (8 - 40 sin? i + 35 sin* i),

Byy = %é- sin2 i (-6 + 7 sin? i), By, = - -Z—Z— sin" i.
When the lowest powers of e and sin i of the coefficient of S;Z(kz + qg)
in the trigonometric series (4) are o and §, we have the folfowing rela-
tions:

a= |k - q| (mod. 2),

§ = |la| (mod. 2),

which are called the d'Alembert characteristics.
The algorithm for deriving the new Hamiltonian F* (Hori, 1966)
and the determining function S eliminating short-period terms is

zeroth order:

F* = Fo, (5a)

first order:

¥y =F
1 1s’

L|$ .
Sh =E§—IF19 a',
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second order:
1 *
Fy = Foo ¥ 5—{F1 + Fq, Sl}s'

S2

0
.\l
]

1 *
m p t 3 {F1 +F1, Sl}p)dl', (5b)

third order:

* _ 1 1 *
Fa = 13 UFy0 5130 Sp3 g+ {F +Fy S ko4 F +E, S
s =Ldf(l—HF s,}, s} +lw + F*, S, } (5d4)
370 12 1p’ "1’ Cilp T 2'2 2’ 1'p

1 * []
+ 3 {Fl + Fl, SZ}p) as',

fourth order:

* 1
= — + *
Fy 3 {Fl F

1
— *
17 Syl t{F, +F

1 *
2’ S2}s * 3.{F3 + Fy S1}s

1
{{F ’ Sl}l SZ}S + 1—2— {{Flp' Sz}l SJ.}S (5e)

1
+ r o’ TR

where the braces represent Poisson brackets and the subscripts s and p
indicate the constant and periodic parts in £'. It sShould be noted that
we can add any function of L', G', H', and g' to S.

The algorithm for calculating the new Hamiltonian F** and the de-
termining function S* eliminating long- perlod terms is given by the
following equations:

first order:

*k = *
F1 Fl’ (6a)

second order:

F** = p* ,
2 s (6b)
oF
st=- (Cfy s Fs agn,
56" P

third order:

1
*k = . * * % *
F3 3 {F2 + Fi*, Sl}s ’
* -1 (6c)
1 oF
* o= - = 1 * * % * "
5% 5 (G" ) / {F2 + F3*, sl}p dg ",

fourth order:

1 1
*k= = [[p* * * 2 {p* 4 PE* %
Far= 17 (F5pr s7dy sply + 5 {F3 + FY*, ST
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1
+ = {F* *% *
2 {F2 +EY SZ}S !

2
oFY . -1 1 1
* oz e (o - * * * — [p* *% *
S3 e T (3 {{F2p, sth sl}p + 5 {Fy + Fi*, 51}p
+ z {F* + F**, 5*} ) dg" (6d)
2 72 27" "2'p !

where the subscripts s and p indicate the constant and periodic parts
in g", '

These algorithms are actually very simple, but calculating them
by hand is laborious. Therefore, all computations were carried out by
the computer program SPASM (Hall and Cherniack, 1969). SPASM handles
the operations in (5) and (6) easily, keeping rational fractions for
coefficients.

A key operation in (5) and (6) is evaluating the Poisson bracket
{a,B}:

9A OB dA 3B oA 3B JA 3B E_A_B_Pi + %_E)_B_ (7
3L 3% 32 oL 3G 3g 3g 9G 9H dh 3h 9H °

In the present theory, as we check to obtain a solution that is closed
with respect to the inclination, the atomic variables in the computer

algebra are L, e, s = sin i, ¢ = cos i, and y =1 -5 cos? i (y appears
in the denominator of S*). The derivatives with respect to L, G, and H
are

.3, 1o

L L el de '

a1 (_1-e2_a_+1—sinzia__cosi§__

G LV1-e? e de sin i ds ac

+ 10(1 - sin? i) 3—),

Jy
§-= - ! cos i é—-+ 2—-+ 10 cos 1 §~ﬁ
oH L/l - e2 ‘sin i 3s = 3¢ ¢ oy’

2,-1/2

where the factor (1 - e will be replaced by a Taylor expansion in
powers of e. If both A and B satisfy the d'Alembert characteristics, then
even if these derivatives include the terms 1/e and 1/s in i, the

Poisson bracket {A,B} keeps the d'Alembert characteristics and does not
have 1/e and 1/sin i in the expression. This serves as a good check on
literal manipulation by a computer. In Deprit and Rom's (1970)theory,

cos 1 = H/L(1 - e2)1/2 is developed in power series of e. Therefore,
their determining function W apparently loses the d'Alembert character-
istics with respect to the inclination. If A and B are expanded into
power series of e and truncated at e, the derivatives with respect to

https://doi.org/10.1017/50252921100062357 Published online by Cambridge University Press


https://doi.org/10.1017/S0252921100062357

246 H. KINOSHITA

L and G are correct up to eP 2; however {A,B} is correct up to en-1l, 1n
other words, with one operation of the Poisson bracket, only one degree
in e (not two) is lost. Our program, which takes this fact into consid-
eration, saves a lot of computer time.

Complete to J3, the analytical solution must take into account all
the following terms:

first order:
Jp, J3/Jp, JIu/J2,

second order:
J3, J334/3%, 3%, O,
(33/32)2, (I4/32)2,

third order:
3233, 033%/3%, (33/32)3%, 3334732,
33, 3.3y, (Iy/32)3, 3%34/33,
J3/3,, J8/3,.

Most of these terms arise from the interaction among Jp, J3, and Jy.
Tables I and II list the numbers of terms involved in S, and S,, respec-
tively. The total number of terms with the factor J3 in“s* is 106. On
the other hand, Deprit and Rom's W., contains 192 terms up to e4, partly
because they chose 1 = H/L as one of the arguments. Figures 1 and 2

show parts of S, and S*.

3 3

Table I
Numbers of terms in the determining function S3

J3 J.J J.J

2 273 2°4

e? 6 6 6 18
e, 16 8 16 40
e, 19 18 18 55
e, 32 19 32 38
e 33 30 31 94
Total 106 81 103 290
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Fig. 1. Determining function S3 with factor J
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When both short- and long-period terms have been eliminated, the
new Hamiltonian F** contains no angular variables. The action variables
L'', G'', and H'' are constant, and the angular variables &'', g'', and
h'' are expressed as follows:

2” = - ngl Px*% 4 ’Q’(')"

3 .
g" = - Even F** + g§', (9)

3
1" _ o pk%k [
h NTOn + h0

The generating functions S and S* determine a completely canonical
transformation from the osculating elements (L, G, H, %, g, and h) to
the mean elements (L" , G'', H", 2" , and h" ). Because %, g, and e do
not satisfy the d'Alembert characteristics with respect to the eccen-
tricity, we selected 2 + g, h, e cos i, e sin i, L, and H as the set of
elements for calculating the ephemeris of a satellite, as Deprit and
Rom (1970) did. If € stands for one of these elements, the osculating

element € is obtained from the following formulas through the third
order of J%:

e =¢' +{e', s} + %-{{é', s}, s} - % {{{e', s}, S}, S} -

4
+ o(J2),

et =ertw {ett, 8%} 4 5 {{etr, 8%}, S} + £ {{{e', 8%}, s*), ©
)
+ O(J2). (10)

These expressions do not contain negative powers of the eccentricity.
Even though neither £ + g nor h satisfies the d'Alembert characteristics
with respect to the inclination, the sum of £ + g + h does, thus pro-
viding another good check on the lengthy calculations. Figures 3 and 4
show parts of the third-order short- and long-period perturbations of

% + g. The method of calculating position and velocity from these ele-
ments is given in Deprit and Rom (13870).

3. ANALYTICAL AND NUMERICAL CHECK

Hori (1970a) and Yuasa (1971) showed that both Hori's and von
Zeipel's perturbation theories give the same canonical transformation,
together with the same new Hamiltonian, up to the third order. This
allows us to compare the present solution, based on Hori's theory, with
Kozai's (1962) solution, based on von Zeipel's theory. Our Fg* completely
agress with Kozai's F**. Although Hori (1966) gave a relation between
the determining functions of his and von Zeipel's theories, we have not
compared these functions, because of the complexity of Kozai's ex-
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pression of S, and the tedicusness of the calculations. Instead, we
compared our 5 with that derived later by Hori (1970b). In determining
S, we have an ambiguity and may add an arbitrary function of L, G, H,
and g to S, giving us S. In the present theory, the disturbing function
is expanded into a Fourier series with arguments of ¢ and g; therefore,
it is natural to determine $ in such a manner that its mean vlue with
respect to the mean anomaly is zero. On the other hand, the mean value
of Hori's S is not zero. The relation between S and 8, both of which
are determining functions eliminating short-period terms in the Hamil-
tonian, is

fl} + £,
where £, and £, are arbitrary functions of L, G, H, and g. Then, the

relation between S* and §*, which are determining functions eliminating
long-period terms, is

% = ok .
81 S1 fl,

1
* = ok = * -
82 52 + > {s*, fl} £

(12)
2

Even if the functional forms of these determining functions are differ-
ent, the composite canonical transformation of (S, S*) is identical to
that of (§, S*). The second-order determining function S, fo the present
theory and that derived by Hori are found to satisfy relation (11).

It is of interest to compare the present solution with that due to
Deprit and Rom (1970), in which J, and J, are zeros. Their solution was
obtained by their own perturbation methog, which, like Hori's, is based
on Lie transformation. Campbell and Jefferys (1970) showed that the
perturbation theories of Hori and Deprit are equivalent and derived
explicit relations between the determining functions :for the two:

W, = -sl,
W2 = —282, (13)
W3 = —6s3 - {51’ s2},

where Wn are the determining functions in Deprit's theory. Using these
relations, we compared our solution with Deprit and Rom's, which also
serves as an independent check. We found only a few disagreements with
their terms, which all seemed to be typographical errors. Kutuzov
(1975) also discovered some discrepancies between his solution, obtained
by computer algebra, and theirs.

As an internal consistency check, we wanted to make sure that a
small divisor (1-5 cos? i) disappeared for the even-order harmonics 1
when the geopotential was equal to that in vinti (1959) [J2 = (—1)n+ Jn,
n 2 2]. In checking the third order, we had to add long-period perturba-
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tions arising from J,. and J,.

Finally, the preésent solution was compared with the results ob-
tained from numerical integration. A Taylor-type integrator was adopted,
in which the positions and velocities are expanded into a power series
of time and the coefficients of the series are determined by recurrent
formulas (Rabe, 1961; Deprit and Zahar, 1966). The order of the power
series and the step size of time were chosen so as to maintain about 12
significant figures in the integral of energy; the integration step is
roughly one-fifth of the convergence radius 1 of the two-body problem,

T = (1/n) {1n [(1/e) + V(1/e?) - 1] - VY1 - eZ}, when the degree of the
Taylor series is 16. The numerical calculations were carried out by a
CDC 6400 computer in double precision in order to avoid roundoff errors.
It takes about 0.7 s to evaluate the series of the present theory and
about 0.3 s to integrate the equation of motion for one step.

The initial conditions were computed from the present theory from
a set of mean elements a" , e" , i"t, 2" , g" , and h" . It should be
noted that the mean motion of the mean anomaly of the integrated orbit
is ezpected to be different from the computed mean motion by an order
of J  because the accuracy of the periodic terms is of the order of J..
This discrepancy can be avoided by adjusting the semimajor axis so as
to remove the secular term in the residuals of the mean anomaly.

Such comparisons were done for the artificial satellites Geos 3,
Starlette, and Lageos. The results for Starlette are plotted in Figures
5 and 6. Figures 5a, 5b, and 5c show in-track, along-track, and across-
track errors over two revolutions. The deviations are less than 2 x 10
m and are totally negligible. Figures 6a, 6b, and 6c show the errors
over about 600 revolutions. The deviations along and across the track
are totally insignificant, but the in-track error has a secular trend
that seems to be proportional to the sgquare of time. The error first
increases, then decreases, and finally vanishes at about t = 22 days, at
which time the semimajor axis was adjusted. This secular trend can be
explained by the accumulation of truncation errors, which are caused
by replacing infinitesimal operations with finite operations. The
round-off errors do not accumulate significantly, because our calcula-
tions were carried out in double precision, which amounts to an accuracy
of about 30 significant figures in decimal notation. The accumulation
error due to discretization (Kinoshita, 1968) is

2. p
Tin-track al hv, (14)

where a is the semimajor axis, £ the mean anomaly, h the step size, and
p the degree of Taylor expansion. About 1 cm of the in-track error at
t 40 days (1 _= 3600 radians) is obtained from using Equation (14) with
a 7.335 x 10° m and h = 600 s = 1/10 radians, the order of the error
agreeing with that of the numerical experiment. We can avoid discretiza-
tion errors by employing a much more accurate integrator, but it seems
to be an unnecessary use of computer time. The comparisons for Geos 3
and Lageos gave roughly the same results as for Starlette.

We are now confident that the present solution can predict the
position of a geodetic satellite with a small eccentricity with an
accuracy of better than 1 cm over 1 month.
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Fig. 5. Prediction error of the third-order solution ggr Starlette -
plotted over two_gevolutions: J2 -1,082 x 10 7, J, = ~2.54 x 10

J3 = -1,619 x 10 ~, a'' = 7.335x _‘lO6 m, e’ 0.020636, i'' =
49.

8223, 24' = 350.23968, gé' = 82.7702, hé' = 125.0266, P =
104.2 min.

(a) in-track error.
(b) along-track error.
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Fig. 6. The same as Figure 5 plotted over about 600 revolutions.
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