BOUNDS FOR A LINEAR DIOPHANTINE PROBLEM OF FROBENIUS, II

yEHOSHUA VITEK

1. Introduction. Let $A=\left\{a_{0}, a_{1}, \ldots, a_{s}\right\}$ be a set of relatively prime integers such that $0<a_{0}<a_{1}<\ldots<a_{s}=n$. Let $\phi(A)$ denote the smallest integer such that, for $N \geqq \phi(A)$, the equation

$$
a_{0} x_{0}+a_{1} x_{1}+\ldots+a_{s} x_{s}=N
$$

should always have a solution in nonnegative integers.
For $s=1$ it is well known that $\phi\left(a_{0}, a_{1}\right)=\left(a_{0}-1\right)\left(a_{1}-1\right)$ but for $s \geqq 2$ the problem of determining ϕ is difficult.

Schur [1] was the first to give an upper bound

$$
\begin{equation*}
\phi(A) \leqq\left(a_{0}-1\right)\left(a_{s}-1\right) \tag{1}
\end{equation*}
$$

Lewin [3] proved that for $s \geqq 2$,
(2) $\phi(A) \leqq\left[\frac{1}{2}(n-2)^{2}\right]$,
where $[x]$ stands for the greatest integer $\leqq x$. This bound is sharp for $s=2$ only, and Lewin conjectured that in general, $\phi(A) \leqq[(n-2)(n-s) / s]$.

Support to Lewin's conjecture was given by Erdös and (iraham, who proved [2].
(3) $\phi(A) \leqq 2\left[a_{s} /(s+1)\right] a_{s-1}-a_{s}+1<2 n^{2} /(s+1)$.

In this paper we shall prove
Theorem 1. Let $a_{0}<a_{1}<\ldots<a_{s}=n$ be relatively prime positive integers such that $n \geqq s(s-3)$. Then:
(4) $\phi\left(a_{0}, \ldots, u_{s}\right)<n^{2} / s$.

The restriction, $n \geqq s(s-3)$ is probably not essential. Yet, in Lewin's conjecture, n must be large enough with respect to s, since for example $\phi(2,4,5,6,7)=4>[(7-4)(7-2) / 4]$.

Bound (4) is not the best possible one, but it cannot be improved beyond Lewin's conjecture since

$$
\phi(n, n-1,(s-1) n / s,(s-2) n / s, \ldots, n / s)=(n-2)(n-s) / s .
$$

There is one advantage of (1) over (2), (3), and (4). It considers the influence of a_{0} which may be rather small and reduce $\phi(A)$ significantly.

[^0]A step in this direction was done in [6]. It was proved there that if A contains at least two non-zero residues modulu a_{0} then:

$$
\begin{equation*}
\phi(A) \leqq\left[a_{0} / 2\right]\left(a_{s}-2\right) \tag{5}
\end{equation*}
$$

The second purpose of this paper is to go further in this direction and to prove (using the notation $a \mid b$ for a divides b):

Theorem 2. Let $a_{0}<a_{1}<\ldots<a_{s}$ be relatively prime positive integers, having different residues mod a_{0}. If, for every divisor r of a_{0} such that $r<s$ and $r \nmid s$, the number of residues $\bmod a_{0} / r$ in $\left\{a_{0}, \ldots, a_{s}\right\}$ is not $1+[s / r]$, then (6) $\left.\phi\left(a_{0}, \ldots, a_{s}\right) \leqq\left[a_{0}-2+s\right) / s\right]\left(a_{s}-s\right)$.

This bound is achieved by the arithmetic sequence $a_{0}, a_{0}+d, \ldots, a_{0}+$ $s d=a_{s}$, in case that $a_{0} \equiv 1(\bmod s)$ or $d=1$, (see [5]).

Observe that the condition: "For every divisor r of a_{0} ", etc., is always valid for $s=2$, thus providing a shorter proof for Theorem 1 in [6]. Further, this condition is satisfied in "most" cases. Bound (6) is always valid if $a_{0} \geqq \frac{2}{3} a_{s}$.

Finally we shall prove for $s=3$
Theorem 3. Let $a_{0}<a_{1}<a_{2}<a_{3}=n$ be relatively prime positive integers. Then

$$
\phi\left(a_{0}, a_{1}, a_{2}, a_{3}\right) \leqq[(n-2)(n-3) / 3] .
$$

2. Some lemmas. Let G be an abelian finite group, and let A, B be subsets of G. Let $|A|$ denote the cardinality of A, and $A+B$ denote the set $\{a+b \mid a \in A, b \in B\}$. Thus, $\sum^{k} A$ stands for $A+\ldots+A, k$ times.

Then by a theorem of Mann, proved in [4], we have: If for every proper subgroup H of $G,|A+H| \geqq|A|+|H|-1$, then for every subset B of G, for which $A+B \neq G$, we have $|A+B| \geqq|A|+|B|-1$.

Henceforth, such a subset A, which satisfies $|A+H| \geqq|A|+|H|-1$ for every proper subgroup H, will be said to satisfy Mann's Condition, or briefly M.C. Using induction we immediately obtain:

Lemma 1. Let G be an abelian finite group. Let A, A^{\prime} be subsets such that $|A|=s+1$, and A satisfies M.C. in G. Then

$$
\left|A^{\prime}+\sum^{l-1} A\right| \geqq \min \{|G|,|A|+(l-1) s\}
$$

In particular, setting $A^{\prime}=A$ we have $\sum^{l} A=G$, for $l=1+[(|G|-2) / s]$.
Let q be a positive integer. Let J_{q} denote the group of residues modulo q, the members of which are the integers $\{0,1, \ldots, q-1\}$. Let E be a set of nonnegative integers. Then E_{q} denotes the set of residues $\bmod q$ of the elements of E. Thus E_{q} is a subset of J_{q} and its elements are also integers. Hence $\left(E_{q}\right)_{p}$ has a meaning, where p is some positive integer. If $p \mid q$ then clearly $\left(E_{q}\right)_{p}=E_{p}$.

Let p be a positive integer. We denote the set of all nonnegative integral multiples of p by $\langle p\rangle$. With this notation, any subgroup of J_{q} is given by $\langle q / r\rangle_{q}=\{0, q / r, 2 q / r, \ldots,(r-1) q / r\}$, where r is a divisor of q. (Saying divisor we always mean a proper one, neither 1 nor q.)

In terms of these notations, we now redefine M.C. as follows: A subset E of J_{q} satisfies M.C. if and only if $\left|E+\langle q / r\rangle_{q}\right| \geqq|E|+r-1$, for every divisor r of q. Note that the + operation in $E+\langle q / r\rangle_{q}$ is modulo q.

In the following Lemmas 2-6 we shall be concerned with a subset E of J_{q} such that $|E|=s+1,0 \in E$ and $\operatorname{gcd}(q, E)=1$. The notation $\operatorname{gcd}(q, E)$ stands for the greatest common divisor of the nonzero elements of $\{q\} \cup E$:

Lemma 2. Let r be a divisor of q. Then:
(i) $\left|E+\langle q / r\rangle_{q}\right|=r\left|E_{q} / r\right|$
(ii) $\left|E+\langle q / r\rangle_{q}\right|<s+r$ if and only if $\left|E_{q / r}\right| \leqq 1+(s-1) / r$.

Hence, E satisfies M.C. in J_{q} if and only if $\left|E_{q / r}\right|>1+(s-1) / r$, for every divisor r of q.
(iii) If $\left|E_{q / r}\right| \leqq 1+(s-1) / r$ then $r<s, r \nmid s$ and $\left|E_{q / r}\right|=1+[s / r]$.
(iv) E satisfies M.C. in J_{q} if and only if $\left|E_{q / r}\right| \neq 1+[s / r]$ for every divisor r of q such that $r<s, r \nmid s$.
Proof. (i) $E+\langle q / r\rangle_{q}$ is a union of cosets of the quotient group $J_{q} /\langle q / r\rangle_{q}$. This group is isomorphic to $J_{q / r}$ and each coset corresponds to a residue modulo q / r. Hence $\left|E+\langle q / r\rangle_{q}\right|=r\left|E_{q / r}\right|$.
(ii) Follows directly by (i).
(iii) If $r<s$ were not true, then we would have $\left|E_{q / r}\right| \leqq 1+(s-1) / r<2$. But then zero would be the only residue $\bmod q / r$ in A, contradicting the assumption $\operatorname{gcd}(q, E)=1$.

The two remaining arguments are due to the inequality: $\left|E+\langle q / r\rangle_{q}\right| \geqq$ $|E|>s$. Together with (i) this implies $s / r<\left|E_{q / r}\right| \leqq 1+(s-1) / r<$ $1+s / r .\left|E_{q / r}\right|$ is an integer, hence $r \nmid s$ and $\left|E_{q / r}\right|=1+[s / r]$.
(iv) This is an immediate consequence of (ii) and (iii).

We shall study now (Lemmas 3-6) the subset E in case that it fails to satisfy M.C. These lemmas are not necessary for the proof of Theorem 2.

Lemma 3. Let r be a divisor of q satisfying $\left|E+\langle q / r\rangle_{a}\right|<s+r$. By Lemma 2 we then have $\left|E_{q / \tau}\right|=1+[s / r]$. Define λ and μ by $\lambda=s-r[s / r]$ and $\mu+1=$ $|E \cap\langle q / r\rangle|$. Then:
(i) $1 \leqq \lambda \leqq \mu \leqq r-1$.
(ii) For each nonzero member of $E_{q / r}$, there are in E at least $r-\mu+\lambda$ elements, congruent to it $\bmod q / r$.

Proof. Clearly, $\mu \leqq r-1$ and by Lemma $2, \lambda \geqq 1$. To prove the rest, denote $E_{q / r}=\left\{0, b_{1}, \ldots, b_{[s / r]}\right\}$. Let η_{j} be the number of elements of E that are congruent to $b_{j} \bmod q / r$. Then we have: $|E|=\mu+1+\sum_{1}^{[s / \tau]} \eta_{j}$. Setting $|E|=s+1=r[s / r]+\lambda+1$ we obtain $\lambda+\sum_{1}^{[s / r]}\left(r-\eta_{j}\right)=\mu$. Since $\eta_{j} \leqq r$, this proves $\lambda \leqq \mu$ and $\eta_{j} \geqq r-\mu+\lambda$ and the proof is completed.

The result $\mu \geqq 1$, proved in Lemma 3, means that if $\left|E+\langle q / r\rangle_{q}\right|<s+r$ then E contains nonzero elements of $\langle q / r\rangle$. But we need more than that. Actually we need that the members of $E \cap\langle q / r\rangle$ should generate the whole subgroup $\langle q / r\rangle_{q}$. This happens if and only if $\operatorname{gcd}(q, E \cap\langle q / r\rangle)=q / r$.

Lemma 4. If E does not satisfy M.C. in J_{q}, then there is a divisor r of q such that
(i) $\left|E_{q / r}\right| \leqq 1+(s-1) / r$ and (ii) $\operatorname{gcd}(q, E \cap\langle q / r\rangle)=q / r$.

Proof. There is, by Lemma 2 (ii), some divisor ρ of q such that $\left|E_{q / \rho}\right| \leqq$ $1+(s-1) / \rho$. Clearly, $\operatorname{gcd}(q, E \cap\langle q / \rho\rangle)=h q / \rho$ where h is some divisor of ρ. We denote $r=\rho / h$ and intend to prove that r satisfies arguments (i) and (ii).

We first claim that $\left|E_{q / r}\right|=\left|E_{h q / \rho}\right| \leqq 1+h\left(\left|E_{q / \rho}\right|-1\right)$. Indeed, there are at most h different elements in $E_{h q / \rho}$, having the same nonzero residue $\bmod q / \rho$, whereas those elements of E which divide q / ρ, divide $h q / \rho$ too, and therefore contribute only one member to $E_{h q / \rho}$.

Now we obtain:

$$
\begin{aligned}
\left|E_{q / r}\right| & \leqq 1+h\left(\left|E_{q / \rho}\right|-1\right) \leqq 1+(\rho / r)(1+(s-1) / \rho-1) \\
& =1+(s-1) / r,
\end{aligned}
$$

which proves (i). Since (ii) is obvious, the lemma is completed.
Lemma 5. Let $r \rho$ be a divisor of q satisfying:
(i) $\operatorname{gcd}(q, E \cap\langle q / r\rangle)=q / r \quad$ and \quad (ii) $\operatorname{gcd}\left(q / r, E_{q / r} \cap\langle q / r \rho\rangle\right)=q / r \rho$,

Then
$\operatorname{gcd}(q, E \cap\langle q / r \rho\rangle)=q / r \rho$.
Proof. Let t be a divisor of $\operatorname{gcd}(q, E \cap\langle q / r \rho\rangle)$. Then $t \mid \operatorname{gcd}(q, E \cap\langle q / r\rangle)$, hence by (i) $t \mid(q / r)$. It follows that t divides any integer if and only if it divides its residue $\bmod q / r$. In particular, the assumption $t \mid(E \cap\langle q / r \rho\rangle)$ implies that $t \mid\left(E_{q / r} \cap q / r \rho\right)$ so that by (ii) we have $t \mid(q / r \rho)$. On the other hand
$(q / r \rho) \mid \operatorname{gcd}(q, E \cap\langle q / r \rho\rangle)$, hence $\operatorname{gcd}(q, E \cap\langle q / r \rho\rangle)=q / r \rho$.
Lemma 6. Let r be a maximal divisor of q satisfying:
(i) $\left|E_{q / r}\right| \leqq 1+(s-1) / r$ and (ii) $\operatorname{gcd}(q, E \cap\langle q / r\rangle)=q / r$.

Then $E_{q / r}$, being a subset of $J_{q / r}$ satisfies M.C.
Proof. Suppose that the lemma is not true. Then, by applying Lemma 4 to $E_{q / r}$ we obtain for some divisor ρ of q / r :
(a) $\left|\left(E_{q / \tau}\right)_{q / \tau \rho}\right| \leqq 1+\left(\left|E_{q / \tau}\right|-2\right) / \rho$,
and
(b) $\operatorname{gcd}\left(q / r, E_{q / r} \cap\langle q / r \rho\rangle\right)=q / r \rho$.

Note that the role of q in Lemma 4 is taken here by q / r, and that of r is taken by ρ. Thus, $\left|E_{q / r}\right|-1$ comes here instead of s there.

We shall prove that r satisfies assumptions (i) and (ii) of the lemma, in contradiction to the maximality of r.

By (a) and (i) we have $\left|E_{q / \tau \rho}\right| \leqq 1+(1+(s-1) / r-2) / \rho<1+$ $(s-1) / r \rho$. On the other hand, assumption (ii) of this lemma, together with (b) imply, by Lemma 5 , that $\operatorname{gcd}(q, E \cap\langle q / r \rho\rangle)=q / r \rho$.

Lemma 7. Let $D=\left\{0, d_{1}, d_{2}, \ldots, d_{\mu}\right\}$ be a subset of J_{r}, such that $\operatorname{gcd}(r, D)=1$. Then $\sum^{r-\mu} D=J_{r}$.

Proof. We argue that if $\sum^{\alpha} D \neq J_{\tau}$ then $\sum^{\alpha} D \neq \sum^{\alpha+1} D$. Indeed, $\sum^{\alpha+1} D=$ $\sum^{\alpha} D \neq J_{r}$ implies that D is not a generating subset of J_{r}, in contradiction to the assumption $\operatorname{gcd}(r, D)=1$. The lemma follows immediately.

Lemma 8. Let $F=\left\{f_{0}, f_{1}, \ldots, f_{t}\right\}$ be a set of positive integers such that $\operatorname{gcd}(F)=1$ and $q \in F$. Let X be a set of nonnegative integers, all of them expressible as $\sum_{i=0}^{t} \alpha_{i} f_{i}, \alpha_{i}>0$, such that $X_{q}=J_{q}$. Then

$$
\phi(F) \leqq \max X-q+1
$$

Proof. Let y be an integer, $y \geqq \max X-q+1$. By assumption, there is an integer $x \in X$ satisfying $x \equiv y(\bmod q)$. Since $y+q>\max X$, we have $x \leqq y$. Hence, $y=\beta q+x, \beta \geqq 0$ and since $x=\sum_{0}^{s} \alpha_{i} f_{i}$, the lemma follows.

3. Proof of the main theorems.

Theorem 1. Denote $\left\{a_{0}, \ldots, a_{s}\right\}=A$, and consider the subset A_{n} of J_{n}. The proof breaks down into two cases.

Case $I . A_{n}$ satisfies M.C. in J_{n}. Applying Lemma 1, we deduce that $\sum^{l} A_{n}=J_{n}$, while $l=1+[(n-2) / s]$. Consequently the set

$$
X=\left\{\sum_{s=0}^{s-1} \alpha_{i} a_{i} \mid \sum_{0}^{s-1} \alpha_{i} \leqq 1+[(n-2) / s], \alpha_{i} \geqq 0\right\}
$$

satisfies $X_{n}=J_{n}$, and by Lemma 8 we obtain

$$
\begin{aligned}
\phi\left(a_{0}, \ldots, a_{s}\right) & \leqq \max X-n+1 \\
& \leqq(1+(n-2) / s)(n-1)-n+1<n^{2} / s .
\end{aligned}
$$

Case II. A_{n} does not satisfy M.C. Then, by Lemma 4 (setting $A_{n}=E$, $n=q$), there is a (maximal) divisor r of n such that

$$
\left|A_{n / r}\right| \leqq 1+(s-1) / r \quad \text { and } \quad \operatorname{gcd}\left(n, A_{n} \cap\langle n / r\rangle\right)=n / r .
$$

We rearrange the members of A according to their residues $\bmod n_{/} r$: $A=\left\{d_{1} n / r, d_{2} n / r \ldots d_{\mu} n / r, n \quad\left|b_{11}, \ldots, b_{1_{1} 1}\right| b_{21}, \ldots, b_{2 \eta_{2}}|---| b_{\theta_{1}}, \ldots, b_{\theta_{\eta}}\right\}$, so that $b_{j 1}<b_{j 2}<\ldots<b_{j \eta_{j}}$ for $1 \leqq j \leqq \theta$, and by Lemma $2, \theta=[s / r]=$ ($s-\lambda$)/r. The meaning of μ and λ here, is the same as in Lemma 4: $\lambda=$ $s-r[s / r], \mu+1=\left|A_{n} \cap\langle n / r\rangle\right|$.

Let B denote the subset $\left\{d_{1} n / r, \ldots, d_{\mu} n / r, n, b_{11}, b_{21}, \ldots, b_{\theta 1}\right\}$ of A. Our purpose is to establish $\phi(B) \leqq\left[n^{2} / s\right]$, for $n \geqq s(s-3)$.

Consider the two sets:

$$
X=\left\{\sum_{1}^{\theta} \beta_{j} b_{j 1} \mid \sum_{1}^{\theta} \beta_{j} \leqq 1+[(n / r-2) / \theta], \beta_{j} \geqq 0\right\}
$$

and

$$
Y=\left\{\sum_{1}^{\mu} \delta_{i} d_{i} n / r \mid \sum_{1}^{\mu} \delta_{i} \leqq r-\mu, \delta_{i} \geqq 0\right\}
$$

We argue that $X_{n / r}=J_{n / r}$ and $Y_{n}=\langle n / r\rangle_{n}$.
Indeed, by Lemma $6, A_{n / r}$ satisfies M.C. in $J_{n / r}$ and by Lemma 1 this implies that $\sum^{l} A_{n / r}=J_{n / r}$ while $l=1+[(n / r-2) / \theta]$. Since obviously $X_{n / r}=\sum^{l} A_{n / r}$, we have proved $X_{n / r}=J_{n / r}$.

To prove $Y_{n}=\langle n / r\rangle_{n}$, it is enough to prove that $\sum^{r-\mu} D=J_{r}$, where $D=\left\{0, d_{1}, \ldots, d_{\mu}\right\}$. But this is certainly true by Lemma 7 , because $\operatorname{gcd}(r, D)=1 /(n / r) \operatorname{gcd}\left(n, A_{n} \cap\langle n / r\rangle\right)=1$.

Next, since X represents all residues $\bmod n / r$ and Y represents all multiples of $n / r \bmod n$, we gather that $X+Y$ represents all residues $\bmod n$. Applying Lemma 8, we find $\phi(B) \leqq \max X+\max Y-n+1=[1+(n / r-2) / \theta]$ $\left(\max _{1 \leqq j \leqq \theta} b_{j 1}\right)+(r-\mu)\left(\max _{1 \leqq i \leqq \mu} d_{i}\right) n / r-n+1$. Since $b_{j k} \leqq b_{j(k+1)}-n / r$ we have, by Lemma 3 (ii), $b_{j 1} \leqq(n-1)-(r-\mu+\lambda-1) n / r=(\mu-$ $\lambda+1) n / r-1$. On the other hand, $\max d_{i} \leqq r-1$ and $\theta=(s-\lambda) / r$ so that

$$
\begin{aligned}
\phi(B) \leqq & (1+(n-2 r) /(s-\lambda))((\mu-\lambda+1) n / r-1) \\
& \quad+(r-\mu)(r-1) n / r-n+1 \\
< & (1+(n-2 r) /(s-\lambda))(\mu-\lambda+1) n / r \\
& \quad+(r-\mu)(r-1) n / r-n=f(\lambda) .
\end{aligned}
$$

Now, remember that by Lemma 4 and Lemma 2 (iii), $1 \leqq \lambda \leqq \mu<r<s$, hence $f^{\prime}(\lambda)=-(n / r)\left(1+(n-2 r)(s-\mu-1) /(s-\lambda)^{2}\right)<0$. Thus, $f(\lambda)$ decreases and

$$
\phi(B)<f(\lambda) \leqq f(1)=((n-2 r) \mu /(s-1)+(r-\mu)(r-2)) n / r=g(\mu)
$$

$g(\mu)$ is linear and $1 \leqq \mu \leqq r-1$. It decreases if and only if

$$
(n-2 r) /(s-1) \leqq r-2 .
$$

In this case, we have for $n \geqq s(s-3)$:

$$
\begin{aligned}
\phi(B)<g(1) & =((n-2 r) /(s-1)+(r-1)(r-2)) n / r \\
& \leqq((r-2)+(r-1)(r-2)) n / r \\
& =(r-2) n \leqq(s-3) n \leqq n^{2} / s .
\end{aligned}
$$

Otherwise, $g(\mu)$ increases and $\phi<g(r-1)=((n-2 r)(r-1) /(s-1)+$ $(r-2)) n / r$.

There are two cases now to be considered. If $s / 2 \leqq r \leqq s-1$ then

$$
\phi(B)<\frac{(n-2 r) n}{s-1} \cdot \frac{(r-1)}{r}+n<\frac{(n-2) n}{s-1} \cdot \frac{(s-1)}{s}+n=n^{2} / s .
$$

Otherwise $r \leqq(s-1) / 2$ and then:

$$
\begin{aligned}
\phi(B)<\frac{n^{2}}{s-1} \cdot \frac{r-1}{r} & +\frac{r-2}{r} n \leqq \frac{n^{2}}{s-1} \cdot \frac{(s-1) / 2-1}{(s-1) / 2} \\
& +\frac{(s-1) / 2-2}{(s-1) / 2} n<\frac{n^{2}}{s-1} \cdot \frac{s-2}{s}+\frac{s-5}{s-1} n<\frac{n^{2}}{s}
\end{aligned}
$$

where the last inequality holds for $n>s(s-5)$.
Since $\phi(A) \leqq \phi(B)$, the proof is completed.
Theorem 2. Let A denote the set $\left\{a_{0}, \ldots, a_{s}\right\}$ and $A^{\prime}=\left\{a_{0}, \ldots, a_{s-u}\right\}$. By Lemma 2 (iv), $A_{a_{0}}$ satisfies M.C. in $J_{a_{0}}$. Hence, by Lemma 1:

$$
\left|A_{a_{0}}^{\prime}+\sum^{l-1} A_{a_{0}}\right| \geqq \min \left(a_{0},\left|A_{a_{0}}^{\prime}\right|+(l-1) s\right)=\min \left(a_{0}, l s-u+1\right)
$$

We choose l, u such that $0 \leqq u<s$ and $a_{0}=l s-u+1$. Then

$$
l=\left(a_{0}-1+u\right) / s=\left[\left(a_{0}-2+s\right) / s\right] .
$$

Now the set $X=A^{\prime}+\sum^{l-1} A$ satisfies $X_{a_{0}}=J_{a_{0}}$, and max $X=a_{s-u}+$ $(l-1) a_{s} \leqq a_{s}-u+(l-1) a_{s}=l a_{s}-u$. Hence, by Lemma 8,

$$
\begin{aligned}
\phi\left(a_{0}, \ldots, a_{s}\right) & \leqq l a_{s}-u-a_{0}+1=a_{s}\left(a_{0}-1+u\right) / s-\left(a_{0}-1+u\right) \\
& =\left(\left(a_{0}-1+u\right) / s\right)\left(a_{s}-s\right)=\left[\left(a_{0}-2+s\right) / s\right]\left(a_{s}-s\right) .
\end{aligned}
$$

The proof is now completed.
The assumptions of Theorem 2 are easily checked. Yet there are certain cases in which these assumptions are automatically fulfilled. The case $s=2$ has already been mentioned. Another interesting case is the following

Corollary. Let $a_{0}<a_{1}<\ldots<a_{s}$ be relatively prime positive integers such that $a_{0} \geqq \frac{2}{3} a_{s}$. Then:

$$
\phi\left(a_{0}, \ldots, a_{s}\right) \leqq\left[\left(a_{0}-2+s\right) / s\right]\left(s_{s}-s\right)
$$

Proof. Let A denote the set $\left\{a_{0}, \ldots, a_{s}\right\}$. Clearly $\left|A_{a_{0}}\right|=|A|=s+1$, thus satisfying the first assumption of Theorem 2. Using Lemma 3, we shall prove that $A_{a_{0}}$ satisfies M.C. in $J_{a_{0}}$.

Suppose that this is not true. Then we have r, μ, λ exactly as in Lemma 3. Then:

$$
A=\left\{a_{0}, a_{0}+d_{1} a_{0} / r, \ldots, a_{0}+d_{\mu} a_{0} / r, b_{1}, b_{2}, \ldots, b_{s-\mu}\right\}
$$

where $b_{1}<b_{2}<\ldots<b_{s-\mu}$ are the non-multiples of a_{0} / r in A.

Applying Lemma 3 we have:

$$
b_{1} \leqq\left(a_{s}-r-\mu+\lambda-1\right) a_{0} / r \leqq a_{s}-(r-\mu) a_{0} / r .
$$

Since $a_{0} \leqq b_{1}$ this implies $a_{0}<a_{s}-(r-\mu) a_{0} / r$. On the other hand, clearly: $a_{0} \leqq a_{s}-\mu a_{0} / r$. Summing these inequalities yields: $2 a_{0}<2 a_{s}-a_{0}$, hence $a_{0}<\frac{2}{3} a_{s}$ which contradicts the assumptions.

Consequently, $A_{a_{0}}$ satisfies M.C., and by Theorem 2, the proof is completed.
Proof of Theorem 3. As before, $A=\left\{a_{0}, a_{1}, a_{2}, a_{3}\right\}$. The proof breaks down into 7 cases:

Case 1. $a_{0}>n / 2$ and $A_{a_{0}}$ satisfies M.C. in $J_{a_{0}}$. Then, by Theorem 2

$$
\begin{aligned}
\phi(A) & \leqq\left[\left(a_{0}+1\right) / 3\right]\left(a_{3}-3\right) \\
& \leqq[(n-2) / 3](n-3) \leqq(n-2)(n-3) / 3 .
\end{aligned}
$$

Case 2. $a_{0}>n / 2$ and $A_{a_{0}}$ does not satisfy M.C. Then Lemma 2(iii) implies $r=2$ and Lemma 3(i) implies $\lambda=\mu=1$, where r, μ, λ are exactly as in Lemmas 2 and 3. Applying Lemma 3(ii), we find $A=\left\{a_{0}, 3 a_{0} / 2, b, b+a_{0} / 2\right\}$. We argue that $\phi(A) \leqq \phi\left(a_{0}, 3 a_{0} / 2, b\right) \leqq a_{0}+\phi\left(a_{0} / 2, b\right)$.

Indeed, let x satisfy $x \geqq a_{0}+\phi\left(a_{0} / 2, b\right)$. Then $x=a_{0}+\alpha\left(a_{0} / 2\right)+\beta b=$ $\alpha_{1} a_{0}+\alpha_{2}\left(3 a_{0} / 2\right)+\beta b$, where α_{2} is 1 or 0 , according to whether α is odd or even.

Now, observe that $\frac{1}{2} a_{0}+b=n$, so that we have,

$$
\begin{aligned}
\phi(A) \leqq a_{0}+\left(\frac{1}{2} a_{0}-1\right)(b-1) & =\left(\frac{1}{2} a_{0}-1\right)(b+1)+2<\frac{1}{2} a_{0} b-2 \\
& =\frac{1}{2} a_{0}\left(n-\frac{1}{2} a_{0}\right)-2=f\left(a_{0}\right) .
\end{aligned}
$$

$f\left(a_{0}\right)$ increases for $a_{0} \leqq n$, but we have $a_{0} \leqq \frac{2}{3}(n-1)$, because $3 a_{0} / 2 \in A$. Hence,

$$
\phi(A)<f\left(\frac{2}{3}(n-1)\right)=2 / 9(n-1)^{2}-2<(n-2)(n-3) / 3
$$

for $n \geqq 6$.
Case 3. $a_{0}=\frac{1}{2} n$. Then $\left|A_{a_{0}}\right|=3$ and applying bound (5) (see introduction), we get for $n \geqq 5$:

$$
\begin{aligned}
\phi(A) & =\phi\left(a_{0}, a_{1}, a_{2}\right) \leqq\left[a_{0} / 2\right]\left(a_{2}-2\right) \\
& \leqq[n / 4](n-3) \leqq(n-2)(n-3) / 3 .
\end{aligned}
$$

Case 4. $\frac{1}{3}(n+1) \leqq a_{0} \leqq \frac{1}{2}(n-1)$, and $\left|A_{a_{0}}\right| \geqq 3$. Then applying again bound (5) we have:

$$
\phi(A) \leqq \frac{1}{4}(n-1)(n-2) \leqq(n-2)(n-3) / 3, \quad \text { for } n \geqq 6 \text {. }
$$

Case 5. $\frac{1}{3}(n+1) \leqq a_{0} \leqq \frac{1}{2}(n-1)$ and $\left|A_{a_{0}}\right|=2$. Let a_{0}, b be the two generating members of A. Then the other two must belong to the set $\left\{2 a_{0}, a_{0}+b, 2 b\right\}$. Hence, $b \leqq n-a_{0}$, therefore for $n \geqq 6$,

$$
\begin{aligned}
\phi(A) & =\phi\left(a_{0}, b\right)=\left(a_{0}-1\right)(b-1) \\
& \leqq\left(a_{0}-1\right)\left(n-a_{0}-1\right) \leqq \frac{1}{4}(n-2)^{2} \leqq(n-2)(n-3) / 3 .
\end{aligned}
$$

Case 6. $a_{0}=\frac{1}{3} n$. Then by Schur's bound (1), $\phi(A)=\phi\left(\frac{1}{3} n, a_{1}, a_{2}\right) \leqq$ $\left(\frac{1}{3}(n-1)\right)(n-2)=(n-2)(n-3) / 3$.

Case 7. $a_{0} \leqq \frac{1}{3}(n-1)$. Again by (1), $\phi(A) \leqq\left(\frac{1}{3}(n-1)-1\right)(n-1)<$ $(n-2)(n-3) / 3$.

To complete the proof it should be noted that the only set for $n=5$ is $\{2,3,4,5\}$ and $\phi(2,3,4,5)=2=2 \cdot 3 / 3$.

I should like to thank Professor M. Lewin for his help.

References

1. A. Brauer, On a problem of partitions, Amer. J. Math. 64 (1942), 299-312.
2. P. Erdös and R. L. Graham, On a linear diophantine problem of Frobenius, Acta Arith. 21 (1972), 399-408.
3. M. Lewin, A bound for a solution of a linear diophantine problem, J. London Math. Soc. 6 (1972), 61-69.
4. H. Mann, An addition theorem for sets of elements of abelian groups, Proc. Amer. Math. Soc. 4 (1953), 423.
5. J. B. Roberts, Note on linear forms, Proc. Amer. Math. Soc. 7 (1956), 465-469.
6. Y. Vitek, Bounds for a linear diophantine problem of Frobenius, J. London Math. Soc. (2) 10 (1975), 79-85.

Israel Institute of Technology,
Haifa, Israel

[^0]: Received January 9, 1976 and in revised form, June 18, 1976.

