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Teaching Note

An odd fact about Cayley tables

All of the current Further Mathematics specifications for students in
England have an optional paper that contains a brief introduction to group
theory. Typically, these get as far as a statement (if not a proof) of
Lagrange's theorem. Apart from the usual elementary results (such as
uniqueness of identity and inverses, solutions of equations and the Latin
square property of Cayley tables), it is relatively hard to give significant
results at this introductory level. I thus offer the following little theorem
stressing that, although the result is in the group theory literature, it does not
seem to be widely known at school level. In what follows, groups are
written multiplicatively with identity element . By the diagonal of the
Cayley table of a group, we will always mean the leading diagonal,
consisting of the squares of the elements of the group.

e

Theorem: The diagonal of the Cayley table of a finite group  contains all
the elements of  if, and only if,  has odd order.
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Proof: Note that, because  is finite, the statement that the diagonal of the
Cayley table contains all the elements of  is equivalent to saying that there
are no repeated elements on the diagonal.
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First, suppose that  is odd. Then, by a standard corollary
to Lagrange's theorem,  or  (*) for all elements  in . If
two diagonal elements in the Cayley table of  are the same, we would have

 with . But then (*) gives the contradiction .

|G| = 2k − 1
x2k − 1 = e x2k = x x G

G
x2 = y2 x ≠ y x = (x2)k = (y2)k = y

Conversely, suppose that  is even. We will show that  has an
element of order 2, so that  appears on the diagonal of the Cayley table at
least twice. To see this, we list the elements of  as follows. First list , the
set of elements satisfying . Stop if this exhausts ; otherwise there is
an element  outside  with . Then either , or
there is another element  satisfying  with  easily checked to
be disjoint from . Continuing in this way, we end up listing the
elements of  as  together with disjoint 2-element sets of the form .
Since  is even,  is then even, which suffices to establish our claim.
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G A
x2 = e G

x A x ≠ x−1 G = A ∪ {x, x−1}
y y ≠ y−1 {y, y−1}

A ∪ {x, x−1}
G A {x, x−1}

|G| |A|
An equivalent way of stating the result is that a finite group  has odd

order if, and only if, every element of  is a square. For a finite group of
even order, the diagonal of the Cayley table comprises all elements of odd
order,  repeated for each of the even number of elements of order 2, and the
squares of elements with orders which are multiples of 4.
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The second half of the proof is a pretty result in its own right and
generalises as Cauchy's theorem that, if the prime  divides , then  has
an element of order . This has been given a delightful, short, elementary
proof by James McKay in [1].
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Finally, we should resist any urge to call this little theorem the odd-
order theorem: this appellation is reserved for the famous Feit-Thompson
theorem with its notoriously long and intricate proof.
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