
Forum of Mathematics, Sigma (2020), Vol. 8:e47, 1–25

doi:10.1017/fms.2020.40

RESEARCH ARTICLE

Product formalisms for measures on spaces with

binary tree structures: representation, visualization, and

multiscale noise

Devasis Bassu1, Peter W. Jones2, Linda Ness3 and David Shallcross4

1Blackboard Insurance, Bedminster, NJ, US; E-mail: devasis_bassu@hotmail.com.
2Yale University, New Haven, CN, US; E-mail: peterwjones@comcast.net.
3Rutgers University, New Brunswick, NJ, US; E-mail: nesslinda@gmail.com.
4Perspecta Labs, Basking Ridge, NJ, US; E-mail: david.shallcross@perspecta.com.

Received: 10 April 2017; Revised: 14 February 2020; Accepted: 17 March 2020

2020 Mathematics Subject Classification: Primary – 28-02; Secondary – 62-07

Keywords and phrases: measures; dyadic sets; quasi-conformal mappings; weights; multiscale noise

Abstract

In this paper, we present a theoretical foundation for a representation of a data set as a measure in a very large

hierarchically parametrized family of positive measures, whose parameters can be computed explicitly (rather than

estimated by optimization), and illustrate its applicability to a wide range of data types. The preprocessing step then

consists of representing data sets as simple measures. The theoretical foundation consists of a dyadic product formula

representation lemma, and a visualization theorem. We also define an additive multiscale noise model that can be

used to sample from dyadic measures and a more general multiplicative multiscale noise model that can be used to

perturb continuous functions, Borel measures, and dyadic measures. The first two results are based on theorems in

[15, 3, 1]. The representation uses the very simple concept of a dyadic tree and hence is widely applicable, easily

understood, and easily computed. Since the data sample is represented as a measure, subsequent analysis can exploit

statistical and measure theoretic concepts and theories. Because the representation uses the very simple concept of a

dyadic tree defined on the universe of a data set, and the parameters are simply and explicitly computable and easily

interpretable and visualizable, we hope that this approach will be broadly useful to mathematicians, statisticians,

and computer scientists who are intrigued by or involved in data science, including its mathematical foundations.

Contents

1 Introduction 2

2 Related work 3

3 Product formula representation of measures on dyadic sets 4

3.1 Dyadic sets and product coefficient parameters . 4

3.1.1 Product coefficients for measures on general trees 5

3.2 Dyadic product formula representation lemma . 6

3.3 Exploiting product coefficient parameters to compute moments 8

3.4 Examples of dyadic structures and product formula measures 9

3.4.1 Dyadic sets and ordered binary feature functions 9

3.4.2 Borel measures on the unit hypercube . 10

© The Author(s), 2020. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative

Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in

any medium, provided the original work is properly cited.

https://doi.org/10.1017/fms.2020.40 Published online by Cambridge University Press

doi:10.1017/fms.2020.40
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/fms.2020.40&domain=pdf
https://doi.org/10.1017/fms.2020.40

2 Devasis Bassu et al.

3.4.3 The product formula representation of a Dirac measure on the unit interval . . 10

3.4.4 Product formula representations for the weighted sum of Dirac measures . . . 11

3.5 Exploiting product coefficient representations in data analysis 11

3.5.1 Wind example: color displays of product coefficients 12

3.5.2 IP data example: distinguishing and classifying data sources using product

coefficients . 13

4 Measure visualization 16

4.1 Background on welding curves . 16

4.2 Measure visualization theorem . 17

4.3 Example: pseudo-welding curves for LiDAR data counting measures 19

5 Multiscale noise models 20

5.1 An additive multiscale noise model for dyadic measures 21

5.2 A multiplicative multiscale noise model . 22

6 Summary 24

1. Introduction

A common fundamental step in data analysis is representation of a data sample by a function or

probability distribution. Typically, a parametrized family of functions or probability distributions is

selected, and the parameters for functions or probability distributions in the family that optimally fits the

data are computed or learned using optimization. Ideally, the selected family of functions or probability

distribution will be based on a rich algorithmizable mathematical theory. However, for many real-world

data sets, the families that currently have the richest algorithmizable theories may impose too many

unwarranted assumptions on the data sample and domain. Effectively, these families are too small to

realistically model the data. Our point of view is that many more broadly applicable, theoretically based,

algorithmizable representations can be mined from mathematics. Ideally, the parameters will uniquely

determine the representations and be interpretable by the associated theory. Using such representations,

the hope is that reproducibility of the data analysis will be possible within the theory, apart from ad

hoc preprocessing before the representation step and translation from the theoretical language of the

representation into the language of the data domain.

In this paper, we present a theoretical foundation for a representation of a data set as a measure in a

very large hierarchically parametrized family of positive measures, whose parameters can be computed

explicitly (rather than estimated by optimization), and illustrate its applicability to a wide range of

data types. The preprocessing step then consists of representing the data set as simple measures. The

representation uses the very simple concept of a dyadic tree and hence is widely applicable, easily

understood, and easily computed. Since the data sample is represented as a measure, subsequent analysis

can exploit statistical and measure theoretic concepts and theories. Since the representation uses the

very simple concept of a dyadic tree defined on the universe of a data set, and since the parameters are

simply and explicitly computable and easily interpretable and visualizable, we hope that this approach

will be broadly useful to mathematicians, statisticians, and computer scientists who are intrigued by or

involved in data science, including its mathematical foundations.

We focus on positive measures defined on dyadic sets, which are sets with an ordered binary tree

of subsets. An example is the partition of the unit interval into dyadic subintervals. The measures

are defined on the sigma algebra generated by the subsets in the binary tree. We present theoretical

results based on theorems in [15, 3, 1] to obtain a dyadic product formula representation lemma and

a visualization theorem. We also define an additive multiscale noise model for dyadic measures and

a general multiplicative multiscale noise model. The dyadic product formula representation lemma

provides an explicit set of product coefficient parameters that are sufficient to characterize measures on

dyadic sets. The visualization theorem shows that measures whose product coefficients satisfy a mild

condition can be represented by plane Jordan curves and characterizes the uniqueness of the representing

curves.

https://doi.org/10.1017/fms.2020.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.40

Forum of Mathematics, Sigma 3

Our first contribution is to formulate the existing mathematical results in terms of a common set of

statistical parameters, the product coefficient parameters. Our theorems then provide a mathematical

basis for a new algorithmizable multiscale methodology for representation of a broad class of real-

world data sets as measures and for representation of these measures as Jordan plane curves, enabling

visualization of the data. Our additive noise model enables sampling from the space of dyadic measures,

given a particular dyadic measure, and could potentially be the basis for defining a hypothesis test

for dyadic measures. Our definition of a multiplicative multiscale noise function is self-contained

and explicit. It enables n perturbation of continuous functions, dyadic measures, and Borel measures.

Representation, visualization, and noise models are fundamental problems in data analysis; they typically

are not addressed by a single mathematically based approach.

Our second contribution is illustrating the application of the methodology in several applications to

real-world network and sensor data. The explicit formulas for the representation and noise parameters

imply that the representation and the multiscale noise models are easily computable from the prepro-

cessed data. The normalized nature of the parameters implies that elementary visualizations of the

parameters are easily constructed and curve visualizations are easily approximated. The applications

are intended to illustrate the utility and practicality of the methodology for supervised and unsupervised

machine learning on a wide range of real-world data types.

We hope that this paper will be useful to mathematicians, statisticians, and computer scientists who

are intrigued by or involved in either fundamental mathematical principles for data science, data science

applications, or both, and we have included references to both types of related work.

The outline of the paper is as follows: Section 2 summarizes related work; Section 3 defines, proves,

and illustrates the product formula representation for measures on dyadic sets; Section 4 presents and

proves the measure visualization theorem and illustrates its application; Section 5 defines the additive and

multiplicative multiscale noise models and formulates their basic properties; and Section 6 summarizes

the results.

2. Related work

The dyadic product representation was invented by Alfred Haar and used in 1910 to show that for !2

functions the corresponding Haar martingale converges almost everywhere. A recent use of the dyadic

product formula (that is, using Haar’s methods) was made explicit in [15] .

The multiscale representation of positive measures provided by the dyadic product formula represen-

tation is reminiscent of wavelet representation of square integrable functions. The key differences are

that it applies to measures on dyadic sets, provides a multiplicative representation of positive measures

parametrized by a normalized set of multiscale parameters, and applies to a broader class of measures

than measures determined by square integrable functions.

Representation theorems such as the universal approximation theorem [20, 14] provide the early

theoretical basis for deep learning [18]. These theorems prove that feedforward networks can approxi-

mate Borel measurable functions to specified levels of accuracy. We remark that the class of measures

representable by dyadic product formula representations includes Borel measures and even Dirac delta

Borel measures. Deep learning exploits (and learns) deep general tree structures to achieve efficiency of

representation of functions. See [18] for a discussion of and references to this research area. The param-

eters in deep learning are typically computed from a data sample via gradient descent optimization to

minimize a loss function on the parameter space. Deep invariant scattering convolution networks [8, 9]

exploit wavelets and scattering transforms [27] to compute locally translation-invariant representations

of signal data (for example, images) stable to local deformation. The parameters in the dyadic prod-

uct representation are explicitly computed via a simple formula from the values of the measure on the

tree-structured set on the universe from which the data was sampled. Hence they appear to be simply

interpretable. Other representations computed without optimization include diffusion maps [11, 12] and

Laplace eigenmaps [5]. Both of these are nonlinear dimension-reduction representations related to man-

ifold learning. They require computation of eigenvalues and eigenvectors. Techniques for approximating

https://doi.org/10.1017/fms.2020.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.40

4 Devasis Bassu et al.

the most significant eigenvalues and eigenvectors from samples include [16, 23]. A universal approxi-

mation theorem for functions on manifolds using four-layer neural networks has also been proved [36].

Dyadic sets can equivalently be described as sets on which an ordered set of binary-valued feature

functions have been defined. The topology of the support of measures on these sets can be characterized

using homological dimensions because the binary features and a measure determine a simplicial complex

[31].

The vocabulary of a text data set provides a rich real-world example of binary features. Recent

progress in text analysis [35, 26, 17] has focused on algorithms for computing vector representations

of words in the vocabulary of a large set of sequences of words (for example, sentences), where the

dimensions of the vectors are much lower than the size of the vocabulary. These low-dimensional

representations have been experimentally shown to be superior to previous methods for binary word

features because semantically meaningful analogies are represented as simple linear relations.

Our visualization theorem in Section 4.2 exploits results [3, 1] from the theory of quasi-conformal

mapping to prove that measures with mild constraints on their product coefficient parameters can be

visualized as Jordan plane curves that are welding curves. In [29], a relationship between the 2� shape

classes of infinitely smooth Jordan curves and the diffeomorphism classes of their welding maps is

shown. Our visualization theorem applies to a much larger class of measures than that determined by

the shape classes of infinitely smooth Jordan curves.

Multiplicative models for chaos are defined in [28, 21, 22]. They perturb Lebesgue measure. Our

multiplicative noise model is explicitly defined and can be used for controlled perturbation of continuous

functions, dyadic measures, and Borel measures. White noise is additive and related to Brownian motion.

Recent work [19] provides an exposition of Lévy’s formulation of Brownian motion in terms of explicit

dyadic multiscale formalisms. Section III Part B of [19] discusses the relation to white noise, pointing

out that it is a distribution, not a measure. Our additive noise model randomly perturbs the product

coefficients for dyadic measures, producing other dyadic measures.

3. Product formula representation of measures on dyadic sets

3.1. Dyadic sets and product coefficient parameters

We define a dyadic set - to be a set that has an ordered binary set system consisting of disjoint left and

right child subsets for each parent set, whose union is the parent set. The set - is a parent set and the

root of the ancestor tree. A binary set system can be finite or infinite. A binary set system determines a

binary tree whose nodes are the sets in the binary set system. Sometimes we will refer to the sets in the

binary set system as the dyadic (sub)sets of - . A positive measure ` on a sigma algebra generated by a

binary set system for the dyadic set - is determined by an additive non-negative function on sets in the

binary set system with the constraint `(-) > 0. In other words, the measure of the left child !(() plus

the measure of the right child '(() is the measure of their parent (.

`(!(()) + `('(()) = `(()

Assume we are working (for example) on - = [0, 1], and (is one of the intervals arising. If (= [0, 1],
we define

!(() = [0, (0 + 1)/2) (1)

and

'(() = [(0 + 1)/2, 1) (2)

unless 1 = 1, when '(() = [0 + 1/2, 1]. This is required in order for a given function or measure to be

properly reproduced.

Thus positive measures never take negative values on sets in the sigma algebra generated by the sets

in the binary set system; but even if the measures of all sets in an infinite binary set system are positive,

https://doi.org/10.1017/fms.2020.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.40

Forum of Mathematics, Sigma 5

there may be sets in the generated sigma algebra whose measure is zero (for example, the measure of

a point in the unit interval is zero even though the measures of all of the dyadic intervals are positive).

This is because the sigma algebra contains all sets generated from sets in the binary set system by

countable union, countable intersection, and complementation. If the total volume of the measure is 1,

the measure determines a probability distribution on the sigma algebra of sets generated by the sets in

the binary set system. The simplest such measure is the naive measure 3H that assigns 3H(-) = 1 and

assigns to the left and right children half the measure of their parent:

3H(!(()) = 1

2
3H(()

3H('(()) = 1

2
3H(().

The dyadic product formula representation for a measure ` on a dyadic set - is a product of factors

1 + 0(ℎ(, each of which is a function on - . There is one factor for each parent set ((that is, each non-

leaf set) in the binary set system. In the factor 1 + 0(ℎ(, ℎ(denotes the Haar-like function defined to

have value 1 on !((), −1 on '((), and 0 on - − (:

ℎ(= 1 >= !(() (3)

ℎ(= −1 >= '(() (4)

ℎ(= 0 >= - − (. (5)

In each factor, 0(is the product coefficient parameter defined as a solution to the following equations:

`(!(()) = 1

2
(1 + 0()`(() (6)

`('(()) = 1

2
(1 − 0()`((). (7)

A unique solution to the equations exists if `(() ≠ 0. If `(() = 0, the solution is not unique. To make

the product coefficients unique, we adopt the convention that whenever one of the parts of a binary set

has measure zero, the product coefficients for all of the descendant sets of the zero measure part have

zero product coefficients. This convention implies that if `(() = 0, the solution 0(= 0 is chosen.

The product coefficient 0(is the amount by which the relative (conditional) measure of the left part

of (exceeds the relative (conditional) measure of the right part of (. The use of relative/conditional

measure rather than absolute measure means the product coefficients are self-rescaling. The product

coefficients are bounded:

− 1 ≤ 0(≤ 1. (8)

Note that |0(| = 1 only if either ` (! (()) = 0 or ` (' (()) = 0 (but not both).

3.1.1. Product coefficients for measures on general trees

If a set - has an ordered set system with an ordered tree structure (not necessarily binary) in which the

root set is - and the child sets for a parent set are disjoint, whose union is the parent set, we will say

that the set - has a tree set system. A positive measure ` on the sigma algebra generated by the sets in

the tree set system is determined by an additive non-negative function on the sets in the tree set system.

We can define a set of = product coefficients for a parent set (, which has = children �8 , 8 = 1 . . . =, as

the solution to the system of equations

https://doi.org/10.1017/fms.2020.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.40

6 Devasis Bassu et al.

`(�8) =
1

=
(1 + G8)`((), 8 = 1 . . . =

=∑
8

G8 = 0.

If the tree is an ordered binary tree, the two product coefficients are additive inverses of each other, and

the convention we use in the previous section chooses the first one. For the remainder of the paper, we

will focus on dyadic sets.

3.2. Dyadic product formula representation lemma

Lemma 3.1 (Dyadic Product Formula Representation). Let - be a dyadic set with a binary set system

whose non-leaf sets are B. Let B= denote the non-leaf dyadic sets that are at distance at most = from

the root - of the dyadic set system.

1. If ` is a positive measure on - with product coefficients 0(, (∈ B, the weak star limit

`(-)
∏
(∈B

(1 + 0(ℎ()3H

of the partial product measures

`= = `(-)
∏
(∈B=

(1 + 0(ℎ()3H (9)

exists and

` = `(-)
∏
(∈B

(1 + 0(ℎ()3H.

2. For any assignment of parameters 0(from (−1, 1) and choice of `(-) > 0, the weak star limit

`(-)
∏
(∈B

(1 + 0(ℎ()3H

of the partial product measures

`= = `(-)
∏
(∈B=

(1 + 0(ℎ()3H

exists. The limit measure is positive on all sets (in the binary set system; its product coefficients are

the parameters 0(and its total mass (and expected value) is `(-).
3. For any assignment of parameters 0(from [−1, 1] and choice of `(-) > 0 the weak star limit

`(-)
∏
(∈B

(1 + 0(ℎ()3H

of the partial product measures

`= = `(-)
∏
(∈B=

(1 + 0(ℎ()3H

exists. The limit measure is positive; its total mass (and expected value) is `(-). If the parameters are

assigned using the convention that zero value parameters are assigned to the descendant of ‘halves’

of a binary set with zero measure, the parameters are the product coefficients.

https://doi.org/10.1017/fms.2020.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.40

Forum of Mathematics, Sigma 7

Proof. The dyadic product formula for non-negative measures using these factors appeared in [15] for

- = [0, 1] and its dyadic intervals of length 2−: , : = 0, 1, We follow their proof to show that it is

valid for the more general case of dyadic sets. Let B= denote the non-leaf dyadic sets that are at distance

at most = from the root - of the dyadic set system. We first prove the second and third parts of the

lemma. For any assignment of parameters 0(from [−1, 1], the partial product formula∏
(∈B=

(1 + 0(ℎ()3H

determines a probability measure `= on the sigma algebra determined by the dyadic set system B= and

its child nodes. Because the probability measures `= all have the same total volume, they converge in

the weak-★ sense to a probability measure ` on the original dyadic set system. And this probability

measure ` has the product formula

` =

∏
(∈B

(1 + 0(ℎ()3H,

which is infinite if the original dyadic set system tree has infinite depth. The order in the product is

assumed to be lexicographic, by depth in the tree and then left to right in the tree for each depth. Let (

denote a leaf set in B=. Then the product formula for `= implies that

`= (!(()) =
1

2
(1 + 0()`= (() (10)

`= ('(()) =
1

2
(1 − 0()`= ((). (11)

If `= (() > 0, the equations have a unique solution, so 0(is the product coefficient of `= for (. If

`= (() = 0, there is not a unique solution. We adopt the convention that when the measure of one of

the ‘halves’ of (is zero, all of the product coefficients for its descendant intervals are zero. Hence, if

`= (() = 0, this convention chooses the solution 0(= 0. For < > =, let B(
< denote the dyadic set system

consisting of (and its descendants in B at distance < − = from (. Let ?< =

∏
) ∈B(

<

(1 + 0) ℎ)) denote

the function defined by the product formula for this dyadic set system. It is a constant function on the

children of the leaves of B(
<. And let 3H(= denote the naive measure on B(

<. Then ?<3H
(
= is a probability

measure (as above), so

`< (() = `= (()
∫
(

?< dH(= = `= (().

By the argument above, the weak star limit of the product measures ?<3H
(
= exists, and the volume of (

in the limit measure `(() = `= ((). Thus

`(!(()) = 1

2
(1 + 0()`(() (12)

`('(()) = 1

2
(1 − 0()`((). (13)

This implies that for sets of positive measure, the parameters in the product formula are the product

coefficients; and for sets of zero measure, the parameters in the product formula are the product

coefficients if the solution is chosen to be zero. This proves the second and third statements in the

lemma. To prove the first part, note the partial product formula measures `= with 0(defined to be the

product coefficients of ` define measures on B= that equal the restriction of ` to B= . Arguing as above,

these partial product measures converge to a measure that equals ` on the dyadic sets that generate the

sigma algebra. �

https://doi.org/10.1017/fms.2020.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.40

8 Devasis Bassu et al.

3.3. Exploiting product coefficient parameters to compute moments

The dyadic product formula representation lemma 3.1 implies that all of the standard statistics (for

example, moments including expected values and variances, entropies, information dimensions, and the

Kullback-Leibler divergence) for a dyadic measure can be computed from the set of product coefficient

parameters and the total measure, which is the expected value of the measure.

In this section, we will show that the higher moments for a finite dyadic probability measure ` can

be computed recursively in terms of the expected value and the product coefficients. A finite probability

dyadic measure ` is simply a dyadic measure whose associated binary tree has finite depth and whose

total measure is 1. Denote the depth by = + 1. Then using the notation of the representation lemma

` = 5 · 3H, where

5 =
∏
(∈B=

(1 + 0(ℎ(),

the product involves only sets of level = because product coefficient parameters are only computed for

non-leaf nodes. Thus a finite dyadic measure is the measure defined by a random variable. For each

integer 8 ≥ 0, the 8th moment "8 of a measure defined by a random variable is the measure defined by

the 8th power of the random variable:

"8 =

∫
5 83G.

The first moment "1 = `(-) because 5 determines a probability measure. The second factor is the

8th moment of the probability measure 5 3G. We will show that the higher moments of the probability

measure ` = 5 3G can be computed recursively from the product coefficients.

On a dyadic set (that is not a leaf node set, the representation lemma 3.1 implies that 5 can be

written as

5 = (1 + 0(ℎ() · (5! (() + 5' (()), (14)

where !(() and '(() are the left and right child sets of (in the dyadic set system and 5! (() and 5' (()
are functions that are zero on the other half: that is, on '(() and !((), respectively, and hence determine

mutually singular measures. This implies that

5 8 = (1 + 0()8 · 5 8! (() + (1 − 0()8 · 5 8' (() . (15)

If !(() and '(() are not leaf node sets, (15) can be applied recursively. If !(() and '(() are leaf node

sets, 5! (() = 1 and 5' (() = 1. This process represents 5 8 as a sum of functions, one for each dyadic leaf

set, which are zero off that leaf set and constant on the leaf set. The constant value of each summand

function is the product of terms (1± 0()8 , where the sets (are the dyadic sets on the path from the root

of the tree to the node set preceding the leaf set, and where the signs are −1 if (is a left child set and

+1 if (is a right child set. The 8th moment "8 can be computed by integrating the sum of functions:

that is, by multiplying the sum of the products by 2−(=+1) , where the exponent is the depth of the dyadic

structure tree, since the measure 3G assigns this measure to the dyadic sets at that depth.

These formulas suffice to compute all of the centralized moments (for example, the variance) because

centralized moments "8,24=CA0;8I43 of 5 are defined to be

"8,24=CA0;8I43 =

∫
(5 − � (5))83G (16)

and hence are just linear combinations of moments that can be computed by the recursive formulas.

Here, � (5) = 1 because 5 is a probability measure.

The formulas obtained by the recursive procedures explicitly compute the moments of a probability

measure as polynomials of degree = in the product coefficients. The simplest application of the procedure

https://doi.org/10.1017/fms.2020.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.40

Forum of Mathematics, Sigma 9

shows that the variance of the simple measures (1 + ℎ()3G on a dyadic set (of depth 1 is 02
(
· `(()2,

so the variance of a dyadic measure is a polynomial in its expected value and the variances of the depth

1 variances of the dyadic sets at the various scales, and the product coefficient is intuitively a type

of signed standard deviation. From this intuitive point of view, dyadic measures provide a multiscale

generalization simple Gaussians that are characterized their expected value and variance.

To make the variance polynomial more concrete, note that its lowest-order term is

+0A (`)346A442 =

=∑
B=0

1

2B

∑
(∈LB

02
(, (17)

where LB is the set of scale B sets: that is, sets in the binary set system at distance B from the root -.

This quadratic term of the variance approximates the variance well only if the absolute values of all

the product coefficients are small. Formula (17) can be used as a norm for the measures and a distance

between measures with the same total measure (expected value).

3.4. Examples of dyadic structures and product formula measures

The purpose of this section is to demonstrate that product formula representations exist for broad classes

of measures and broad classes of real-world data sets. Product formula representations exist for positive

measures on dyadic sets. To illustrate the utility and ubiquity of dyadic sets, we will first show that dyadic

set structures are equivalent to sets of ordered binary feature functions. Real-world data sets are often

samples from universes on which semantically meaningful binary features are defined. Equivalently, it

is almost always possible to define a semantically meaningful dyadic structure by repeatedly breaking

a domain-dependent universe into two parts. Then, using the dyadic structure determined by the binary

digit feature functions, we will show that Borel measures on the unit hypercube have product formula

representations. Thus all functions studied in calculus determine measures on dyadic sets that have

product formula representations, including the simple step functions, unique with respect to this natural

choice of dyadic structure. Next we will show that Dirac delta functions and mixtures of Dirac delta

functions have product formula representations. These are the infinite analog of counting measures and

weighted sums of counting measures, where the counts are relative to the dyadic sets determined by

the dyadic sets or, equivalently, the binary feature function sets. Real-world data sets are finite, and

data points are often paired with a numerical observation at each data point and hence can be viewed

as mixtures of Dirac delta functions. They thus have unique product formula representations relative to

an ordered set of binary features. This includes windows of time series data using the dyadic structures

determined by binary digit feature functions.

3.4.1. Dyadic sets and ordered binary feature functions

We first show that dyadic sets are equivalent to sets with an ordered set of binary feature functions.

Assume - is a dyadic set with an ordered binary set system B consisting of sets � (=,8) at distance (that

is, level) = from the root - and position 8 = 0, 1, ..., 2= − 1 in the ordering for level =. The sets at each

level form a partition of - . Define an ordered set of binary features functions �= : - → {0, 1}, one

for each level = in the ordered binary set system, by �= (G) = 0 if G is in a left child set (that is, if x is

a member of �=,8 and 8 is even) and �= (G) = 1 if G is in a right child set (that is, if x is a member of

�=,8 and 8 is odd). Conversely, given an ordered set F of binary feature functions �=, where = ranges

from 1 to 20A3 (F), observe that for each = in the range, the vector-valued function (�1, ..., �=) takes on

2= possible values, which can be ordered lexicographically in increasing order. Define � (=,8) to be the

subset of - that (�1, ..., �=) maps to the 8th value in the ordering, where the ordering is indexed starting

at 0. Note that any ordered collection ℱ of proper subsets �8 ⊂ - , with the property that

�8 ∈ ℱ → (- − �8) ∉ ℱ, 8 = 1, 2, . . . (18)

and �0 = - determines a set of binary feature functions, namely the indicator functions for these subsets,

and hence a dyadic structure on - .

https://doi.org/10.1017/fms.2020.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.40

10 Devasis Bassu et al.

An important point is that permutations of finite subsets of the binary feature functions change the

representation of the measure (but not the measure). However, often the order of the binary features is

naturally suggested by the problem domain.

The prototypical example of a dyadic set is the closed unit interval - = [0, 1]. For - = [0, 1],
define a binary set system D consisting of the half-open dyadic intervals � (=, 8) = [82−=, (8 + 1) 2−=)
for 8 = 0, 1, . . . , 2= − 2 and the closed dyadic intervals � (=, 8) = [82−=, (8 + 1) 2−=] for 8 = 2= − 1.

Here = is any non-negative integer. This infinite collection of dyadic intervals forms a binary tree:

! (� (=, 8)) = � (= + 1, 28) and ' (� (=, 8)) = � (= + 1, 28 + 1). The corresponding set of ordered binary

feature functions are the binary digit feature functions �8 : [0, 1] → {0, 1} defined by �8 (G) equals

the 8th digit in the binary expansion of x. Here, for 1, we use the infinite binary expansion consisting of

all 1s.

The previous discussion shows that dyadic sets are simple because there is a natural mapping from

a dyadic set to the closed unit interval, with the binary feature functions mapping to the binary digit

functions. It also shows that a data set that is a subset of dyadic set, which is accompanied by numerical

observations, can be viewed as a time series on the unit interval. In fact, measures on the dyadic sets

determined by the binary feature functions determine canonical simplicial complexes [31].

3.4.2. Borel measures on the unit hypercube

A Borel measure on a topological space - is a measure defined on the sigma algebra B>A4; generated

by the open sets of -: that is, on sets generated by the operations of countably infinite unions, countably

infinite intersections, and complements of open sets.

The one-dimensional hypercube is the unit interval - = [0, 1]. The binary set system D, determined

by the binary digit functions, generates the Borel sigma algebra B>A4; via the operations of countably

infinite unions, countably infinite intersections, and complementation. Hence dyadic measures are

equivalent to Borel measures and so can be represented uniquely as product formulas with respect to

the binary set system D determined by the binary digit features.

The dyadic measure 3H for this binary set system is defined to be the restriction to ℬ of the usual

Lebesgue measure 3B on [0, 1] that measures an interval by its length

3G ((0, 1)) = 3G ([0, 1)) (19)

= 3G ((0, 1]) (20)

= 3G(([0, 1]) (21)

= 1 − 0 (22)

for 0 < 1.

One way to construct a scale = approximation to a Borel measure is to define a non-negative step

function on the dyadic sets of length 2−=−1; the product formula for this measure can be computed using

a bottom-up algorithm (for example, by averaging).

For higher-dimensional unit cubes of dimension <, a binary set system can be defined, choosing its

binary features D
9

8
to denote the 8th binary digit function for dimension 9 , where 8 ranges from 1 to =

and 9 ranges from 1 to <. This is equivalent to defining the binary set system by successively halving

the sides of each cube along the dimensions 1 to <. This binary set system generates the sigma algebra

of Borel sets on the unit cube. There are many other variants of such binary set systems for higher-

dimensional cubes (for example, permuting the orders of the dimensions), and scale = approximations

can be defined.

The product formula representation theorem for these dyadic systems can also be used to explicitly

and randomly construct Borel measures.

3.4.3. The product formula representation of a Dirac measure on the unit interval

The Dirac measure XG on [0, 1] with unit mass at G is also a measure on the Borel sigma algebra. We

obtain its product formula representation from its definition on a set of dyadic intervals D that generate

https://doi.org/10.1017/fms.2020.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.40

Forum of Mathematics, Sigma 11

the Borel sigma algebra. For a dyadic interval � = � (=, 8),

XG (�) = 1 if G ∈ � (23)

XG (�) = 0 if G ∈ �2 = [0, 1] − � . (24)

In other words, the Dirac measure is just the simplest counting measure for the set consisting of one

element G. However, it has an infinite product formula representation. For simplicity, we will assume

that G is not 1. The product coefficients for all of the dyadic intervals that do not contain G are zero, so

their factor in the product formula is 1. The product coefficients for the other dyadic intervals are either

1 or −1, depending on whether G is in the left or right half of the interval. Let 	G denote the infinite set

of dyadic intervals containing G, so

	G = {� (=, 8) = [82−=, (8 + 1) 2−=) , 8 = 5 ;>>A (2=G) , = = 0, 1, . . .} . (25)

For � = � (=, 8) ∈ 	G , we claim that the product coefficient has the formula 0� =

(
(−1) 5 ;>>A (2=+1G)

)
.

This is because 0� = 1 if G is in the left half of � and 0� = −1 if G is in the right half of �. Thus by

Lemma 2.1, the product formula representation for XG is

XG =

∞∏
==0

2=−1∏
8=0

(1 + 0� (=,8)ℎ� (=,8))3G (26)

where 0� = (−1) 5 ;>>A (2=+1G) for � = � (=, 8) ∈ 	G , and 0� = 0 for � ∉ �G .

An analogous product formula holds for Dirac measures on higher-dimensional unit cubes.

3.4.4. Product formula representations for the weighted sum of Dirac measures

A weighted sum of Dirac measures on the unit interval is just a window in a time series. The full product

formula for the sum can be computed top-down from the formula for product coefficients and the fact

that the measure of a dyadic interval in this case is just the weighted sum of the point masses in the

interval (that is, weighted counting measure). The full representation is again an infinite product, but it

can be approximated to a scale = by omitting the factors corresponding to dyadic intervals for higher

scales. For real-world data sets consisting of event occurrences or weighted event occurrences, scale =

approximations of the weighted sum of the Dirac measures are a good representation to use.

However, for real-world time series consisting of measurements at particular times, the following

method may be a more useful representation. This representation of the series as a measure consists of

choosing a scale = for approximation and computing the average of the time series on intervals of scale

= + 1. Some of these intervals may be empty, in which case a missing data rule has to be used. The

most naive missing data rule is to represent the measure of dyadic intervals containing no time series

observations as zero. (This would agree with the weighted sum of Dirac measures representation.) The

measure of a dyadic interval of scale =+1 containing time series observations is defined to be the average

of the observations in the interval multiplied by 2(−=−1) , the length of the dyadic interval. This measure

is represented by a step function of height equal to the average of the observations in the interval. We

applied this method for representing time series window observations as measures in the real-world

applications discussed in the next section.

3.5. Exploiting product coefficient representations in data analysis

Measures representing data samples from dyadic sets may be inferred by representing or approximating

the data sample as a measure and then computing its product coefficients. As discussed above, the

data samples may be preprocessed into weighted sums of Dirac measures (that is, weighted counting

measures), step functions on dyadic intervals of some scale, or possibly other types of measures. (Note

that different methods for preprocessing the data into a measure will likely result in different measures

https://doi.org/10.1017/fms.2020.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.40

12 Devasis Bassu et al.

representing the data.) Furthermore, given a set of = data samples from a dyadic set - , each of which is

represented by product coefficients ��8 = {08
(

: (∈ B}, 8 = 1, . . . =, and taking the point of view that

these are = samples of a single unknown measure `, the product coefficients �� = {0(: (∈ B} for `

can be approximately inferred simply by averaging:

0(=
1

=

(∑
8=1..=

08(

)
. (27)

Define `(-) to be the average of the sample volumes of - .

This simple rule can be used because the product coefficients are in [-1,1], so their average is also in

this interval and hence determines a measure. The product formula model for the approximation of the

measure is

`(-) =
∏
(∈�

(1 + 0BℎB)3H�. (28)

The error in this approximation depends on the dyadic sampling strategy.

The measures representing the data samples and the average measure can then be analyzed by using

their vectors of product coefficient parameters. Since the product coefficient parameters are canonically

normalized to be in the interval [−1, 1], general data analysis methods can be used to compare the

product coefficient representations of different data sets.

In the remainder of this section, we will illustrate four different types of data analyses performed

on real-world data sets using the product coefficient representation of the measures representing the

data. In the first case study, in Section 3.5.1, four days of wind time series are visually compared using

a day-wheel visualization; the differences revealed by the visualization are explained by trends at two

large scales that distinguish one pair of days from the other pair of days and that are quantified by the

product coefficients. The wind application illustrates the utility of product coefficient representations

for exploratory unsupervised data analysis. The second case study, in Section 3.5.2, illustrates how

product coefficient representations can be used to distinguish and classify measures representing data

sources. This case study uses a set of 12 dimensional network time series data sources captured

from a single port of an Internet Protocol switch over a two-week period. The product coefficient

representations are computed for daily windows. The potential feasibility of using the product coefficient

representations to distinguish and classify the sources is established by comparing six rectangular

visualizations of the product coefficient representations of the 12 average measures for each source.

Quantitative results characterizing how well the product coefficients distinguish the different sources

are obtained by applying the support vector machine classification algorithm to the product coefficient

vectors. This illustrates the use of product coefficient parameters as canonical feature vectors for machine

learning algorithms. A third case study, in Section 4.3, illustrates visualization by pseudo-welding

curves, an easily computable curve visualization technique for distinguishing measures representing

three-dimensional images. The images were obtained by remote sensing using LiDAR technology (light

detection and ranging technology).

3.5.1. Wind example: color displays of product coefficients

Product coefficients for measures representing four days of wind speed data from NREL (the National

Renewable Energy Laboratory) for a single year, a single location (in New Jersey), and a single elevation

were computed for scales 0 through 5. Figure 1 graphs the time series of wind data for the four days.

Figure 2 shows the four day-wheel visualizations of the product coefficients for each of the four daily

time series for scales 0 through 5. This visualization color codes the product coefficients using the

jet convention: product coefficients with values -1, 0, and 1 are color coded as red, green, and blue,

respectively, and the other values are coded via interpolation using the jet convention. Scale 0 coefficients

are shown in the center, and the surrounding annuli show product coefficients for scales 1 through 5.

Beginning at the upper left, the four day wheels visualize the product coefficients for wind speed time

https://doi.org/10.1017/fms.2020.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.40

Forum of Mathematics, Sigma 13

Figure 1. Time series for four days of wind speed data.

series for December 23, January 16, March 1, September 27, respectively. The January 16 and December

23 wind patterns have relatively little variation, so product coefficients are small and appear as various

shades of green. The March 1 and September 27 wind patterns are distinguished by having more wind

in the first part of the day, so the scale 0 coefficients are greater than 0 and colored blue. These two days

also have more wind in the first quarter of the day than in the second quarter of the day, so the first scale

1 coefficient is greater than 0 and shown in blue. However, these two days have somewhat less wind in

the third quarter of the day than in the fourth quarter of the day, so the second scale 1 coefficient is less

than 0 and shown as yellow and gold. The day-wheel visualizations reveal that only these high-level

trends quantified by the first few product coefficients are required to distinguish the shapes of the wind

graphs for the four days shown in Figure 1.

3.5.2. IP data example: distinguishing and classifying data sources using product coefficients

In supervised machine learning, the goal is to algorithmically define a classification function using

samples of data drawn from a set of unknown probability distributions on the same universe. The

classification functions are typically defined on a finite set of features generated from the raw data set

using domain knowledge. The measures determined by the feature vectors are typically not characterized.

Since the dyadic product representation lemma applies to all measures on a dyadic set, it is in principle

possible to characterize the measures determined by a set of feature vectors by computing the product

coefficients (to a scale appropriate for the data set) and then use the product coefficients as feature

inputs to a classification algorithm. This provides a method for automatically computing a rich set

of features sufficient to characterize the measures represented by the samples (to the scale selected).

Another challenge is classification using data from multiple sources (that is, multiple universes). If each

source universe has a dyadic structure, data samples from different universes can each be represented

as vectors of product coefficients whose values all are in the interval [0, 1]. These product coefficient

vectors can be fused by concatenation.

We demonstrated this approach on a data set consisting of Internet Protocol [13] (IP) traffic samples

corresponding to port 22 (SSH/SCP service [37]). The question was, would it be possible to construct

profiles of the daily traffic that would enable identification of the IPv4 address? In the preprocessing

step, 12 raw feature signals were computed for each IP address for each day: packets inbound (local),

packets outbound (local), bytes inbound (local), bytes outbound (local), degree inbound (local), degree

https://doi.org/10.1017/fms.2020.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.40

14 Devasis Bassu et al.

(a) December 23 (b) January 16

(c) March 1 (d) September 27

Figure 2. Day-wheel visualization of the wind speed time series.

outbound (local), packets inbound (local), packets outbound (remote), bytes inbound (remote), bytes

outbound (remote), degree inbound (remote), and degree outbound (remote). Product coefficients were

computed for each of the raw signals for scales 0, 1, and 2 so that the finest time interval was three hours.

They formed an 84-dimensional feature vector per IP per day that represented the daily harmonics for

the SSH/SCP service.

The top six IPv4 addresses in terms of number of days active were selected. Each of these happened

to be from a different usage group identified by the IT staff (but not quantitatively characterized). There

were approximately 145 feature vectors for each of the top six IP addresses.

We first explored the potential feasibility of distinguishing these top six IP addresses by the product

coefficient representations of the measures representing them by visualizing the 12 average measures

representing each address (since there were 12 time series for each IP address). The results are shown

in Figure 3. The averages were computed over the set of windows for each IP address. The 12 average

measures for each IP address were visualized as a color-coded rectangular matrix with 12 rows and 7

columns, as shown in Figure 3. Each row corresponds to a different type of time series. The columns

show the color-coding of the seven product coefficients. The first column is the scale 0 product co-

efficient; the second and third columns show the scale 1 product coefficients, and the third through

seventh columns show the scale 2 product coefficients. From Figure 3, we see that the averages are

distinguishable, although it is simpler to distinguish some of the averages than others. For example, the

product coefficients for the average measures for IP address 1055 and IP address 2616 are very easily

distinguished from the others.

https://doi.org/10.1017/fms.2020.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.40

Forum of Mathematics, Sigma 15

(a) IP Address 1055 (b) IP Address 1174 (c) IP Address 1184

(d) IP Address 2276 (e) IP Address 2407 (f) IP Address 2616

Figure 3. Product coefficients for average measures for IP address sources.

Table 1. Radial basis function kernel SVM results..

Averages of radial basis SVM performance statistics in percentages

IPv4 Address ID Sensitivity Specificity Error

ID 1174 93.99 63.68 11.01
ID 2407 97.53 75.48 6.17
ID 1184 95.16 64.21 10.23
ID 2616 97.57 84.69 4.79
ID 1055 99.23 99.07 0.78
ID 2276 97.24 85.14 4.75

The support vector machine algorithm was used to compute six binary classification functions: one IP

address against all of the other IP addresses.1 The performance for the classification rules was measured

in terms of error rate (the probability that the classification is incorrect), sensitivity (the probability that

the vector of the targeted class is correctly identified), and specificity (the probability that a vector not

belonging to the targeted class is correctly identified). The performance metrics were computed over 10

runs. In each run, the data was randomly split into two parts: a training dataset consisting of a randomly

selected 75% of the data, and the test data set consisting of the remaining 25% of the data. A classification

function was computed on the training set and evaluated on the test set. The average results over 10 runs

for support vector machine classification using the radial basis kernel are presented in Table 1.

Thus the results implied that for the six most active IPv4 addresses, it would be practical to approxi-

mately infer the IP IDs from the product coefficient representation of the daily activity profile measures.

Performance metrics for the linear kernel were significantly worse: for example, an error rate of 30%+

for IP IDS 1184 and 2276.

For instance, the best classification result (with error rate equal to 0.78% for RBF SVM) was obtained

for ‘IP ID 1055 vs. all others’. The next best classification result (error rate 4.79% for RBF SVM) was

obtained for ‘IP ID 2616 vs. all others’. These are the two IP addresses whose average measures are

most easily distinguish in Figure 3. On the opposite end of the classification error rate, as shown in the

1Rauf Izmailov at Applied Communication Sciences performed the SVM classification.

https://doi.org/10.1017/fms.2020.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.40

16 Devasis Bassu et al.

previous section, the worst classification results (error rates 10.32% and 11.01% for RBF SVM) were

obtained for ’IP ID 1174 vs. all others’ and ’IP ID 1184 vs. all others’. This is also consistent with the

average measure visualizations in Figure 3, where the average measures for IP addresses 1184 and 1174

look very similar.

Recently, the IP network data was analyzed again using a dyadic tree-structured classification algo-

rithm on the set of product coefficients [30].

4. Measure visualization

4.1. Background on welding curves

As we will show in this section, measures on sigma algebras generated by binary set systems may

be represented (and hence visualized) by Jordan plane curves if the product coefficient parameters

satisfy mild restrictions. Jordan curves are simple closed curves in the plane. We will characterize

the uniqueness of these representations. This visualization is guaranteed by several deep mathematical

theorems in quasi-conformal mapping theory due to Beurling and Ahlfors [3] and Ahlfors [1].

Let D denote the binary set system on [0, 1] consisting of the half-open dyadic intervals � (=, 8) =
[82−=, (8 + 1) 2−=) for 8 = 0, 1, . . . , 2= − 2 and the closed dyadic intervals � (=, 8) = [82−=, (8 + 1) 2−=]
for 8 = 2= − 1. D can be viewed as a dyadic set system for the unit circle (1 (with zero mapped to 1).

A measure ` on Σ (-,�), the sigma algebra of a binary set system on - , uniquely determines

a measure `(1 on Σ

(
(1, �̃

)
(and vice versa). (The measures have the same product coefficients.)

We propose to visualize ` by visualizing the measure `(1 . (The previous wind examples shows that

measures on sigma algebras generated by binary set systems can alternatively be visualized using day-

wheel figures.)

The connection between Jordan curves in the plane and measures is made via the welding map. The

welding map for a Jordan curve Γ in the plane is constructed as follows: let �+ be a choice of conformal

map from the unit disk to interior of Γ, and let �− be a choice of conformal map from the outside of

the unit disc {|/ | > 1} to the domain exterior to Γ. Define Φ = �−1
− ◦ �+. Then Φ : (1 → (1 is a

homeomorphism of the unit circle to itself, and Φ is called the welding map for Γ. The Jordan curve Γ

is a welding curve for Φ. Because Φ is a homeomorphism, its derivative Φ′ is a positive measure ` on

the unit circle (1, which has positive measure on all intervals of positive length. In fact, Φ′ is a finite

measure if and only if Φ has bounded variation. The von Koch snowflake curve is an example of a map

of the unit circle whose derivative is not only a singular Lebesgue measure, but also has support on a set

of Hausdorff dimension less than one. Okiwa showed the existence of examples of homeomorphisms of

the unit circle that are not welding maps [32]. Okiwa proved that if the derivative of a homeomorphism

of the unit circle scales like two different powers of \ on adjacent intervals of the unit circle, it is not a

welding map.

The measure determined by the derivative of the welding mapΦ encodes the geometry of the welding

curve Γ. For example, if close to some point I0 on Γ, the curve looks like two intervals having an interior

angle of \ at F0, then there is a point I0 on the circle such that

Φ
′ ∼ |I − I0 |

2\−2c
2c−\ near I0. (29)

The converse also holds. This type of power singularity for Φ′ is also reflected in its coefficients 0� .

See [32] for an early paper with basic properties of welding. Recent work provides new, probabilistic

classes of welding maps that arise in conformal field theory.

To construct a Jordan curve from a positive measure on the unit circle, we exploit results from quasi-

conformal mapping theory to solve the welding problem that inverts the process above; that is, given

a homeomorphism Φ : (1 → (1, find a Jordan curve Γ and conformal mappings �+ and �− onto the

complementary domains so that Φ = �−1
− ◦ �+.

https://doi.org/10.1017/fms.2020.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.40

Forum of Mathematics, Sigma 17

4.2. Measure visualization theorem

Theorem 4.1 (Measure Visualization). For a measure ` on Σ (-,�), the sigma algebra of a binary set

system on - , let `(1 denote the measure on Σ

(
(1, �̃

)
with the same product coefficients.

1. If `(1 is a positive measure represented by a finite product formula, and none of its product coefficients

are ±1, then `(1 is the derivative of a welding map Φ : (1 → (1 determined by a Jordan curve Γ,

denoted Γ`
(1

, unique up to Möbius transformations.

2. If `(1 is represented by an infinite product formula, and if the product coefficients for both `(1 and

`(1 ◦
(
rotation by c

3

)
are strictly bounded away from ±1, (that is, if there exists n > 0 such that all

product coefficients satisfy |0� | ≤ 1 − n), then `(1 is the derivative of a welding map Φ : (1 → (1

determined by a Jordan curve Γ, denoted Γ`
(1

, unique up to Möbius transformations.

Proof. We begin with a remark. In the proof, we identify measures on (1 with measures on the unit

interval, identifying 0 and 1, using the mapping G ↦→ 4G?(2c8G) . The measure on the unit interval can

be extended to other intervals as needed by translation by integers. Then all intervals can be viewed as

mappings of � = [G, H] where H > G .

The first step is to prove that if a measure `(1 satisfies the conditions in parts one and two of the

theorem, it satisfies the quasi-symmetric condition: that is, for all intervals � ⊂ (1,

1

�
≤ `(�!)

`(�')
≤ � (30)

where � is a positive constant independent of �, and where �! and �' denote the left and right halves of

the interval �. If the measure has a finite product formula and none of its finitely many product coefficients

are equal to ±1, the measure is a positive multiple of Lebesgue measure on each of the dyadic intervals

at the finest non-leaf scale =. Let < and " denote the minimum and maximum of the positive multiples:

<

"
≤ `(�!)

`(�')
≤ "

<
. (31)

In fact, this quasi-symmetric bound can be expressed in terms of the bounds on the product coefficients.

If the measure has a finite product formula and none of its finitely many product coefficient are equal

to ±1, then |0(| < 1 − n for some positive n , so n < 1 ± 0(< 2 − n . By the dyadic product formula

representation lemma (Lemma 3.1), the measure of each dyadic interval �= at scale (depth) = is

`(�=) = `(-)
∏=−1

0 (1 ± 0�8)
2=

(32)

where the intervals �8 are dyadic intervals at depth 8 containing �=. Thus `(-)2−=n= ≤ < and " ≤
`(-)2−= (2 + n)=, so

"

<
≤

(
2 + n

n

)=
. (33)

Thus, for finite measures, the quasi-symmetric condition on a measure is equivalent to the condition

that the absolute values of the product coefficients are strictly bounded away from 1. Note that the

bound above is dependent on the maximum scale =, so this argument does not apply to measures with

infinitely many product coefficients and a different proof is required to prove the condition 2 implies

that the measure is quasi-symmetric

To prove that the hypotheses of part 2 imply quasi-symmetry, we will exploit the 1/3 CA82: [19]

(Section 3 and Appendix C) and then invoke the previous result. Given an interval � = [G, H], G ∈
[0, 1], H ∈ [0, 1], let = denote the depth (scale) of the smallest dyadic interval �= containing both G and

https://doi.org/10.1017/fms.2020.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.40

18 Devasis Bassu et al.

H, and let =′ denote the depth (scale) of the smallest dyadic interval �=′ containing both G ′ = G + 1/3 and

H′ = H + 1/3. Then by the 1/3 CA82: [19] (Section 3 and Appendix C),

|G − H | = |G ′ − H′ | ≥ 2−<0G {=,=′ }

6
. (34)

This implies that a lower bound on distance 3 = |G−< | = |<− H | = |G ′−<′ | = |<′− H′ | to the midpoint

< is 3 ≥ 2−#

12
.

Let �# and � denote the intervals corresponding to <0G{=, =′}. The dyadic subintervals of �# at scale

+ 5 separate the points G, <, and H, and there is at least one interval in the left half L(I) of � = [G, H]
between the intervals containing < and G. The measure of each of these dyadic subintervals is computed

via a path formula of length # + 5. The prefix of length # is common to all of the intervals. Thus the

ratio
` (' (�)
` (! (�)) is equal to the ratio for the finite probability measure of scale 5 on the tree of descendants

of the interval �# . The hypotheses of part (2) imply that that the bounds for product coefficients are the

same for the original measure and the measure translated by 1
3
. The proof of part 8 applies, so the same

quasi-symmetric bound is (n

2 + n

)5

≤ `('(�)
`(!(�)) ≤

(
2 + n

n

)5

. (35)

The second step of the proof is to show that conclusions of parts 1 and 2 (which are the same) follow

from quasi-symmetry. The conditions on the product coefficients of the measure imply that the measure

is positive, so the cumulative measure function Φ : (1 → (1 defined by Φ(C) = `([0, C)) defines an

(increasing) homeomorphism and Φ′ = `. Since Φ′ is quasi-symmetric, the Beurling-Ahlfors extension

theorem [3] implies that Φ can be extended to be a quasi-conformal mapping 5 : � → � from the unit

disc to itself that solves the Beltrami equation

m̄ 5 = `m 5 (36)

where ` is defined to be identically zero, ` ≡ 0 off �, and | |` | |∞ ≤ 1 − n (�). Given this, the reasoning

in Section 2.1 of [2] proves that q is a welding map determined by a Jordan curve Γ, denoted Γ`
(1

,

unique up to Möbius transformations. The reasoning in Section 2.1 of [2] also shows that the welding

curve is � ((1), where � is a solution of the same Beltrami equation 36 but on the domain C, not just

on the domain � (the unit disc). �

Historical proof notes. The quasi-symmetry condition is defined in Chapter 4 of Ahlfors’ book Lectures

on Quasi-Conformal Mappings [1]. There, the quasi-symmetry condition is called the M-condition. It is

a deep theorem of Beurling and Ahlfors that a quasi-symmetric measure on the unit circle gives rises to

a quasi-conformal mapping of the plane to itself, and the unit circle is mapped on to a quasi-circle. See

Chapter 5 of [1]. There it was proved by using ! ? estimates on the Beurling transform that transforms

a function 5 : C→ C by convolving it with the kernel 1
cI2 . This transformation is a bounded operator

on the function space ! ? for 1 < ? < ∞. For !2, the norm of this operator is 1. �

For some measures represented by an infinite product formula that does not satisfy condition 2 of

the measure visualization theorem, there exist multiple non-equivalent welding maps [34]. In fact, if the

Jordan curve in the plane has positive 2� Lebesgue measure (for example, a Jordan curve that threads

through a Cantor set with positive two-dimensional Lebesgue measure), then there exist an uncountable

number of non-equivalent welding maps. This is discussed in [24]. A deep theorem is: given any closed

set of R2 of positive measure (for example, the one sphere (1), there exists a quasi-conformal map

5 : R2 → R2 that is not a Möbius transformation but is holomorphic off a closed set and one-to-one on

the closed set [1]. The closed set can be used to obtain non-unique welding maps.

The visualization theorem applies to positive measures whose product coefficients are strictly

bounded away from 1 in absolute value. To visualize finite real-world measures, some of whose product

https://doi.org/10.1017/fms.2020.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.40

Forum of Mathematics, Sigma 19

coefficients have absolute value 1, one can deform the product coefficients slightly to obtain a positive

measure. The visualization of such a deformation should still reveal the binary sets with measure 0: that

is, the disconnected geometry of the support of the measure.

The discussion preceding the theorem outlines a complex analytic method for computing a welding

curve. An exposition of approaches for constructing welding curves is also given in Mumford and Sharon

[29]. They were studying 2� shape classes, which they defined to be equivalence classes of (infinitely)

smooth Jordan curves, where curves were equivalent if they differed by translation and scaling. They

proved that these shape classes are the same as the diffeomorphism classes of the welding maps for the

smooth Jordan curves modulo the Möbius transformations and then went on to study the Weil-Peterson

metric on the diffeomorphism classes. They give a clear exposition of the existence theory for welding

maps and summarize computational methods for welding curves. The class of measures determined

by the shape classes is much, much smaller than the class of measures identified in the visualization

theorem. Most real-world measures (including finite approximations to them) do not determine infinitely

smooth Jordan curves. Mumford and Sharon’s viewpoint is that not all shapes can be characterized by

a fixed finite number of features. However, if an n > 0 is chosen, a representative infinitely smooth

shape curve can be well approximated by a curve determined by a finite number of product coefficients,

where the number of product coefficients depends on both the geometric properties of the curve and the

smoothness.

4.3. Example: pseudo-welding curves for LiDAR data counting measures

We experimented with applying the product formula representation to a counting measure derived from

a set of sample data [7] collected using LiDAR (light detection and ranging) technology.2 This data

consists of 10 sets of discrete points in three-dimensional space, representing the surfaces visible to

the scanning laser rangefinder in 10 nearby scenes. Each point has been labelled either ‘vegetation’ or

‘ground’. For the most part, the ground was wavy but approximately horizontal, while the vegetation

consisted of shrubs with more vertical extent. Previous work [4] had examined this same data using

a multiscale SVD approach to build a SVM-based classification rule that could, with high accuracy,

reproduce the vegetation/ground labelling. We experimented with using product coefficient parameters

as features instead of multiscale SVD parameters. The experiment showed that decision rules for

distinguishing two measures (here, ‘vegetation’ and ‘ground’) could be approximately inferred from

histograms of the product coefficients. While the metrics were not as good as for multiscale SVD, the

method did provide a transparent rationale for the decision rule.

For our analysis, we translated and scaled the data sets to fit them into the unit cube [0, 1]3 and to

send their median G, H, and I coordinates to the same location (<G , <H , <I) in the cube. Each data set

had its own translation vector, but a common set of three scaling factors was chosen. The target median

point and the scaling factors were chosen to make the scaling factors as large as possible. We then

applied the product form decomposition, subdividing the cube sequentially by dimension 1, 2, 3, 1, 2, 3,

etc. to the measure given by point masses of equal weight at each of the data points. While subdividing

each dimension 10 times gives 230 coefficients, we only needed to calculate those coefficients that

corresponded to subdividing a cell containing at least one data point.

We constructed pseudo-welding curves for measures determined by the LiDAR data, each a contin-

uous piecewise linear function on the interval [0, 1], using the tent construction in [19] (Section II-B).

There it was used to construct finite approximations of Brownian motion. The product coefficients were

used as the linear shifts. Note that these pseudo-welding curves are functions constructed on the unit

2LiDAR [10] includes an active optical sensor that transmits laser beams toward a target while moving through specific survey
routes. The reflection of the laser from the target is detected and analyzed by receivers in the LiDAR sensor. These receivers record
the precise time from when the laser pulse leaves the system to when it returns to calculate the range distance between the sensor
and the target, combined with GPS (Global Positioning System) and INS (inertial navigation system) positional information.
These distance measurements are transformed to measurements of actual three-dimensional points on the reflective target in
object space. An introductory explanation of LiDAR technology is also available in [25]. There, a LiDAR image of the Golden
Gate Bridge is decomposed into components with the same intrinsic dimension.

https://doi.org/10.1017/fms.2020.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.40

20 Devasis Bassu et al.

Figure 4. Pseudo-welding curves for the LiDAR data.

interval and not Jordan curves, unlike welding curves. Since the function values agree on 0 and 1, they

typically determine Jordan curves. Note also that this construction can be applied to all positive mea-

sures, not just strictly positive measures as required by welding curve visualizations. The knots of the

curve at the 8th scale are obtained by raising or lowering the midpoint of the linear segments of the curve

by the value of the corresponding product coefficient weighted by a factor of 2−B . The corners, or knots,

of the piecewise linear curves correspond to particular coefficients and so to the corresponding subsets

of the unit cube on which these coefficients represent divisions. We have colored these knots according

to the classifications of the LiDAR points contained in the subsets. Red knots correspond to subsets con-

taining only ground points, green knots correspond to subsets containing only vegetation points, blue

knots correspond to subsets containing both ground and vegetation points, and black knots correspond

to subsets containing no LiDAR points. (Subsets containing no LiDAR points produce coefficients

with value zero.) We can see that the pseudo-welding curves for the different samples have similar

shapes.

5. Multiscale noise models

We define two types of multiscale noise models. The first model additively perturbs the product coef-

ficients. The second model is a multiplicative model that defines and exploits a noise factor function.

The noise factor function needs to be constructed only once.

https://doi.org/10.1017/fms.2020.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.40

Forum of Mathematics, Sigma 21

5.1. An additive multiscale noise model for dyadic measures

We first define a multiscale noise model for a dyadic measure that defines random perturbations added

to each product coefficient. This model results in noisy measures in the family of dyadic measures. The

product coefficients for any sampled noisy measure can be computed to some scale and compared with

the original parameters.

Given a dyadic probability measure ` on - , `(-) = 1 defined by a set of product coefficients

0(∈ [−1, 1] (for example, as in Lemma 3.1), the idea is to vary each product coefficient 0(independently

by adding a random noise value �(. The new random product coefficient coefficient is then �(= 0(+�(.

The randomness must be constrained so that

− 1 ≤ 0(+ �(≤ 1. (37)

This is equivalent to

− 1 − 0(≤ �(≤ 1 − 0(. (38)

Define a Gaussian-like probability measure for �B , centered at the product coefficient 0(, on the

noise interval [−1 − 0(, 1 − 0(]. Choose �(,n such that

�(,n

∫ 1−0(

−1−0(
4G?

(
− (H − 0()2

2n2

)
3H = 1. (39)

Now choose H = �(randomly from the interval [−1 − 0(, 1 − 0(] using the Gaussian-like probability

measure given by the probability density function

�(,n 4G?

(
− (0(− H)2

2n2

)
(40)

on [−1 − 0(, 1 − 0(]. The new random product coefficient is �(= 0(+ 1(. The probability measure

defined for the noise values determines a probability measure for the random product coefficients that

is defined on [−1, 1].
Since the noisy product coefficients �(= 0(+ �(all are constrained to be in [−1, 1], by Lemma

3.1, each sample of the random product formula

`=,/ = `(-)
∏
(∈B=

(1 + (0(+ 1()ℎ()3H (41)

converges to a dyadic measure with total measure 1.

Example: Let 0(= 1. Then probability measure �(is defined on the interval [−2, 0]; and choose �(

so that �(= 0B + �(. The distribution on [0, 2] is

�4G?

(
− (0 − H)2

2n2

)
(42)

where � satisfies

�

∫ 0

−2

4G?

(
− H2

2n2

)
= 1. (43)

The expectation

�

∫ 0

−2

H4G?

(
− H2

2n2

)
3H < 0 (44)

is approximately −n , so on average, �(≈ −n ; and, on average, �(= 0(+ �(has mean value ≈ 1 − n .

https://doi.org/10.1017/fms.2020.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.40

22 Devasis Bassu et al.

The definitions of the probability measures provide a method for sampling from the space of all

positive measures on a dyadic space - for a noisy variant of the measure that is ‘close’ to a given

positive measure `. The measure of closeness can be varied by varying n . It can be used to sample for

representations of data sets that are similar to data sets as characterized by their product coefficients.

It also can potentially be used to formulate hypothesis tests to conclude that a proposed or observed

dyadic probability measure is unlikely to be a variant of a given or observed dyadic measure. Such a

hypothesis would apply to a broad class of measures and data sets.

The method guarantees that the sampled product coefficients satisfy the constraints for product

coefficients and provides an approximation to a noise model, rather than an exact noise model. An exact

noise model would guarantee that the expected value of �(= 0(or, equivalently, the expected value of

�(= 0. This is because the expected value of the probability measures for �((the mean deviation of �B

from the original product coefficient 0() is always positive, unless 0(= 0. The largest deviation comes

when 0(= ±1. However, it can be made arbitrarily small by letting n(approach 0. Then the probability

that |�(| ≥ 1/2 is ≈ 3G10−7.

If the expected value of �(equals 0 for all the dyadic sets (, this is a valid noise model because for

each dyadic set (of scale =, the expected value � (`= (()) = `((), where the expected value is taken

over the set of noise random variables �(8 , 8 = 0..=, for the dyadic sets (8 of scale 8 on the path from the

root to the leaf (that is, the dyadic sets containing (8). To see this, note that since the random variables

�(8 are independent, the expected value of a path formula
∏=

8=0 1 ± (0(+ �(8) is the product of the

expected values of the path expressions 1 ± 0(8 + �(8 . Here the signs are determined by the left or right

branching of the path at each node on the tree. Since � (/(8) = 0, the expected value of a path formula

is the non-noisy measure of the set reached by the path.

5.2. A multiplicative multiscale noise model

Next we define a multiplicative multiscale noise model for continuous functions and then indicate how it

applies to Borel measures and dyadic measures. We define a multiscale noise function and then multiply

it by a continuous function to obtain an n perturbation of a continuous function. The noise function

only needs to be constructed once. To construct the multiscale noise function, we will build functions

for each scale 2−# , # ∈ Z. The goal is to build " functions on each scale, where the " functions are

independent of each other and are built by time-shifting the functions B8=(U2# G) and 2>B(U2# G), where

|U | ≈ 1. One then multiplies those functions by random numbers that are chosen from a Gaussian-like

distribution. The goal is to allow rapid recovery of these functions at any point G by storing information

at points 92±: and then applying this to the time-shifted functions.

Let Φ0(G) be a smooth positive function that is equal to one at G = 0 and decays to zero at G = 5. We

also want Φ′
0
(5) = 0. We do the same at G = −5, so that Φ0 is symmetric about zero. We then define

Φ0,: (G) = Φ0(G − :), where : ∈ Z. We also choose Φ0 so that
∑:=+∞

:=−∞ Φ0,: (G) ≡ 1 on R. For = ∈ Z, we

define Φ=,: (G) = Φ0(2−=G − :), so that
∑:=+∞

:=−∞ Φ=,: (G) ≡ 1.

We then define

C (G) =
:=+∞∑
:=−∞

2:
1
√

5

9=+5∑
9=−5

V:, 9Φ:, 9 (G) (45)

where all 2: ≥ 0,
∑:=+∞

:=−∞ 2: < +∞, and where V:, 9 is chosen randomly from [−1, 1], which is given

the probability density 2
1+5G2 . We remark that the choice 2: =

1
1+:2 is particularly interesting.

Then

)∗ (G) ≡
∫ G

0

(1 + C (H))3H. (46)

Note that E(V:, 9) = 0, and hence E()∗ (G)) = 1 for all G.

https://doi.org/10.1017/fms.2020.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.40

Forum of Mathematics, Sigma 23

We now start building our ‘random’ sine functions by setting

(_ (G) = B8=(_2c)∗(G) + 0) (47)

where 0 ∈ [0, 2c] and _ ∈ R. Here, 0 ∈ [0, 2c] is chosen randomly with respect to Lebesgue measure.

We also define �_ (G) = 2>B(_2c)∗ (G) + 0′).
We now randomly choose five different values for _ ∈ [1/2, 2] and a total of 10 different clocks (for

time), and in the manner above define (_1
, ..., (_5

and �_1
, ..., �_5

. Here, five is just one choice. Now

let # ∈ Z be any integer, and consider the scale 2# . We pick _# ,1,, _# ,5 in the same manner as for

scale 1 = 20. Thus _# , 9 ≈ 2−# . We will now define

� (G) =
+∞∏

#=−∞
4G?

©­«
n1=√

5

5∑
9=1

((_#, 9
(G) + �_#, 9

(G)) + �# ,n
ª®¬

(48)

where

E[0,2#]
©­«
4G?

©­«
n1=√

5

5∑
9=1

((_#, 9
(G) + �_#, 9

(G)ª®¬
ª®¬
= 4−�#,n . (49)

F is the multiscale noise function. Given a continuous function � (G) on R, we now define

�̃ (G) = � (G)� (G) (50)

so that �̃ (G) is ‘an n perturbation of � (G)’ if
∑#=+∞

#=−∞ |1# | = �, where � ≈ 1. One should also have

10 ≈ 1. By rescaling, one can choose any value of 2# and take the function � above and define

�# (G) = � (2−# G).
Two remarks should be made concerning this method. The first thing to note is that if one uses

� (G) + � (G) instead of � (G)� (G), one does not perturb any singular measures. (The simplest example

is Dirac mass.) We also note that in the example we have given, we chose to focus on B20;4 = 1 because

the ‘main term’ in the product comes from B20;4 = 1. This, of course, could be done for any given scale.

Another problem is perturbation of a Borel measure on R. If, for example, ` is a Borel measure

with Dirac deltas, one may perturb ` by ‘smoothing it out’. The classical way to do this (and there are

many other possibilities) is to first convolve ` with a bump function q on [−n, +n], where q ≥ 0, q is

continuous, and
∫ +n
−n q(H)3H = 1. The convolution of ` with q then gives one a continuous function as

long as ` is a locally finite measure: ∫ 0+1

0

3`(H) ≤ �. (51)

(Usually, one wants this to hold for all 0.) Let

� (G) = ` ∗ q(G) (52)

so that � is a continuous function on R. As before, we now define

�̃ (G) = � (G)� (G) (53)

so that �̃ is an n perturbation of �.

If ` is a dyadic measure, the scale = approximation `= (formula 41) is a product of the scale = function

�= = `(-)
∏
(∈B=

(1 + 0(ℎ() (54)

https://doi.org/10.1017/fms.2020.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.40

24 Devasis Bassu et al.

with Lebesgue measure 3H. �= is continuous on each of the scale = dyadic intervals. Then �̃= = �=�

is an n perturbation of �=, so the n perturbation l for `= is

˜̀= = �̃=3H. (55)

One could also perturb the smoothed dyadic scale = histogram.

6. Summary

In this paper, we presented a theoretical foundation for a representation of a data set as a hierarchically

parametrized dyadic measure, visualized the representation by essentially unique Jordan plane curves,

and defined both an additive and a multiplicative multiscale noise model. The theoretical foundation

consists of the dyadic product formula representation lemma and a measure visualization theorem. Our

approach exploits results in [15, 3, 1]. The dyadic product formula representation lemma shows that

an explicitly computable set of product coefficient parameters are sufficient to uniquely characterize

measures on dyadic sets. The visualization theorem shows that measures whose product coefficients

satisfy a mild condition can be represented by plane Jordan curves and characterize the uniqueness of

the representing curves. The additive multiscale noise model provides a method for sampling dyadic

measures that are noisy variants of a given measure. The multiplicative multiscale noise model defines

an explicit class of noise factor functions that, when multiplied by a continuous function or the function

defining a scale = dyadic measure, produce an n perturbation. The noise factor function is general and

does not depend on the function or measure that is being perturbed. We illustrated the broad applicability

of this representation by showing that the class of dyadic measures includes Borel measures (even

Dirac measures) and that dyadic sets are equivalent to sets with an ordered set of binary features. To

further illustrate the connection with statistics, we showed that the moments of dyadic measures can be

recursively computed.

We illustrated the applicability of the representation to real-world network and sensor data sets by

showing visualizations of the product coefficient parameters using both simple day-wheel figures and

easily computable pseudo-welding curves. The illustrations include an explanation of the data prepro-

cessing step that results in a simple measure representation of the data. The parameter representations

can be easily recursively computed from the preprocessed data without resorting to convex or non-

convex optimization using the recursive definition of the parameters (either bottom-up or top-down).

Additionally, the parameters can be used as automatically computed features for decision problems in-

volving multiple data sample sets. Since the representation uses the very simple concept of a dyadic tree

defined on the universe of a data set, and since the parameters are simply and explicitly computable and

easily interpretable and visualizable, we hope that this approach will be broadly useful to mathemati-

cians, statisticians, and computer scientists who are intrigued by or involved in data science, including

its foundations.

Acknowledgements. This work was partially supported by the AFOSR Program FA9550-10-1-0125 titled ‘Applications to Net-

work Dynamics of Positive Measures and Product Formalisms: Analysis, Synthesis, Visualization and Missing Data Approxi-

mation’. The views and opinions expressed in this article do not reflect those of AFOSR, the Air Force, or the US Government.

Linda Ness’s work was also partially enabled by DIMACS through support from the National Science Foundation grant NSF-

CCF-1445755 and award NSF HDR TRIPODS CCF-1934924.

References

[1] L. Ahlfors, Lectures on Quasi-Conformal Mappings, Mathematical Studies, vol. 10 (1966), van Nostrand.

[2] K. Astala, A. Kupiainen, E. Saksman, and P. Jones, ‘Random conformal weldings’, Acta Math. 207(2), (2011) 203–254.

[3] A. Beurling and L. Ahlfors, ‘The boundary correspondence under quasi-conformal mappings’, Acta Math. 96 (1956), 125–

142.

[4] D. Bassu, R. Izmailov, A. McIntosh, L. Ness, and D. Shallcross, ‘Centralized multi-scale singular value decomposition for

feature construction in LiDAR image classification problems’, IEEE AIPR 1–6 (2012).

https://doi.org/10.1017/fms.2020.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.40

Forum of Mathematics, Sigma 25

[5] M. Belkin and P. Niyogi, ‘Laplacian eigenmaps for dimensionality reduction and data representation’, Neural Computation

15 (2003), 1373–1396.

[6] P. Billingsley, Probability and Measure (Wiley, 2012).

[7] N. Brodu and D. Lague, ‘3D terrestrial LiDAR data classification of complex natural scenes using a multi-scale dimensionality

criterion: applications in geomorphology’, ISPRS Journal of Photogrammetry and Remote Sensing 16 (2012), 121–134.

[8] J. Bruna and S. Mallat, ‘Invariant scattering convolutional networks’, IEEE Trans. on Pattern Analysis and Machine

Intelligence 35(8) (2013).

[9] J. Bruna, A. Szlam, and Y. LeCun, ‘Learning stable group invariant representations with convolutional networks, ICLR

(January 2013).

[10] J. B. Campbell, Introduction to Remote Sensing, (3rd ed.) (The Guilford Press, 2002).

[11] R. Coifman and S. Lafon, ‘Diffusion maps’, Applied and Computational Harmonic Analysis 21 (2006), 5–30.

[12] R. Coifman, S. Lafon, M. Maggioni, B. Nadler, F. Warner, and S. W. Zucker, ‘Geometric diffusions as a tool for harmonic

analysis and structure definition of data: diffusion maps’, Proc. Natl. Acad. Sci. USA 102 (2005), 7426–7431.

[13] D. Comer, Internetworking with TCP/IP 4th Edition: Principles, Protocol and Architecture (Pearson, 2000), vol. 1.

[14] G. Cybenko, ‘Approximation by superpositions of a sigmoidal function’, Mathematics of Control, Signals, and Systems 2,

303–314.

[15] R. Fefferman, C. Kenig, and J. Pipher, ‘The theory of weights and the Dirichlet problem for elliptical equations’, Ann. of

Math 134 (1991), 65–124.

[16] C. Fowlkes, S. Belongie, F. Chung, and J. Malik, ‘Spectral grouping using the Nyström method’, IEEE Transactions on

Pattern Analysis and Machine Intelligence 26(2) (2004), 214–225.

[17] Y. Golberg, ‘A primer on neural network models for natural language processing’, J. Artificial Intelligence (2016).

[18] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning (MIT Press, 2016), Section 6.4. 1.

[19] D. S. Grebenkov, D. Beliaev, and P. W. Jones, ‘A multiscale guide to Brownian motion’, Journal of Physics A: Mathematical

and Theoretical 49(4) (2015), 043001.

[20] K. Hornik, and H. White, ‘Multilayer feedforward networks are universal approximators’, Neural Networks 2 (1989), 359–

366.

[21] J.-P. Kahane and J Peyriere, ‘Sur certaines martingales de B. Mandelbrot’, Adv. Math. 22 (1976), 131–145.

[22] J.-P. Kahane, ‘Sur le chaos multiplicative’, Ann. Sci. Math. 9(2) (1985) 105–150.

[23] D. Kunin, J. Bloom, A. Goeva, and C. Seed, ‘Loss landscapes of regularized linear autoencoders’, ICML (2019), 3560–3569.

[24] P. W. Jones, ‘On removable sets for Sobolev spaces’, in: C. Fefferman, et al. eds., Essays on Fourier Analysis in Honor of

E.M. Stein (Princeton University Press, 1995), 250–267.

[25] F. P. Medina, L. Ness, M. Weber, and K. Yacoubou Djima, ‘Heuristic framework for multiscale testing of the multi-manifold

hypothesis’, in: C. Domeniconi and E. Gasparovic, eds., Research in Data Science (Springer AWM Series, 2019).

[26] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, ‘Distributed representations of words and phrases and their

compositionality’, NIPS’13 2 (2014), 3111–3119.

[27] S. Mallat, ‘Group invariant scattering’, Comm. Pure Appl. Math. 65(10) (2012), 1331–1398.

[28] B. B. Mandelbrot, ‘A possible refinement of the lognormal hypothesis concerning the distribution of energy in intermittent

turbulence’, in: Statistical Models and Turbulence, Lecture Notes in Phys. no. 12 (Springer, 1972), 333–351.

[29] D. Mumford, and E. Sharon, ‘2� -shape analysis using conformal mapping’, Int. J. of Computer Vision 70 (2006), 55–75.

[30] L. Ness, ‘Dyadic product formula representations of confidence measures and decision rules for dyadic data set samples’,

MISNC SI, DS ’16, August 2016, Union, NJ, USA.

[31] L. Ness, ‘Inference of a dyadic measure and its simplicial geometry from binary feature data and application to data quality’,

in: C. Domeniconi and E. Gasparovic, eds., Research in Data Science (Springer AWM Series, 2019).

[32] K. Oikawa, ‘Welding of polygons and the type of Riemann surfaces’, Kodai Math. Sem. Rep 13(1) (1961), 37–52.

[33] K. Okikiolu, ‘Characterization of subsets of rectifiable curves in '=, J. London Math. Soc. 46(2) (1992), 336–348.

[34] W. F. Osgood, ‘A Jordan curve of positive area’, Trans. Amer. Math. Soc. 4(1) (1903), 107–112.

[35] J. Pennington, R. Socher, and C. Manning, ‘GloVe: global vectors for word representation, EMNLP (2014).

[36] U. Shaham, A. Cloninger, and R. Coifmann, ‘Provable approximation properties for deep neural networks’, Appl. Comput.

Harmon. Anal. 44(3) (2018), 527–557.

[37] T. Ylonene, P. Turner, K. Scarfone, and S. M. Souppaya, ‘Security of interactive and automated access management using

Secure Shell (SSH)’, NIST Internal Report 7966 (2015).

https://doi.org/10.1017/fms.2020.40 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.40

	1 Introduction
	2 Related work
	3 Product formula representation of measures on dyadic sets
	3.1 Dyadic sets and product coefficient parameters
	3.1.1 Product coefficients for measures on general trees

	3.2 Dyadic product formula representation lemma
	3.3 Exploiting product coefficient parameters to compute moments
	3.4 Examples of dyadic structures and product formula measures
	3.4.1 Dyadic sets and ordered binary feature functions
	3.4.2 Borel measures on the unit hypercube
	3.4.3 The product formula representation of a Dirac measure on the unit interval
	3.4.4 Product formula representations for the weighted sum of Dirac measures

	3.5 Exploiting product coefficient representations in data analysis
	3.5.1 Wind example: color displays of product coefficients
	3.5.2 IP data example: distinguishing and classifying data sources using product coefficients

	4 Measure visualization
	4.1 Background on welding curves
	4.2 Measure visualization theorem
	4.3 Example: pseudo-welding curves for LiDAR data counting measures

	5 Multiscale noise models
	5.1 An additive multiscale noise model for dyadic measures
	5.2 A multiplicative multiscale noise model

	6 Summary

