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Instability of a weakly viscoelastic film flow
on an oscillating inclined plane
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The long- and finite-wavelength instabilities of weakly viscoelastic film on an oscillating
inclined plane are investigated. By using the Chebyshev series solution with the Floquet
theory, the combined effects of viscoelasticity and forcing amplitude on instability are
described when the inclined plane oscillates in streamwise and wall-normal directions.
For long-wavelength instability, the solution to the eigenvalue problem is obtained
analytically by the asymptotic expansion method. Results show that the Floquet exponent
is independent of the wall-normal oscillation amplitude. The effects of inclined angle,
gravity and surface tension on the stability of viscoelastic liquid film are also discussed.
For finite-wavelength instability, numerical results corresponding to the wall-normal
oscillation disclose that with the increase of viscoelasticity, the unstable gravitational
boundary moves to a higher wavenumber, and the critical amplitudes of subharmonic and
harmonic instabilities are reduced. The neutral curve of gravity instability for streamwise
oscillatory flow is divided into two parts, and a stable bandwidth is formed for a large value
of the viscoelastic parameter. Besides, a new oscillatory mode is identified at small angles
of inclination, which will be enhanced if the effect of viscoelasticity is incorporated.
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1. Introduction

The stability of a free surface flowing down an inclined plane is a very classical
problem that has been widely investigated in the literature. Understanding the mechanism
and behaviour of this film instability is of great significance because of its variety
of applications in industry, such as enhancing heat and mass transfer rates in
process equipment (Brauner & Maron 1982; Craster & Matar 2009) and coating
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technology (Weinstein & Ruschak 2004). The pioneering works of falling films are first
discussed experimentally by Kapitza (1948, 1949), who described the development of
long-wavelength deformations. Kapitza identified a wide variety of wavy flow regimes,
such as the harmonic waves and the solitary waves. Then the linear stability of a
gravity-driven film flowing on an inclined plane was derived by Benjamin (1957) and Yih
(1963) based on the long-wave asymptotic expansion. The results show that the surface
instability under the long-wave limitation satisfies Rec = 5

6 cot(β) when the average
velocity is used, where Rec and β are the critical Reynolds number and the angle of the
inclined plane, respectively. Later, the physical mechanism is investigated by Kelly et al.
(1989) using the energy method. They show that the dominant energy production term is
associated with the work done by the perturbation shear stress at the free surface, and the
mechanism of instability is linked to a perturbation vorticity shift relative to the surface
displacement caused by advection. On the other hand, another mode called the shear mode
has been discovered. It appears only when the Reynolds number is high and the inclined
angle is very small, which differs from the surface mode (Lin 1967; Bruin 1974; Chin,
Abernath & Bertschy 1986; Floryan, Davis & Kelly 1987).

Inevitably, wall oscillation sometimes occurs in the practical production process. It
is even necessary to introduce appropriate wall oscillation in some processes. For the
oscillating plane, the asymptotic expansion was first introduced by Yih (1968) to discuss
the long-wave surface instability of Newtonian flow on a horizontal plane. The Floquet
theory is utilized to resolve the time-dependent Orr–Sommerfeld boundary problem.
Results show that the oscillatory instability mode is found to be unstable or stable
depending on the oscillation frequency. Or (1997) extended the long-wave instability
results to finite-wavelength instability. He found that the long-wave unstable neutral curve
exhibits a U-shaped distribution in discrete oscillatory frequencies over an arbitrary range
of wavenumbers, while the finite-wavelength neutral curve separates from the bifurcation
point of the U-shaped curve to exhibit a diagonal intersection line, and occupies the
stability window of the long wave. For an inclined oscillating plate, Woods & Lin
(1995) numerically investigated the instability with arbitrary wavenumbers. Three types
of instabilities are identified for the Newtonian fluid flowing down an inclined plane,
which are the gravity unstable region corresponding to the surface mode, and two types
of resonance waves/Faraday waves: the subharmonic wave and harmonic wave. They
concluded that the wall-normal oscillation can suppress the gravity instability but intensify
the resonance waves, and both surface waves and shear waves are quickly dominated by
the resonance waves, with the oscillating amplitude increasing. Later, Lin, Chen & Woods
(1996) discussed the instability characteristics for a streamwise oscillating plane. Two
types of instabilities associated with harmonic instability and gravity instability appear.
The streamwise oscillation shows a suppression effect to the gravity instability, and the
onset of instability becomes harmonic instability from gravity instability. Recently, this
work has been followed by Jaouahiry & Aniss (2020), which focuses on the effect of the
insoluble surfactants. It is found that the insoluble surfactants suppress gravity instability
and resonance instability. By introducing the shear stress on the surface liquid film,
Samanta (2021) found that the gravitational and shear instabilities can be amplified with
the increasing value of imposed shear stress for both the cross-stream oscillatory flow and
the stream oscillatory flow cases.

In all of the aforementioned studies, the authors focused primarily on the stability of
Newtonian liquid flow. Research on non-Newtonian liquid flow has also been intensified
due to its wide usage in chemical industry. Generally, non-Newtonian fluids can be
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divided into three categories: (a) time-independent (memoryless), (b) time-dependent
and (c) viscoelastic. For time-independent fluids, the strain rate at a given position is
based solely on the current value of the shear stress at that point. Power-law fluid and
viscoplastic fluid are typical examples of memoryless fluid. For time-dependent fluids,
the relation between the shear stress and strain rate shows dependence on the duration
of kinematic and shearing history, e.g. thixotropic fluid. Viscoelastic fluids are a type of
non-Newtonian fluid exhibiting features that are typical of both viscosity and elasticity.
There are many different constitutive models of viscoelasticity, such as the second-order
liquid, the Walters’ liquid B′′, the Maxwell liquid and the Oldroyd-B liquid, describing the
distinct rheological behaviours. In second-order fluid models, the typical fluid relaxation
time is very small compared with the characteristic time scale of the flow, i.e. the Deborah
number should be much less than one. The Maxwell model is a linear differential model
of viscoelastic fluids, which is applicable for the case of the deformation gradients being
infinitesimally small. At moderate shear rates, Oldroyd-B is the widely used model to study
the effects of viscoelasticity in shear flows of highly elastic dilute liquids. In this paper,
Walters’ liquid B′′ is considered as the rheological model, which is the approximation of
neglecting second-order terms in relaxation time and retardation time of the Oldroyd-B
model. Thus Walters’ liquid B′′ can describe only weak viscoelasticity and has a short
or rapidly fading memory. Here, the rapidly fading memory can be thought as a physical
property of a weakly viscoelastic liquid that causes it to forget its distant past history of
deformations (Samanta 2023).

It is observed that the effect of viscoelastic liquid has a noticeable impact on promoting
instability. For example, the viscoelastic parameter has a destabilizing effect on the
surface mode for the case of inclined plane without oscillating (Gupta 1967; Wei 2005;
Pal & Samanta 2021). For the viscoelastic liquid film on a horizontal oscillating plane,
Dandapat & Gupta (1975) first investigated the long-wave instabilities induced by the
streamwise oscillation. The results show that the stability is destabilized and stabilized
in different ranges of frequency. Samanta (2017) extended the long-wave regime to the
arbitrary-wavelength regime. It is shown that the finite-wavelength instability is more
dangerous than the long-wave instability under specific frequencies. More recently, the
effect of insoluble surfactants on the linear instability of viscoelastic film on an oscillating
plane for disturbances with arbitrary wavenumbers has been investigated by Wang et al.
(2023). However, there is little research on the analysis of long-wave limit stability and
finite-wavelength instability for viscoelastic film flows on an oscillating inclined plane.
More importantly, it is unknown how the oscillation amplitude in the streamwise and
wall-normal directions and viscoelasticity affect the onset of instabilities in this system,
which is the main motivation of this paper. The remainder of this investigation is outlined
as follows. In § 2, the governing equations of the fluid problem are described. The results of
long-wavelength instability are presented in § 3. The results of finite-wavelength instability
are discussed in § 4. Finally, conclusions are presented in § 5.

2. Mathematical formulation

2.1. Flow configuration
We consider a two-dimensional incompressible viscoelastic liquid film flowing down
an inclined plane making an angle θ with the horizontal, as shown in figure 1. The
thickness of liquid film is 2d, and the origin of the Cartesian coordinate system is placed
in the middle of the unperturbed liquid film. The inclined plate is forced to oscillate
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Figure 1. Schematic of a viscoelastic fluid on an oscillating inclined plane.

sinusoidally in the streamwise direction (x-axis) and wall-normal direction ( y-axis), with
constant frequency ω. The solid line h(x, t) shows the deformed liquid surface. For a
given viscoelastic liquid, the density ρ is assumed to be constant. Also, the amplitudes
of oscillation in the streamwise and wall-normal directions are Ax and Ay. According to
the d’Alembert theorem, the governing equations in a non-inertial reference system can be
expressed as

∂xu + ∂yυ = 0, (2.1)

ρ(∂tu + u ∂xu + υ ∂yu) = ∂xτxx + ∂yτxy + ρg sin θ − ρAxω
2 sinωt, (2.2)

ρ(∂tυ + u ∂xυ + υ ∂yυ) = ∂xτyx + ∂yτyy − ρg cos θ − ρAyω
2 sinωt, (2.3)

where u and υ are velocity components in the streamwise and wall-normal directions,
respectively. The inertial forces in two directions are expressed as ρAxω

2 sinωt and
ρAyω

2 sinωt. Here, g is the gravitational acceleration, and τij is the component of the
stress tensor, with different expressions for different viscoelastic fluids. Walters’ liquid B′′
is used in this paper, which represents an approximation to first order in elasticity, i.e. for
short or rapidly fading memory fluids, and satisfies the following constitutive equation of
state (Beard & Walters 1964; Andersson & Dahl 1999):

τij = −pδij + 2μeij − 2M0
δ

δt
eij, (2.4)

where μ is the limiting viscosity, eij = (∂iuj + ∂jui)/2 is the strain rate tensor, 2μeij
corresponds to the Newtonian stress, 2M0(δ/δt)eij corresponds to elastic stress, M0 is
the viscoelastic coefficient, δij is the Kronecker symbol, and p is the isotropic pressure.
Walters’ liquid B′′ is chosen because the constitutive equation of this model involves
only one non-Newtonian parameter, although this model can describe only shear flows
of weakly elastic dilute liquids. The advantages brought by this are that one can easily
obtain a deeper insight into the flow behaviour of viscoelastic fluids. Besides, Walters’
liquid B′′ with limiting viscosity at low shear rates and short memory coefficient is one
of the best models to describe the characteristics of a viscoelastic fluid. Nevertheless, it
should be noted that Walters’ liquid B′′ is an approximation to the Oldroyd-B liquid in the
limit of small relaxation time. And the flow needs to have the characteristics of low shear
rates and weak viscoelasticity when using the constitutive equation. This approximation is
reasonable for analysing the flow similar to the boundary layer and liquid film. For typical
parameters of Walters’ liquid B′′ (Walters 1960), a mixture of polymethyl methacrylate
in pyridine has density ρ = 0.98 × 103 kg m−3, limiting viscosity μ = 0.79 N s m−2, and
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viscoelastic coefficient M0 = 0.04 N s2 m−2. The upper convected derivative for the strain
rate tensor is defined as

δ

δt
eij = ∂teij + uk ∂keij − ∂kujeik − ∂kuiekj. (2.5)

For the boundary conditions, it satisfies no-slip and no-penetration at y = −d since the
coordinate system is fixed at the oscillating plate:

u = 0, υ = 0. (2.6a,b)

The free surface of the film at y = d + h(x, t) satisfies the normal force conservation, zero
tangential force conservation and kinematic boundary condition:

pa + τijninj = σ
∂xxh

(1 + ∂2
x h)3/2

, (2.7)

τijnjti = 0, (2.8)

∂th + u ∂xh = υ, (2.9)

where σ is the surface tension, n is the unit normal vector, t is the unit tangent vector,
and pa is the ambient pressure. It is assumed that there is no external force on the surface
of the liquid film, e.g. imposed shear stress, so the tangent stress of the free surface is
equal to zero. Then the governing equations and boundary conditions are normalized by
introducing d as the length scale, 1/ω as the time scale, dω as the velocity scale, and ρω2d2

as the pressure scale. The choice of characteristic time scale can be varied. Considering
that the research object of this work is the influence of an oscillating boundary on the
flow of a liquid film on an inclined plate, from this point of view, 1/ω is more suitable.
If only the influence of the inclined angle on the flow field is discussed, then it is more
appropriate to use the liquid film thickness divided by the typical velocity as the time
scale. The dimensionless parameters of the problem are as follows: the Reynolds number
Re = ωd2/ν shows the effect of frequency; the Froude number Fr = ωd/

√
gd shows the

effect of gravity; the Weber number We = σ/ρω2d3 shows the effect of surface tension,
and the viscoelastic parameter M = M0/(ρd2) shows the effect of viscoelasticity.

For the basic flow, we consider a unidirectional parallel flow, and the unperturbed
surface of the viscoelastic liquid film is parallel to the plate at y = 1. By simplifying
the governing equations and boundary conditions in a reference frame moving with the
oscillating inclined plate, the dimensionless equations for the basic flow are obtained:

∂tU = −∂xP + Re−1 ∂yyU − M ∂yytU + sin θ
Fr2 − ax sin t, (2.10a)

0 = ∂yP + cos θ
Fr2 + ay sin t, (2.10b)

with the corresponding boundary conditions

U = 0, at y = −1, (2.11a)

∂yU − M Re ∂ytU = 0, P = Pa, at y = 1, (2.11b)

987 A36-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

41
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.412


S. Du, Y. Xiao, S. Wang, L. Zeng and M. Zhao

where U( y, t) is the velocity of basic flow, P = pa/ρ(ωd)2 is the dimensionless ambient
pressure, and ax = Ax/d and ay = Ay/d are the oscillation amplitude components in the
streamwise and wall-normal directions, respectively. By solving unperturbed parallel flow
(2.10)–(2.11), the theoretical solution can be expressed as

U( y, t) = Us( y)+ Ut( y, t)

= Re sin θ
2 Fr2 (3 + 2y − y2)− ax Re

[{
cosh[r( y − 1)]

cosh(2r)
− 1

}
eit

]
, (2.12)

P( y, t) = Pa +
(

cos θ
Fr2 + ay sin t

)
(1 − y), (2.13)

V( y, t) = 0, (2.14)

with

r =
√

i Re
1 − iM Re

= ±Ω
√

Re S/2 (1 + iS),

Ω =
√

1 + (M Re)2 − M Re√
1 + (M Re)2

,

S =
√

1 + (M Re)2 + M Re,

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.15)

where Re[·] represents the real part of a complex function. The basic flow is separated
into two parts, namely, the steady part denoted by Us( y) and the time-dependent flow
denoted by Ut( y, t). Note that wall-normal oscillation ay is involved only in the expression
for pressure, which means that the unperturbed velocity is independent of wall-normal
oscillation. Besides, the discussed problem degenerates into that of Woods & Lin (1995)
and Lin et al. (1996) if the viscoelastic parameter M is zero. Further setting the oscillation
amplitudes to zero, the basic flow will degenerate into the stability problem of the
Newtonian fluid discussed by Yih (1963).

2.2. Linear stability problem
Considering the linear stability problem, the linear time-dependent Orr–Sommerfeld
equations can be derived by introducing the infinitesimal perturbation to the basic flow.
By ignoring higher-order small quantities, the perturbed flow variables can be expressed
as

u = U + u′, υ = υ ′, p = P + p′, h = 1 + h′, (2.16a–d)

where variables with superscript prime denote perturbation variables. By substituting
perturbation variables (2.16a–d) into the governing equations and boundary conditions
(2.10)–(2.11), we can obtain the dimensionless perturbation equations. Considering only
the onset of instability with respect to two-dimensional disturbance, the continuity will be
automatically satisfied by introducing a streamfunction ψ ′(x, y, t), such that

u′ = ∂yψ
′, υ ′ = −∂xψ

′. (2.17a,b)

In the following stability analysis, we look for the normal mode solution of the form

ψ ′(x, y, t) = φ( y, t) eikx, (2.18)

h′(x, t) = η(t) eikx, (2.19)
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where k represents the wavelength of infinitesimal perturbation in the streamwise
direction. By substituting the normal mode solution into the dimensionless perturbation
equations, one can derive the time-dependent Orr–Sommerfeld equation as

(L + ML 2) ∂tφ = L 2φ/Re − ikU(L + ML 2)φ + ik(D2U + MD4U)φ, (2.20)

with boundary conditions

φ = Dφ = 0, at y = −1, (2.21a)

M Re (L + 2k2) ∂tφ = (L + 2k2)φ − ikM Re [U(L + 2k2)− D2U]φ

+ [D2U − M Re D2 ∂tU]η, at y = 1, (2.21b)

[D + M(L − 2k2)D] ∂tφ = (L − 2k2)Dφ/Re − ikη(cos θ/Fr2 + ay sin t + k2 We)

− ik{U[D + M(L − 2k2)D]

+ M(D2UD − D3U)}φ, at y = 1, (2.21c)

∂tη = −ikφ − ikUη, at y = 1, (2.21d)

where the linear operators are L = D2 − k2 and D = ∂y. The Floquet system
(2.20)–(2.21) governs the linear stability problem. For finite-wavelength instabilities, the
differential system should be solved numerically, while long-wavelength solutions can be
obtained analytically by an expansion in k, and will be discussed in the following.

3. The long-wavelength expansion

For wavelengths that are long compared with the thickness of film 2d, the disturbed
wavenumber k is small, and the Floquet system with periodic coefficients is resolved based
on the long-wavelength expansion (k � 1) along with the Floquet theory proposed by Yih
(1968). Under the limit of long waves, the solution is assumed in the form

φ( y, t) = eγ t [φ0( y, t)+ k φ1( y, t)+ k2 φ2( y, t)+ · · · ], (3.1a)

η(t) = eγ t [η0(t)+ k η1(t)+ k2 η2(t)+ · · · ], (3.1b)

where the eigenfunctions φj( y, t) and ηj(t) ( j = 0, 1, 2, . . .) are 2π-periodic in time, the
Floquet exponent γ = γr + iγi is the complex growth rate of the disturbance, and γ is
expanded as a power series in k:

γ = γ0 + kγ1 + k2γ2 + · · · . (3.2)

The imaginary part of the Floquet exponent represents the phase difference, while the real
part represents the growth rate. By substituting expansion (3.1) into the Floquet system
(2.20)–(2.21), and collecting different order terms, a set of coupled ordinary differential
equations can be derived. By solving each order differential system, a series of Floquet
exponents γj ( j = 1, 2, . . .) can be obtained until the first non-zero growth rate is found.
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For the first-order O(k0), the Floquet system can be simplified as

(D2 + MD4) ∂tφ0 = D4φ0/Re, (3.3)

with boundary conditions

φ0 = Dφ0 = 0, at y = −1, (3.4a)

M Re D2 ∂tφ0 − D2φ0 = (D2U − M Re D2 ∂tU)η0, at y = 1, (3.4b)

(D + MD3) ∂tφ0 = D3φ0/Re, at y = 1, (3.4c)

γ0η0 + ∂tη0 = 0, at y = 1. (3.4d)

Here, γ0 must be zero since η0(t) is a periodic function of t. Otherwise, η = 0 and
γ0 /= 0 will lead to a damped mode as far as long waves are concerned, and that damped
mode is not of interest here. Without loss of generality, we choose η0 = 1. It can be noted
that the basic flow U( y, t) consists of a steady part Us( y) and a time-dependent part
Ut( y, t), mainly reflected in the tangential boundary condition in (3.4). Therefore, the
solution can be assumed to be

φ0( y, t) = φ̄0( y)+ φ̃0( y, t), (3.5)

where φ̄0( y) and φ̃0( y, t) represent the solutions induced by the steady and time-dependent
parts of the basic flow, respectively. By inserting φ0( y, t) into (3.3)–(3.4) and solving for
the first-order Floquet systems of φ̄0( y) and φ̃0( y, t), one can get the solution expression
as

φ̄0 = Re sin θ
2 Fr2 (1 + y)2, (3.6a)

φ̃0 = ax Re
[

cosh(r( y + 1))− 1

cosh2(2r)
eit

]
. (3.6b)

Obviously, the inclined angle θ affects only φ̄0, which is induced by gravity and does not
affect φ̃0, which is induced by streamwise oscillation ax. The surface kinematic equation
of the first-order Floquet system can also be obtained by collecting O(k) terms:

γ1 + ∂tη1 = −i(φ0 + U). (3.7)

Taking the steady terms and time-dependent terms for both sides of (3.7), one can obtain
expressions for γ1 and η1(t) as

γ1 = −4i Re sin θ/Fr2, (3.8)

η1 = −iax Im
[(

1 − 1

cosh2 (2r)

)
eit

]
, (3.9)

where Im[·] represents the imaginary part of a complex function. Here, γ1 is a pure
imaginary number and is induced only by x-direction components of gravity. If the
characteristic velocity scale ωd is replaced by a new velocity ua = 4gd2 sin θ/3ν, then
the dimensionless parameters Fr and Re will have the relation 3 Fr2 = 4 Re sin θ . Then the
expression for γ1 can be rewritten as −3i, which is in agreement with the typical result for
an inclined plane without oscillation (Yih 1963).
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To further determine the stability of the system, the order O(k2) for the Floquet system
should be discussed. As the Floquet exponent γ2 is independent of time, the solution
of first-order steady equations is sufficient to compute the next order Floquet exponent.
Therefore, we will focus solely on the steady terms of the first-order system. For the
first-order steady system of φ̄s

1( y) induced by gravity, we have the set of equations

(D2 + MD4)γ1φ̄0 = D4φ̄s
1/Re − iUs(D2 + MD4)φ̄0 + i(D2Us + MD4Us)φ̄0, (3.10)

with boundary conditions

φ̄s
1 = D φ̄s

1 = 0, at y = −1, (3.11a)

M Re D2γ1φ̄
s
0 = D2φ̄s

1 − iM Re (UsD2 − D2Us)φ̄s
0, at y = 1, (3.11b)

(D + MD3)γ1φ̄
s
0 = D3φ̄s

1/Re − i(cos θ/Fr2 + k2 We)− iUs(D + MD3)φ̄s
0

−iM(D2UsD − D3Us)φ̄s
0, at y = 1. (3.11c)

For the first-order system of φ̃s
1( y) induced by oscillation, we have the set of equations

D4φ̃s
1/Re = i[Ut(D2 + MD4)φ̃0 − (D2Ut + MD4Ut)φ̃0]s, (3.12)

with boundary conditions

φ̃s
1 = D φ̃s

1 = 0, at y = −1, (3.13a)

D2φ̃s
1 = iM Re (UtD2 − D2Ut)φ̃s

0 + (D2Ut − M Re D2 ∂tUt)η1, at y = 1, (3.13b)

D3φ̃s
1 = i Re [Ut(D + MD3)+ M(D2UtD − D3Ut)]φ̃s

0, at y = 1. (3.13c)

After some mathematical manipulation, the solution of the first-order steady system of
φ̄s

1( y) can be expressed as

φ̄s
1 = i

Re3 sin2 θ

Fr4

(
y5

60
− y4

12

)
+ Āy3 + B̄y2 + C̄y + D̄, (3.14)

with

Ā = i
Re3 sin2 θ

Fr4

(
−1

2
− 1

3
M

)
+ i

6
Re

(
cos θ
Fr2 + k2 We

)
,

B̄ = i
Re3 sin2 θ

Fr4

(
11
6

+ M
)

− i
2

Re
(

cos θ
Fr2 + k2 We

)
,

C̄ = i
Re3 sin2 θ

Fr4

(
19
4

+ 3M
)

− 3i
2

Re
(

cos θ
Fr2 + k2 We

)
,

D̄ = i
Re3 sin2 θ

Fr4

(
151
60

+ 5
3

M
)

− 5i
6

Re
(

cos θ
Fr2 + k2 We

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.15)

The solution of the first-order unsteady system of φ̃s
1( y) can be expressed as

φ̃s
1 = i

a2
x

2
R1 + i

a2
x

2
R2 + Ãy3 + B̃y2 + C̃y + D̃, (3.16)
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with

R1 = −(a4 − 6a2b2 + b4)

8a4b4[cosh(4a)+ cos(4b)]2

× {a4 sin[2b( y − 1)] sinh(4a)+ b4 sinh[2a( y − 1)] sin(4b)},

R2 = Re
[

i
cosh[(a − bi)( y + 1)]

cosh2(2a − 2bi)
+ i

cosh[(a + bi)( y − 1)]

cosh2(2a − 2bi) cosh(2a + 2bi)

]
,

Ã = B̃ = 0,

C̃ = −i
a2

x

2
(DR1 + DR2)|y=−1,

D̃ = −i
a2

x

2
(DR1 + R1 + DR2 + R2)|y=−1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.17)

where a, b are the real and imaginary parts of r, respectively:

a = Ω
√

Re S/2, b = ΩS
√

Re S/2. (3.18a,b)

Substituting (3.1) into (2.21d) and collecting O(k2) terms, the surface kinematic
equation of the second-order Floquet system can be obtained as

γ2 = −i[φ̄s
1 + φ̃s

1 + Utη1]

= −iφ̄s
1|y=1 − a2

x

[
DR1 + R1

2
+ DR2 + R2

2

]∣∣∣∣
y=−1

, (3.19)

with

− iφ̄s
1|y=1 = Re3 sin2 θ

Fr4

(
128
15

+ 16
3

M
)

− 8
3

Re
(

cos θ
Fr2 + k2 We

)
. (3.20)

From (3.19), we conclude that the stability of a long-wave system consists of the
gravity-related item φ̄s

1|y=1 and the streamwise oscillation related terms R1 and R2. In other
words, the long-wave solution is independent of the wall-normal oscillation amplitude ay.
If streamwise oscillation ax equals zero, then the stability of the system is dependent only
on −iφ̄s

1|y=1.
Up to now, we have obtained the analytical solution of the linear stability of the

viscoelastic fluid film on the inclined plate under the long-wave limit. Based on the
theoretical solution, we will analyse the dependence of liquid film stability with different
parameters, including the inclination angle θ , viscoelastic parameters M, Froude number
Fr, Reynolds number Re, and Weber number We. Before this, as a supplement and support
to the theoretical results, the finite-wavelength analysis is also performed by solving the
time-dependent disturbance equation. The relevant numerical procedure is introduced in
detail in Wang et al. (2023), and will not be repeated here. Several tests are performed
for different numbers of Chebyshev polynomials and Fourier series to ensure numerical
convergence, and the results are shown in Appendix A.

Under the limit of long waves (k � 1), the analytical solution and numerical solution
are compared with different oscillatory amplitudes and viscoelastic values. Figure 2(a)
displays the real part γr and the imaginary part γi for Newtonian fluid in the range
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Figure 2. (a) Comparison of long-wave analytical solutions (black lines) and numerical solutions (blue open
circles) for a Newtonian fluid with flow parameters Fr = 10, M = 0, ax = 0, ay = 0.1, Re = 5, We = 0.016
and θ = 90◦. (b) Comparison of long-wave analytical solutions (black lines) and numerical solutions (blue
open circles) for viscoelastic fluid with flow parameters Fr = 100, ax = 6, ay = 0, Re = 10, We = 0.016 and
θ = 90◦.

10−8 < k < 100 by taking the typical parameters We = 0.016, θ = 90◦, Fr = 10, ay = 0.1,
Re = 5. It can be seen that the Floquet exponent is complex-valued. The real part of the
eigenvalue γ is always positive, which eventually leads to the unstable system of the flow.
It can be noted that the numerical solution (blue open circles) and the analytical solution
(black solid lines) match very well when the wavenumber k is smaller than 10−1. For
a larger wavenumber, the assumption of a long-wave limit is no longer valid, and the
analytical solutions will gradually become invalid. Figure 2(b) displays the real part γr of
viscoelastic fluid varying with the wavenumber k under the same range 10−8 < k < 100

with the given parameters We = 0.016, θ = 90◦, Fr = 100, ax = 6, Re = 10. The lower
and upper lines are the long-wave solutions with viscoelastic parameters M = 0 and
M = 0.01, respectively. It can be seen that the viscoelasticity has a destabilizing effect
on the instability under the given parameters. Similarly, the blue open circles coincide
well with the black solid line in the range k < 10−2. When k > 10−1, the long-wave
solution gradually deviates from the numerical solution, which indicates the correctness
of the long-wave solution and numerical solution for streamwise oscillation. It will be seen
below that this instability falls within the oscillatory instability range. In this section, the
numerical results will be used only to verify the rationality of the long-wave theoretical
analysis, and ensure the correctness and determine the applicability of the theoretical
solution. All results discussed below in this part are based on the theoretical solutions.

3.1. Effect of inclined angle (M = 0, We = 0.016, Fr = 100)
First, we calculated the distribution of unstable regions on the (ax,Re)-plane at different
dip angles when there is no viscoelasticity (M = 0), as shown in figure 3. The stable
and unstable regions are denoted by blue and yellow, respectively. When the inclination
angle is small (θ < 50◦), as can be seen from figures 3(a,b), the unstable region presents
three families of U-shaped curves (from low-frequency to high-frequency, the first, second
and third families in turn), and the flow will be unstable only within a specific Re
range. With the increase of oscillation frequency, the amplitude of oscillation leading

987 A36-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

41
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.412


S. Du, Y. Xiao, S. Wang, L. Zeng and M. Zhao

103

U U U
U

U
U U

U
U

S S S

S

SS

102

101

100ax
10–1

10–2

10–3

103

102

101

100ax
10–1

10–2

10–3

Re Re Re
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50

103

102

101

100

10–1

10–2

10–3

103

102

101

100

10–1

10–2

10–3

103

102

101

100

10–1

10–2

10–3

103

102

101

100

10–1

10–2

10–3

(e) ( f )

(b)(a)

(d )

(c)

Figure 3. Stability limits in the (ax,Re)-plane for M = 0, We = 0.016, Fr = 100, with different inclined
angles: (a) θ = 10◦, (b) θ = 50◦, (c) θ = 60◦, (d) θ = 70◦, (e) θ = 80◦, and ( f ) θ = 90◦. Stable (S) and
unstable (U) regions are denoted by blue and yellow bands, respectively.

to linear instability is also increasing rapidly. Nevertheless, when the inclination angle
is in the range 10◦–50◦, the instability boundary has hardly changed. When θ = 60◦, a
new unstable region appears at the high-frequency oscillation (Re > 45.6) in figure 3(c),
and a very small amplitude of streamwise oscillation in this region can also make the
flow unstable. After careful examination, the instability of this area is caused by gravity,
which can also explain why the unstable area cannot be found when θ is small. As the
inclination angle continues to increase, such as θ = 70◦ and 80◦, the gravity instability
region continuously expands to the low frequency and merges with the third family
oscillation instability region. With respect to the vertical flat plate (see figure 3f ), most
of the regions in the (ax,Re)-plane are linearly unstable due to the continuous expansion
of the gravity instability region.

3.2. Effect of viscoelasticity (We = 0.016, Fr = 100)
Figure 4 shows the effect of viscoelasticity on the stability of the oscillating liquid
film. When the tilt angle of the plate is small, U-shaped neutral curves appear in the
separated bandwidths of the imposed frequency. Moreover, there is a critical streamwise
oscillation amplitude in each unstable frequency range. Disturbance diminishes in the
region underneath each curve corresponding to stable modes. As the viscoelasticity
increases, the unstable frequency bandwidth corresponding to each family of neutral
curves will be narrowed, and the critical streamwise oscillation amplitude will also be
reduced, which means that compared with Newtonian fluid, the viscoelastic fluid film
is more unstable under the same oscillation parameters. Different from the results for
small inclination angle, the neutral curve of liquid film with inclination angle 60◦ has
gravity instability region in the high frequency range. The flow in the liquid film is
unstable when the external oscillation amplitude is lower than the critical streamwise
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Figure 4. The neutral curves for the long-wavelength instability in the (ax,Re)-plane for We =
0.016, Fr = 100, with different M and inclined angles: (a) θ = 10◦, (b) θ = 60◦, and (c) θ = 90◦.
(d) The growth rate as functions of Re for M = 0, M = 0.01 and M = 0.015 with ax = 6 in (c).

oscillation amplitude, but all infinitesimal disturbances are stable when the critical
oscillation amplitude is exceeded. In other words, streamwise oscillation can restrain
the gravity instability in high-frequency oscillation to some extent. For viscoelastic
liquid films, however, the results are different. It can be seen that when M = 0.01, the
critical streamwise oscillation amplitude in the gravity instability region is beyond the
scope of parameter research, i.e. the suppression effect of streamwise oscillation on the
gravity instability of viscoelastic liquid film is not as obvious as that of Newtonian fluid.
Actually, the unstable region corresponding to high-frequency oscillation here is formed
by the fusion of the oscillation unstable region and the gravity unstable region under the
action of viscoelasticity, and this region will expand continuously with the increase of
viscoelasticity. For the vertical flat plate, the unstable region occupies most area of the
(ax,Re)-plane due to the increasing inclination angle, and the interior of the U-shaped
curve is stable at this time. An increase of viscoelasticity makes the neutral curve move in
the direction that both ax and Re become smaller. In order to study the variation of growth
rate with viscoelasticity at different frequencies, we show the functional relationship curve
of γ2 and Re under typical parameters (see figure 4d). Considering that the ordinate
is logarithmic, only the part with positive growth rate is shown in the figure. It can
be observed that the influence of viscoelasticity appears in the following three aspects.
The first is that viscoelasticity can increase the growth rate, which is reflected in both
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Figure 5. Stability limits in the (ax,Re)-plane for θ = 90◦, M = 0.01, We = 0.016, with different Fr:
(a) Fr = 10, (b) Fr = 100, (c) Fr = 200, (d) Fr = 500, (e) Fr = 800, and ( f ) Fr = 1000. Stable (S) and
unstable (U) regions are denoted by blue and yellow bands, respectively.

low-frequency and high-frequency regions. Second, viscoelasticity makes the stable region
or instability move to the low-frequency direction. And third, viscoelasticity may change
the unstable region of Newtonian fluid into a stable frequency bandwidth (e.g. when
M = 0.015, 32.2 < Re < 40.4). As a result, for the long-wave instability of an oscillating
plate, viscoelasticity is no longer only an unstable effect but also makes the flow more
stable under certain parameters.

3.3. Effect of gravity (θ = 90◦, M = 0.01, We = 0.016)
Figure 5 depicts the influence of changing gravity on the stability of a viscoelastic
vertical plate liquid film. It can be seen that in the range 10 < Fr < 200, the neutral
curve also presents a U-shaped curve with stable frequency bandwidth and unstable
frequency bandwidth separated from each other, and the stable region is above the
neutral curve. With the increase of Fr, the critical streamwise oscillation amplitude of
the neutral curve decreases, but the frequency range corresponding to the stable region
has not changed obviously. When Fr = 500, the stable regions of the first and second
families merge with each other, so that an unstable frequency bandwidth is formed
in the range 8.2 < Re < 14.9. If Fr is increased further, then the stable region will
further expand to the high-frequency direction, and finally a U-shaped curve with stable
frequency bandwidth and unstable frequency bandwidth separated from each other will be
formed. The difference is that in the unstable frequency bandwidth, when the streamwise
oscillation amplitude exceeds a certain value, the flow will be unstable, i.e. the upper part
of the U-shaped curve is the unstable region. It is worth noting that no matter how gravity
changes, the flow is always unstable when Re < 2. In general, increasing Froude number
makes the viscoelastic liquid film more stable under the condition of small streamwise
oscillation.
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Figure 6. The neutral curves for the long-wavelength instability in the (ax,Re)-plane for θ = 90◦, M = 0.01,
Fr = 100, with different We values.

3.4. Effect of surface tension (θ = 90◦, M = 0.01, Fr = 100)
Finally, we discuss the influence of surface tension on the stability of a viscoelastic liquid
film. The neutral curves of surface tension with different orders are shown in figure 6. As
can be seen, with the increase of We, the bottoms of the three U-shaped neutral curves
develop in the direction of decreasing ax and Re, while maintaining a stable frequency
bandwidth. Different from before, when We = 0.2, a convex neutral curve emerges in the
lower left corner of the (ax,Re)-plane, as shown by the blue dashed line in figure 6.
With the further increase of We, the curve will merge with the first family of neutral
curves to form a larger stable region, and gradually expand to both low-frequency and
high-frequency directions. We conclude, therefore, that increasing the surface tension can
make more regions on the (ax,Re)-plane change from unstable regions to stable regions,
i.e. the viscoelastic liquid film is more stable to some extent.

4. Finite-wavelength instability

In this section, we will discuss the stability of a viscoelastic oscillating liquid film
flowing down a wall-normal oscillating plate under arbitrary wavelength disturbance. We
briefly discuss the numerical method implemented to solve the time-dependent Floquet
system (2.20)–(2.21). By expanding the disturbances in the form of truncated complex
Fourier series and substituting the Fourier series into the perturbation equation, a matrix
differential equation will be obtained after collecting the coefficients of the same Fourier
components. Then the linear system can be turned into a matrix eigenvalue problem
by utilizing the Chebyshev spectral collocation method. Floquet exponents and the
corresponding eigenvectors are obtained by solving the generalized eigenvalue problem.
To find the neutral stability curve, it is necessary to find that the real part of the Floquet
exponent is zero.

Figure 7 depicts the neutral curve and temporal growth rate for the low-frequency
oscillation plate with typical parameters. As can be seen from figure 7(a), four different
unstable regions are identified, i.e. the gravitational unstable region (GU), the first
resonance subharmonic unstable region (SU-1), the resonance harmonic unstable region
(HU) and the second resonance subharmonic unstable region (SU-2). The gravity
instability region is mainly distributed in the vicinity of the long-wave instability
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Figure 7. (a) Neutral curves in the (ay, k)-plane for different viscoelasticities M. Variation of temporal growth
rate γr with wavelength k when (b) ay = 1, (c) ay = 5, and (d) ay = 10. Here, the black line, blue dashed
line and orange dash-dotted line represent M = 0, M = 0.01 and M = 0.02, respectively. Other parameters are
Re = 5, Fr = 10, We = 0.016, ax = 0 and θ = 90◦. The triangles mark the positions of the critical amplitude
of the resonance waves.

that is caused by the component force of gravitational force along the flow direction.
With the increase of the oscillation amplitude ay, the region GU gradually shrinks and
the wall-normal oscillation has a suppression effect on the gravity unstable region. The
resonance harmonic and subharmonic unstable regions exhibit tongue-like shapes with
wide unstable ranges of wavenumber, where subharmonic modes refer to the imaginary
part of the eigenvalue γi with 0.5i. By increasing the forcing amplitude of wall-normal
oscillation ay, subharmonic and harmonic instabilities will occur once ay exceeds the
respective critical amplitudes, which are indicated by triangles in figure 7(a). For the
Newtonian fluid (M = 0), SU-1 and SU-2 first appear at (0.8, 1.2) and (7.205, 2.5) in
the (ay, k)-plane, while HU is first excited at (1.87, 3.44). Note that for a given forcing
amplitude, there exist stable ranges of wavenumber between GU and SU-1 as well as
between SU-1 and HU, which means that when the wavenumber k increases, switching
between different unstable modes is conducted in a discontinuous manner.

4.1. Wall-normal oscillation results
When the influence of viscoelastic fluid is considered, it is observed that the shape
of the neutral curve remains unchanged. The three tongue-shaped harmonic instability
regions and the gravity instability region continue to exist, but the critical parameters are
altered. When viscoelasticity is incorporated, the unstable boundary for GU shifts to a
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higher wavenumber. The expansion of the gravity instability region implies that
viscoelasticity will destabilize the gravity instability mode. In addition, the right
boundaries of resonance unstable regions for SU-1, HU and SU-2 all shift to smaller
wavenumbers, and correspond to the changes of critical parameters. Regions SU-1 and
SU-2 first appear at (0.786, 1.16) and (7.12, 2.3) in the (ay, k)-plane, and HU is first
excited at (1.8, 3.41) for M = 0.01. The existence of viscoelasticity reduces the critical
amplitudes of subharmonic and harmonic instabilities. Therefore, the subharmonic and
harmonic instabilities can be generated at lower forcing amplitudes for a wall-normal
oscillatory viscoelastic fluid. In order to analyse the influence of viscoelasticity on the
four kinds of instability more comprehensively, the variations of temporal growth rate γr
with wavenumber k corresponding to three different wall-normal oscillation amplitudes
are also shown in figure 7. The temporal growth profile shows two humps if the amplitude
of the oscillating plane is fixed at ay = 1; see figure 7(a). The first hump is linked to the
gravitational instability and appears in the long-wave regime, while the second hump is
associated with the subharmonic instability and appears in the finite-wavelength regime.
It can be seen that the maximum growth rates of GU and SU-1 both increase with the
increase of viscoelasticity, but the growth rate of the gravity mode is far less than that of
subharmonic instability. However, there is no hump corresponding to HU and SU-2, since
the forcing amplitude ay = 1 is not large enough. For ay = 5, along with gravity instability
and subharmonic instability, a new hump related to harmonic instability appears. It can be
found in figure 7(c) that the peak value increases with the increase of viscoelasticity, and
the corresponding wavenumber decreases. Unlike the case ay = 1, the corresponding peak
value of SU-1 becomes smaller when ay = 5. If the wall-normal oscillation amplitude
is further increased to ay = 10, then the humps of the four instabilities all appear in
figure 7(d). Again, with the increase of M, the hump corresponding to SU-2 moves in the
direction of increasing growth rate and decreasing wavenumber. It is worth mentioning
that the maximum values of growth rates for SU-1 and HU diminish with the increasing
value of viscoelasticity. Here, combining the above results, an interesting phenomenon is
observed that the maximum value of all emerging humps is greater than the growth rate of
the existing unstable mode, and viscoelasticity has a destabilizing effect on the emerging
modes and makes the existing modes more stable.

Next, we will discuss the influence of the viscoelastic parameter on the stability of
higher-frequency oscillating plates. Figure 8 illustrates the neutral curve for the oscillation
plate with Re = 30. For the case M = 0, there are still four unstable regions on the
neutral curve plane. Compared with the result of low-frequency oscillation, increasing
the oscillation frequency increases the gravitational unstable wavenumber range and
compresses the neutral curve to lower oscillation amplitude. And the critical amplitudes
for the first subharmonic and harmonic instabilities are reduced significantly. Besides, it
can be noticed that the region of GU merges with SU-1 in the range 1 < ay < 2.16. When
the effect of viscoelasticity is incorporated, the unstable region between gravitational
and first subharmonic instabilities increases, e.g. 0.9 < ay < 2.36 for M = 0.01, and
0.82 < ay < 2.46 for M = 0.015. The impact of viscoelasticity on the first subharmonic
resonance is manifested in two aspects. With the increase of M, the region of SU-1 is
gradually squeezed, and the critical oscillation amplitude of SU-1 is almost unchanged, but
the corresponding critical wavenumber gradually decreases, as indicated by the triangles
in figure 8. The oscillation frequency might be more important than the viscoelastic effect
on gravity and first subharmonic instabilities. Nevertheless, the influence of viscoelasticity
on HU significantly increases the critical oscillation amplitude and decreases the critical
disturbance wavenumber.
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Figure 8. Neutral curves in the (ay, k)-plane for different viscoelasticities M. Here, black lines, blue dashed
lines and orange dash-dotted lines represent M = 0, M = 0.01 and M = 0.015, respectively. Other parameters
are Re = 30, Fr = 10, We = 0.016, ax = 0, θ = 90◦. The triangles represent the critical amplitude of the
resonance wave.
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Figure 9. Variation of temporal growth rate γr with wavelength k for (a) ay = 1 and (b) ay = 3. Here, the black
solid line, green dotted line, blue dashed line, red dash-dot-dotted line, and orange dash-dotted line represent
M = 0, M = 0.005, M = 0.01, M = 0.013 and M = 0.015, respectively.

Figure 9(a) shows the variation of growth rate γr with the wavenumber k for low forcing
amplitude ay = 1. The growth rates for the gravitational and subharmonic instabilities
enhance with the increasing values of viscoelastic parameters at ay = 1. The minimum
value of the growth rate curve at the depression (k ≈ 0.5) increases to a value greater than
zero, which can explain the phenomenon that the unstable region between GU and SU-1
increases. If the forcing amplitude is increased to a comparatively higher value ay = 3,
then the hump associated with the first subharmonic resonance becomes weaker, while
the harmonic and second subharmonic resonances amplify with the increasing value of
M (see figure 9b). Compared with the case of low oscillation frequency (Re = 5), the
maximum growth rate of higher-frequency oscillation when M < 0.013 corresponds to
harmonic resonance instead of hump corresponding to high wavenumber. Further, when
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Figure 10. Neutral curves in the (k,Re)-plane for different viscoelasticities M. Here, black solid lines, blue
dashed lines and orange dotted lines represent M = 0, M = 0.01 and M = 0.015, respectively. Other parameters
are Fr = 100, We = 0.016, ax = 6, θ = 90◦, ay = 0. The solid circles show the critical frequencies of the
unstable regions.

the value of the viscoelastic parameter exceeds 0.013, a sharp peak will quickly grow
at the hump of SU-2, which will increase with the increase of M and eventually exceed
the maximum growth rate of HU. Therefore, for the liquid film with higher-frequency
oscillation, the most unstable mode is determined by the liquid viscoelasticity and the
forcing amplitude.

4.2. Streamwise oscillation results
Now we will discuss the stability of a viscoelastic oscillating liquid film flowing down
an oscillating plate with streamwise oscillation. To investigate the effect of viscoelastic
liquid on the stability with different oscillation frequencies Re under arbitrary wavelength
disturbance, we set Fr = 100, We = 0.016, ax = 6, θ = 90◦ and ay = 0. The neutral curve
in the (k,Re)-plane is illustrated in figure 10. It is obtained that the neutral curve exhibits
three distinct unstable regions specified by the first harmonic resonated unstable region
(HU-1), the second harmonic resonated unstable region (HU-2), and the gravitational
unstable region (GU) for the given set of parameter values (Lin et al. 1996). The resonated
unstable regions HU-1 and HU-2 are developed owing to the streamwise oscillation of the
plane, while the region GU is responsible for the gravitational instability. There are two
stable bandwidths among the different unstable regions, and all infinitesimal disturbances
will be attenuated within those bandwidths. For the first harmonic resonated unstable
region, the neutral curve does not change considerably for k < 0.5 when the viscoelastic
parameter alters. However, with the increase of viscoelasticity, the neutral curve extends
to higher wavenumbers for k > 0.5, and the critical oscillation frequency of HU-1 also
increases from 5.71 when M = 0, to 6.05 when M = 0.015. The viscoelasticity has a
significant impact on the region of HU-2, and the critical wavenumber of HU-2 increases
rapidly with the increase of M. For the gravitational unstable region, it is shown that the
increasing M makes the neutral curve gradually show the characteristics of being convex
at both ends and concave in the middle, as shown by the blue dashed line in figure 10.
Further increasing the viscoelasticity (M = 0.015), the neutral curve is finally divided into
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Figure 11. (a) Variation of temporal growth rate γr with oscillation frequency Re for (a) k = 0.05 and
(b) k = 0.5. The black solid lines, blue dashed lines and orange dash-dotted lines represent M = 0, M = 0.01
and M = 0.015, respectively.

two parts, and a stable bandwidth is formed within the range 32.4 < Re < 40.8. In other
words, the increase of viscoelasticity makes the gravity instability region divide into two
parts, and the frequency range between the two parts is linearly stable.

The variation of temporal growth rate with Reynolds number for different values of
M at a specified wavenumber is displayed in figure 11. Two typical wavenumbers are
selected to reveal the associated growth rates for the regions HU-1, HU-2 and GU when the
viscoelastic parameter varies. For k = 0.05, when M = 0, it can be seen in figure 11(a) that
the black solid lines are divided into three parts by two stable bandwidths, corresponding to
three unstable regions, respectively. Each part of the growth rate curve shows a U-shaped
curve with a downward opening. When viscoelasticity is considered, members of the
first family of U-shaped curves almost coincide, i.e. viscoelasticity does not affect the
growth rate of the low-frequency oscillation plate. The second family of U-shaped curves
gradually rises with the increase of M, which means that the viscoelasticity promotes the
instability of region of HU-2. The third family of curves, representing the gravitational
instability region, changes most dramatically when the viscoelasticity alters. The temporal
growth rate decreases in the middle of the oscillation frequency of GU, and ultimately
vanishes from the growth rate diagram with the increasing value of M. As a consequence,
the increasing M has a stabilizing effect on the instability in the range of oscillation
frequency 32.4 < Re < 40.8. Figure 11(b) shows the variation of the growth rate with
oscillation frequency Re at a higher wavenumber k = 0.5. Because gravity instability exists
only in the case of small disturbance wavenumber, there are only two families of U-shaped
curves in figure 11(b). It can be seen that the first family of curves increases slightly with
the increase of viscoelasticity, while the second family of curves increases significantly
and is adjoined by the expansion of an unstable frequency range. The above results are
fully consistent with the results reported in figure 10.

4.3. Effect of viscoelasticity on shear wave mode
The influence of viscoelasticity in the presence of wall oscillation on the shear wave
instabilities is considered in this subsection. When the angle of inclination is sufficiently
small, one expects to see the emergence of the shear waves (Lin 1967; Chin et al. 1986;
Floryan et al. 1987), which occur at much larger Reynolds numbers. To investigate the
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Figure 12. (a) Variation of temporal growth rate γr with wavelength k in the absence of oscillation. The
black solid line, blue dashed line and orange dash-dotted line represent M = 0, M = 0.0001 and M = 0.0005.
(b) Variation of temporal growth rate γr with wavelength k. Here, the black solid line and dash-dotted line are
M = 0 and M = 0.001 when ay = 1. The orange lines change ay = 2 only with respect to the black lines.

effect of viscoelasticity on shear wave mode for an oscillatory liquid film, the parameters
of the numerical experiment are set as θ = 1◦, Fr = 1, We = 5, Re = 293. Although there
exists a critical inclined angle depending on the surface tension, the liquid film will show
shear wave instability (Woods & Lin 1996), which is not the main motivation of this
subsection. Figure 12(a) displays the variation of growth rate γr with wavenumber k for
the inclined plane without oscillation, i.e. ax = 0 and ay = 0. The growth rate curve for
Newtonian fluid exhibits two unstable modes: shear waves and surface waves. As can be
shown, the viscoelasticity significantly affects the shear wave mode while just marginally
enhancing the surface wave mode. The most dangerous mode changes from surface wave
to shear wave, when the viscoelastic parameter is raised to only 0.0005, which indicates
that the viscoelastic effect on the stability of liquid film is very considerable. For the
wall-normal oscillating plate, it is seen in figure 12(b) that both the surface waves and
shear waves are quickly dominated by the Faraday waves compared with the static plate
since the value of the growth rate (black solid line) is far greater than that in figure 12(a).
If the viscoelastic parameter M is increased to 0.001, then the Faraday wave will remain
unchanged, but the shear mode will be significantly enhanced (black dash-dotted line).
For a greater value of forcing amplitude, e.g. the orange line for ay = 2, the same result
can be observed. It is worth noting that although the appearance of viscoelasticity makes
shear waves dominate, increasing the forcing amplitude of oscillation appears to decrease
the maximum growth rate of shear waves while maintaining the same value of M. This
implies that wall-normal oscillation will appropriately suppress shear waves.

Figure 13(a) shows the effect of streamwise oscillation on the temporal growth rate γr
with ay = 0 for M = 0. When the inclined plate is stationary, there is a shear wave at
k = 0.54, and the oscillation perpendicular to the wall will amplify the growth rate of
this shear wave mode. Interestingly, when there is only streamwise oscillation, the shear
wave at this position will be suppressed, but a new hump will appear at k = 0.66. When
ax = 3.25, the maximum growth rate of the new unstable mode has the same value as that
of surface wave at the same wavenumber. Further increasing the oscillation amplitude to
ax = 3.45, the new unstable mode is dominant. The newly emerging mode is called the
oscillatory mode. What needs special explanation is that the shear mode is determined
by the steady-state solution driven by gravity in the basic flow, and the imaginary part
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Figure 13. (a) The effect of streamwise oscillation on the temporal growth rate γr with ay = 0 for M = 0.
The black solid line, blue dots and black dashed line represent ax = 0, ax = 3.25 and ax = 3.45. (b) Variation
of temporal growth rate γr with wavelength k for different ax and M. The blue dots represent ax = 3.25 and
M = 0. The black dashed line represents ax = 3.25 and M = 0.0005. The orange dash-dotted line represents
ax = 3.45 and M = 0.0005.

of its eigenvalue is not zero. Unlike the shear mode, the eigenvalue of the oscillatory
mode is a real number, and the oscillatory mode is caused by streamwise oscillation
of the inclined plate. Therefore, the increase of ax suppresses the shear wave mode but
excites the oscillatory mode. This is to be expected physically: as the forcing amplitude
increases, the proportion of energy of periodic oscillation part Ut( y, t) in the total energy
of basic flow (2.12) increases gradually. If the effect of viscoelasticity is incorporated, then
the oscillatory mode starts to enhance, as can be seen in figure 13(b). When the forcing
amplitude is increased from that given by the black dashed line in figure 13(b), with the
rest of the parameters kept constant, the enhancement of the oscillatory mode becomes
very prominent. The maximum amplification rate of the oscillatory mode is actually
much larger than the surface waves. Despite this, the growth rate of the surface waves
hardly changes whether the amplitude of streamwise oscillation or viscoelastic parameter
is increased.

5. Conclusion

In this work, we have studied the linear instability of a weakly viscoelastic film on an
oscillating inclined plane for disturbances with arbitrary wavenumbers. By introducing
an infinitesimal perturbation to the unsteady basic flow, the time-dependent perturbation
equations governing the stability of viscoelastic liquid film are derived. Floquet theory
is utilized to describe the combined influences of viscoelasticity and forcing amplitude
of oscillation on the linear instability of an oscillating liquid film. The flow is governed
by seven parameters: Reynolds number Re, viscoelastic parameter M, Froude number Fr,
Weber number We, inclined angle θ , and forcing amplitude in the wall-normal direction
ay, and the streamwise direction ax. The present parametric study is focused mainly on
the critical mode of the linear problem. The solutions for long-wavelength instability in
the limit of long-wave perturbations (k � 1) are obtained by the asymptotic expansion
method. For finite-wavelength instability, the time-dependent perturbation equations are
solved numerically by using the Chebyshev spectral collocation method. The convergence
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of numerical results is verified, and the finite-wavelength numerical results agree well with
the long-wave expansion results and the results of earlier studies. The main conclusions of
the analysis are as follows.

For long-wavelength instability, the asymptotic solution shows that the second-order
Floquet exponent consists of gravity-related items and streamwise-oscillation-related
terms. As a result, the wall-normal oscillation is no longer considered in long-wave
stability. The influence of inclination angle θ on a Newtonian fluid (M = 0) film is
considered first, When θ < 50◦, the unstable region presents three families of U-shaped
curves, and a new unstable region associated with the gravity instability appears at the
high-frequency oscillation for θ = 60◦. With the increase of θ , the gravity instability
region continuously expands and merges with the third family oscillation instability
region. When considering the effect of viscoelasticity, the unstable frequency bandwidth
corresponding to each family of neutral curves will be narrowed, and the critical amplitude
of streamwise oscillation will also be reduced. The effects of gravity and surface tension
on the stability of viscoelastic liquid film are also discussed. For the vertical viscoelastic
liquid film, increasing the Froude number makes the flow more stable, and increasing
the surface tension can also make the viscoelastic liquid film more stable under some
parameters.

The effects of both wall-normal oscillation and streamwise oscillation on the stability
with finite-wavelength perturbation are discussed. For the wall-normal oscillation, four
different unstable regions are identified: the gravitational unstable region, the first
resonance subharmonic unstable region, the resonance harmonic unstable region, and
the second resonance subharmonic unstable region. The existence of viscoelasticity shifts
the unstable boundary for the gravitational unstable region to a higher wavenumber and
reduces the critical amplitudes of subharmonic and harmonic instabilities. By analysing
the variation of growth rate with wavelength under different forcing amplitude of
oscillation, it is observed that the maximum value of all emerging humps is greater than
the growth rate of the existing unstable mode, and viscoelasticity has a destabilizing
effect on the emerging modes and makes the existing modes more stable. In addition,
the most unstable mode for higher-frequency oscillation Re is determined by the liquid
viscoelasticity and the forcing amplitude. For streamwise oscillation, the neutral curve in
the (k,Re)-plane exhibits three distinct unstable regions specified by the first harmonic
resonated unstable region, the second harmonic resonated unstable region, and the
gravitational unstable region. The viscoelasticity has a significant impact on the region
of harmonic resonated unstable region, and the critical wavenumber increases rapidly
with the increase of M. Further increasing the viscoelasticity, the neutral curve of gravity
instability is divided into two parts, and a stable bandwidth is formed within the range
32.4 < Re < 40.8. It is known that at small angles of inclination, the shear waves may
emerge at sufficiently large Re. The influences of viscoelasticity in the presence of wall
oscillation on the shear wave instabilities are also considered. For a wall-normal oscillating
plate, the results show that with the increase of viscoelasticity, the shear mode will be
significantly enhanced, while the Faraday waves will remain unchanged. For a streamwise
oscillating plate, with the increase of the oscillation amplitude, the shear wave will be
suppressed and a new unstable mode with zero imaginary part of eigenvalues, namely the
oscillatory mode, will dominate. And the oscillatory mode will be enhanced if the effect
of viscoelasticity is incorporated.

However, only infinitesimal disturbances are considered in this paper, and the
precise mechanism of onset of instability remains to be delineated quantitatively. Other
rheological models can be studied under the present configuration. We anticipate that the
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Figure 14. (a) Time convergence varies with the truncation number of Fourier modes when the flow
parameters are Fr = 10, We = 0.016, M = 0.01, θ = 90◦, ax = 0, ay = 1, k = 1. (b) Space convergence varies
with the order of Chebyshev polynomials when the parameters are the same as in (a). The black solid circles,
orange triangles and blue squares represent Re = 5, 30 and 100, respectively.

present linear results may serve as a guide for the analysis of the finite-amplitude instability
to reveal the possibility of subcritical and supercritical instabilities near the border of the
neutral curve.
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Appendix A. Numerical convergence and validation tests

The convergence of numerical simulation is tested by computing the relative error of the
maximum real parts growth rate when the number of Chebyshev polynomials and Fourier
series varies. Here, the relative error is defined as

γerror = ‖γ (N + 1,K)− γ (N,K)‖2

‖γ (N,K)‖2
, (A1)

where N and K are the truncated number of Chebyshev polynomials and the truncated
number of Fourier series, and ‖ · ‖2 represents the L2 norm. Therefore, (A1) represents
the different Chebyshev polynomials with constant value K, while the effect of different
Fourier modes can be defined in the same way.

Figure 14(a) illustrates that the relative error varies with the different number of Fourier
modes when the number of Chebyshev polynomials is fixed at 20. It can be shown that the
relative error converges rapidly with the number of Fourier modes K. Here, we choose
the Fourier mode K = 14 in the subsequent calculations, which is sufficient to obtain
accurate numerical results. Figure 14(b) illustrates that the relative error varies with the
different number of Chebyshev polynomials when the Fourier mode is 14. It is found that
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Figure 15. (a) The variations of growth rate γr with wavelength k for different forcing amplitudes ay.
(b) Neutral curves in the (k,Re)-plane.

the variation of relative error is affected by the order of the Chebyshev polynomial and Re.
When the value of Re is small, such as Re = 5, we use N = 20 for numerical calculation.
When Re is at a slightly higher value of 30, the order of the Chebyshev polynomial needs
to be 30. Similarly, if the Reynolds number is very high, such as Re = 100, at least N = 40
is needed to meet the accuracy of numerical simulation.

Here, we compare our results with previous results to demonstrate the validation of
our numerical procedure. Figure 15(a) displays the validation results for wall-normal
oscillation. The black lines are obtained by the present numerical procedure, in which the
values of ay along the direction of the arrow are ay = 0, 0.1, 0.2, 0.7, 0.8, 1, respectively.
The orange points are the results obtained by Woods & Lin (1995). The blue points are
the results obtained by Samanta (2021). It can be seen that all points are falling on the
black lines, which means that the wall-normal oscillation of the numerical procedure is
reliable. It is worth mentioning that the instability belongs to the soft mode of gravitational
instability (Lin et al. 1996). The suppression effect of wall-normal oscillation cannot make
the instability disappear completely. As indicated by the results of long-wave instability,
the wall-normal instability has no effect on the long-wave perturbation. Therefore, as
the wavelength k decreases, the inhibitory effect becomes smaller and smaller, until
after k < 0.06, all the instability curves coincide and are always greater than zero.
Figure 15(b) displays the validation results for streamwise oscillation. The black lines are
neutral curves in (k,Re)-plane including three instability regions: two unstable regions
associated with harmonic instabilities and gravitational instability. Between the instability
regions, completely suppressed stability windows 5.39 < Re < 8.67 and 17.28 < Re <
23.27 appear. The orange dots correspond to the result of Lin et al. (1996), which
matches well with the present neutral curves, confirming the correctness of our numerical
procedure for streamwise oscillations.
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