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1. Introduction. T i t chmarsh (4) has shown how the classical method of 
complex variables can be used to obtain expansion theorems for the singular 
cases of the second order equat ion 

(1) / ' ( * ) + [X - q(x)]y(x) = 0. 

T h e purpose of this paper is to indicate how these results can be generalized 
to the singular cases of the pair of first order equat ions 

/ 2 \ w '(*0 - [X + qi(x)]v = 0, 
V ; v'(x) + [X + q2(x)]u = 0. 

T h e system (2) is a special case of the Dirac wave equat ions for a particle in a 
central field in the relativistic case, a system which has recently been investi­
gated a t the Oak Ridge Nat ional Laboratories. T h e presentat ion is largely 
formal to avoid excessive detail (see especially §4), b u t all omit ted proofs are 
included in a report (1) and in any case are direct generalizations of the 
corresponding proofs given by T i tchmarsh for the second order equat ion (1). 
T h e principal result m a y be summarized in the following 

T H E O R E M I. Consider the system (2) over the semi-infinite interval [0 < x < <» ] 
and under the boundary condition 

(3) u(0) cos a + v(0) sin a = 0, 

where a is a real constant. Let qi(x), q*(x) be real-valued continuous functions ofx 
which belong to L (0 , » ) . We define a solution of (2), (3) as a pair of functions 
[u(x, X), v(x, X)], with continuous first derivatives, satisfying this system. Then 
the values of X for which such solutions exist form a continuous spectrum over the 
real X-axis [— <» < X < <»]. An arbitrary function pair f(x) = [ / i ( x ) , / 2 W ] 
which are continuous, of bounded variation and L 2 (0 , <»), and which satisfy the 
condition (3) at x = 0 may be represented by the generalized Fourier integrals 

1 fœ 

fi(x) = - g(X) u(x, X) d\, 
7T t / -oo 

i r°° 

h(x) = - I g(X) v(x, X) dX, 

where 
/»oo 

g(X) = [M
2(X) + ,2(X)]-X Jo [u(y, X)A(y) + v(y, X)/,(y)J dy, 

and fx (X), v (X) are functions of X which do not vanish simultaneously. 
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2. Preliminaries. Consider the system (2) over the finite interval 
[0 < x < b). Let 

0(x, X) = [0i (x, X), 02(x, X)], 0(x, X) = [0i(x, X), 02(x, X)] 

be two solutions of (2) such that 

</>i(0) = —sin a, 02(0) = cos a, 
0i(0) = - c o s a, 02(0) = - s i n a 

Let the Wronskian of 0, 0 be defined as Wx[<j>, 0] = 0i#2 — 02#i- Then it is 
easily shown that Wx[(j), 0] is independent of x. Now W0[4>, 0] = 1, so 0(x, X) 
and 0(x, X) are linearly independent solutions. A general solution of (2) may 
be written d(x, X) + /(X) 0(x, X). If this general solution is required to satisfy 
a real boundary condition of Sturmian type at x = b, it is known (3) that the 
eigenvalues are real, simple, discrete, and extend from X = — oo toX = +oo . 
Moreover, the corresponding eigenfunctions are real. To obtain the spectrum 
in the singular case we take the limit of the general solution as b —» oo. 
Then, following Titchmarsh, it is easily shown that, for values of X other than 
real values, (2) has a solution \[/(x, X) = [^i, \p2], say 

(4) \f/(x, X) = 0(x, X) + m{\) 0(x, X), 

which belongs to L2(0, °°). The definition of the function m(X) depends upon 
a limit of circles in the complex X-plane which may be either a limit point or a 
limit circle. In the limit circle case all solutions are L2(0, X). In addition m(\) 
is analytic in either the upper or lower half plane, it has the property 
m(\) = m(X), and its imaginary part determines the spectrum. We proceed to 
determine ra(X) for our system. 

3. Nature of the spectrum. In this section we investigate order properties 
of the solution of (2) for large values of x, and apply these properties to the 
determination of the spectrum. It can be verified directly that a solution of (2) 
where 0i(O) = —sin a, 02(0) = cos a satisfies 

J *x nx 

02£i cos \(x—s) ds— I 0ig2 sin X(x — s) ds, 
o Jo 

JIX S*X 

02#i sin \(x—s) ds— I 0ig2 cos \(x—s)ds. 
o «/o 

Let X = a + it, t > 0, and let 0i(x, X) = etx hi(x), 02(x, X) = etx h2(x), sub­
stitute in (5), (6) and take absolute values. We obtain 
( 7 ) \h1(x)\<M+ Jo

X{|*2|-|ffi| + |Ai | - |g2 | }^, 

|A2(x)| <M+ f {M-|<Zi| + N - t a l J c f c , 

where M = 0(1) for large x. At this point we need the following lemma which 
is proved in another paper by the authors (2): 
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L E M M A . Let hi, h2, gi, g2 be non-negative functions of x over the interval 
[0 < x < #1]; let h\, h2 be continuous and gi, g2 integrable over this interval. If 
hi, h2 satisfy the inequalities 

hi(x),h2(x) <M+ f \hi(s) gi(s) + h2(s) g2(s)} ds, 

then 

hi(x), h2(x) < Ci exp\ J (gi + g2) ds} , [0 < x < Xi\. 

This lemma may be applied to the inequalities (7) to yield the result 

|Ai|, \h2\ < Mexpj JQ [\qi\ + \q2\]dsj , 

and since qi(x), q2{x) are L(0 , 00) it follows t h a t hi(x), h2(x) are bounded for 
all x. Hence for large x, </>i(x, X) = 0(etx), <£2(x, X) = 0(etx). 

Now for real X as x —» 00 (5) and (6) may be wri t ten 

(8) 0i (x, X) = ju(X) cos Xx + i>(X) sin Xx + 0(1), 
02 (#, X) = jii(X) cos Xx — J>(X) sin Xx + 0(1)., 

where 

,Qs ju(X) = — sin a + I [qi<j)2 cos Xs + g2$i sin Xs] ds, 

*>(X) = cos a + I [gi$2 sin Xs — ^2^1 cos Xs] ds, 

and o ( l ) indicates terms which approach zero as x —> 00. T h e integrals in (9) 
converge uniformly in X and hence JJL, V are continuous and bounded functions 
of X. If 6(x, X) is t ha t solution of (2) satisfying 0i(O) = —cos a, d2(0) = —sin a, 
we may similarly write 

(10) 0i(x, X) = {(X) cos Xx + T](X) sin Xx + 0(1), 
62(x, X) = 77(X) cos Xx — £(X) sin Xx + 0(1), 

where 

/11 ^ £(M = "~ c o s a + I fei^2 cos X 5 + q2Bi sin X s] ds, 
(11 ; J o 

/•oo 

7](X) = — s'ma + I [tf/102 sin X s — q26i cos X s] ds. 

Hence we have 

W[(j>, 6} = <M2 - «Mi = M?7 ~ ?f + 0(1). 

Bu t from the boundary conditions a t x = 0 we know t h a t W[4>, 6] = 1, so 
t h a t for real X as x —> 00 
(12) M - vZ = 1. 

We deduce from (12) t h a t /z, v cannot both vanish for the same X. 

https://doi.org/10.4153/CJM-1954-060-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1954-060-0


AN EXPANSION THEOREM 557 

Now for complex X we can show by making use of the order properties on the 
solutions <j>, 6 and by the fact that qi(x), qi{x) are L(0, °°) that 

(13) *i(*,X) =e-i^[M1(\) +o(l)], 
(14) <t>2(x, X) = e~^ [Afs(X) + 0(1)], 
(15) d,(x, X) = e~^ [NtQi) + o(l)], 
(16) 62(x, X) = e~^ [N2(X) + o(l)], 

where 

Af,(X) = - S^~f + ^ - \ j V ' f e z i * » + ff,fc] <fc, 

( 1 7 ) Jfx(X) = - S | « _ ^ + i J V ' f e i f c - iqifr] ds, 

Nl{X) = _ «p + | p + i J>M2 - ^j&, 
TVT /> \ sin a cos a , Cœ Asr- • /> i 7 
^ ( X ) = 2Î * J « 1^2 + qtfi] ds. 

Now let ^(#, X) = B(Xj X) + m(X) 0(x, X) be that solution of (2) which for 
complex X is L2(0, «>). Using (13)-(16) we have 

<Ai = 0i + m4>i = e~iXx [Ni + mMx + o(l)], 
fa = 62 + m<t>2 = e~iU [N2 + mM2 + o(l)]. 

Now </>, 6 certainly do not belong to L2(0, °°), and if \p is to be L2(0, °°) we 
must have 

f\\ N* N> 
W Jlf i Jlf2 

In (17) let X tend to a real limit formally, i.e., let / —> 0. We obtain 

where £, 77, /X, J> are defined by (9), (11). Hence 

hm m{\) = . v . , . . 
^o M(X) + ii>(\) 

The imaginary part of m(X) for real X is therefore 

(18) 3 M X ) } = - ( M 2 + ^ 2 ) - 1 , 

and from (12), (18) it is apparent that 3W(X)} is a non-positive, non-
vanishing continuous function bounded for all X over the range [ — oo < X < œ ]. 

4. The expansion theorem. We define a function pair 3>(x, X) = [$i, $2] 
by the equations 

*i = fi(x, M f *(y, X)-/(y) dy + 4n(x, X) f°V(y, X)-/(y) dy, 
*/o J i 

/»£ /»co 

*2 = *,(*, X) 4>(y, X) -/(y) <fy + to(*. X) *(y, X) -/(y) dy, 
«/0 * /z 
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where X is a complex parameter, 4>(x, X), 0(x, X) are those solutions of (2) 
discussed in §3,/(x) = [fi(x),f2(x)] is a pair of functions which are continuous 
and of bounded variation and which belong to L2(0, oo), and, for example, 
(/>•/= 4>ifi + ^2/2. It may be verified directly that $1, <£2 satisfy the in-
homogeneous equations 

$ i - [X + g i (x ) ]* 2 =/ 2 (x ) f 

$ 2 + [X + 02 (*)]*! = / l ( * ) . 

It can be shown by deforming the straight line joining — R + id to R + i<$ 
into the semicircle on that base and lying in the upper half plane that 

(19) /(*) = lim \ - -r- f $(x, X) d\\ , 
R^œ V ^7T J-R+i8 J 

uniformly in 5 > 0. The proof of this is straightforward provided that the 
following theorem on the asymptotic behavior of the solutions of (2) for large 
X is available. 

THEOREM II. Under the initial condition u(0) = —sin a, v(0) = cos a the 
system (2) has the following asymptotic solution for large X = a + it, t > 0, 

u(x) = sin (5 - a) + 0(etx/\\\), 
v(x) = cos ( { - « ) + 0(e t e /W), 

£00 = Xx + I I [qi(s) + q2(s)] ds. 
Jo 

The proof of Theorem II is given in §5. Let us proceed to the limit formally 
in (19), recalling that yp = 6 + m<t>, that 

3{m(X)} = -(^ + vT\ 

and that $, 0 are real for real X. Letting i£ —> 00, 5 —> 0, we obtain 

cJ ! CR+l ^Xix)d\\ 
\ 7T J-R+i8 J 

= 31- - Mx,\)d\ 4>-fdy\ 
\ TïJ-R+iô Jo J 

C -, s*R+i8 s*&> \ 

+ 3\~- Mx,Vd\ t-fdy) 
-I /»00 f*X 

- > - I 4>i(x, X)(M2 + v2)~xd\ J 4-fdy 
TTj-œ Jo 

-t /»oo /*oo 

+ - fc(*, X) d\ (M2 + vY^-fdy. 
IT J -00 «J x 

The real part is non-contributing and hence upon combining the last two terms 
above we have the expansion for /1 (x) : 

/ i (x) = - r ¥ ^ X r { * i ( y , X)/!(y) + fc(y, X)/,(?)} dy. 
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The expansion for/2(#) is found similarly. The functions / i (x), f2 (x) are not 
entirely independent but must satisfy at x = 0 the condition 

cosa/i(0) + sina/2(0) = 0. 

As a simple example of the expansion theorem consider the system (2) with 
qi(x) = qi{x) = 0. The solution of (2) for «(0) = —sin a, v(0) = cos a is 

0i(#, X) = sin (Xx — a), 02(#, X) = cos (Xx — a). 

From §3 we have fx = — sin a, *> = cos a, 3 jra(X)} = — 1. The expansions for 
/ = [ /1WJ2W] are 

(20) fi(x)=- f ° s i n ( X * - a ) d X f°°{sin(Xy-a)/1Cy)+cos(Xy-a)/2Cy)}^, 

• I / * C O / » 0 0 

(21) f2(x) = - I cos(X*--a)dX I {sin(Xy—a)/i(y)+cos(Xy—a)/2(y)}rfy 
irj~œ t/o 

To obtain the ordinary Fourier sine integral from these, set a = 0, /2(x) = 0. 
Then using the fact that the integrand in (20) is an even function of X we 
obtain 

fi(x) = — I sin \xd\ I sin \yfi(y) dy. 
TT Jo Jo 

5. An asymptotic solution for large X. The proof of Theorem II may be 
outlined as follows. W. Hurwitz (3) has obtained a similar asymptotic solution 
to the system (2) but for real X and in the regular case. We introduce functions 
U(x, X), V(x, X) by the relations 

(22) uix) = U + (1 + ffi/2X) sin (f - a), 
V(X) = V + (1 + ç2/2X) cos (É - a), 

where £(x) is defined as in Theorem II. We wish to show that U, V are 
0(etx/\\\). Substitute into equation (2) and rearrange it to obtain 

(23) U'(x) - [X + (Zi]7 = P(x, X)/X, 
V'(x) + [\ + q2]U=Q(x,\)/\, 

where 
P{x, X) = Ci(x) sin £ + C2(x) cos £, 
(?(#, X) = Czipc) cos £ + d(x) sin £, 

and the coefficients G, C2, C3, C4 are continuous functions of x, independent of 
X. Equations (23) may be written as integral equations 

/o^\ U(x, X) = F(xy X)/X + I [—q2U sin \(x — s) + giFcos X(x — s)] ds, 
(-64; J o 

V(x, X) = G(x, X)/X + I [—q2U cos \(x — s) + giFsin X(x — 5)] ds, 
Jo 

where F and G are functions which for large X can be shown to be 0(etx). Now 
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set U = etx Ui(x, X), V = etz Vi(x, X)., substitute into (24) and take absolute 
values. We obtain the inequalities 

\Ui\, | 7 i | < 0 ( l / | X | ) + n | (Z2 | - | ^ i | + I S i | - | ^ i | ] ^ 
Jo 

Now since Z7i, V\ are continuous functions of x for all x and since gi, q<i are 
L(0, °°), the lemma in §3 applies and hence 

\UX\, \V,\ < 0(l/|X|)exp Jo*(|2l| + \q2\)ds. 

Thus Uu Vi are 0(1/|X|) and U, F a r e 0(etx/\\[) for each x over the interval 
[0 < x < oo ]. Theorem II follows immediately upon substituting these 
asymptotic expressions for Z7, F into relations (22). 
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