AN EXPANSION THEOREM FOR A PAIR OF SINGULAR
FIRST ORDER EQUATIONS

S. D. CONTE axp W. C. SANGREN

1. Introduction. Titchmarsh (4) has shown how the classical method of
complex variables can be used to obtain expansion theorems for the singular
cases of the second order equation

(1 y'(x) + N —q@)]yx) = 0.

The purpose of this paper is to indicate how these results can be generalized
to the singular cases of the pair of first order equations

(2) u:(x) — N+ q@)] =0,

v (x) + N+ g2(x)]u = 0.
The system (2) is a special case of the Dirac wave equations for a particle in a
central field in the relativistic case, a system which has recently been investi-
gated at the Oak Ridge National Laboratories. The presentation is largely
formal to avoid excessive detail (see especially §4), but all omitted proofs are
included in a report (1) and in any case are direct generalizations of the
corresponding proofs given by Titchmarsh for the second order equation (1).
The principal result may be summarized in the following

TuEOREM 1. Consider the system (2) over the semi-infinite interval [0 < x < o]
and under the boundary condition
3) u#(0) cos @ + v(0) sin ¢ = 0,
where a s a real constant. Let ¢1(x), g2(x) be real-valued continuous functions of x
which belong to L(0, «). We define a solution of (2), (3) as a pair of functions
[w(x, N), v(x, N)], with continuous first derivatives, satisfying this system. Then
the values of N for which such solutions exist form a continuous spectrum over the
real M-axis [— o < N < o]. An arbitrary function pair f(x) = [f1(x), f2(x)]
which are continuous, of bounded variation and L*(0, =), and which satisfy the
condition (3) at x = 0 may be represented by the generalized Fourier integrals

2@ =17 g0y ue

—

Sfolx) = %fm g(\) v(x, N) dX,

—

where
g0 = 0 + 2O [ w6, M AG) + 06, S0) d,

and u(N), v(\) are functions of N which do not vanish simultaneously.
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2. Preliminaries. Consider the system (2) over the finite interval
[0 <x<b). Let

¢(xv )‘) = [¢1(x! )\): ¢2(x, )\)]r B(xv )‘) = [01(.70, >\)v 02(xv )\)]
be two solutions of (2) such that

¢1(0) = —sin q, ¢2(0) = cos o,

6:(0) = —cos 0:(0) = —sina
Let the Wronskian of ¢, 6 be defined as W,[¢, 8] = ¢102 — ¢20:. Then it is
easily shown that W,[¢, 6] is independent of x. Now Wy[¢, 8] = 1, so ¢(x, N)
and 6(x, \) are linearly independent solutions. A general solution of (2) may
be written 6(x, \) + Z(\) ¢(x, A). If this general solution is required to satisfy
a real boundary condition of Sturmian type at x = b, it is known (3) that the
eigenvalues are real, simple, discrete, and extend from A = — o toA = + ©.
Moreover, the corresponding eigenfunctions are real. To obtain the spectrum
in the singular case we take the limit of the general solution as b — .
Then, following Titchmarsh, it is easily shown that, for values of A other than
real values, (2) has a solution ¥ (x, \) = [¢1, ¥2], say
4) Y, N) = 0@, \) + mQ\) o(x, N),
which belongs to L2(0, «). The definition of the function m(\) depends upon
a limit of circles in the complex A-plane which may be either a limit point or a
limit circle. In the limit circle case all solutions are L2(0, A). In addition m(\)
is analytic in either the upper or lower half plane, it has the property

m(\) = m()), and its imaginary part determines the spectrum. We proceed to
determine m(\) for our system.

3. Nature of the spectrum. In this section we investigate order properties
of the solution of (2) for large values of x, and apply these properties to the
determination of the spectrum. It can be verified directly that a solution of (2)
where ¢1(0) = —sin «, ¢2(0) = cos « satisfies

B)  ¢1lx, N\) =sin(Ax—a)+ -f ¢2q1 cos A(x—s) ds— J; ¢1ga sin A(x—s) ds,
0

(6)  ¢a(x, N) = cos(A\x—a)— f b2q1 sin A(x—s) ds— J; 192 cos A(x—s) ds .
0

Let A = ¢ + 4, t > 0, and let ¢1(x, ) = e hy(x), d2(x, N) = €™ h2(x), sub-
stitute in (5), (6) and take absolute values. We obtain

- @] <+ [l ol + el ds,

o] < 3+ [l ] + Pl L) ds,

where M = O(1) for large x. At this point we need the following lemma which
is proved in another paper by the authors (2):
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LEMMA. Let hy, hs, g1, g2 be non-negative functions of x over the interval
[0 < x < x1l; let hy, he be continuous and g1, g» integrable over this interval. If
k1, hy satisfy the tnequalities

(@), ke <M+ [ 0n0) £36) + hale) ()} ds,
then
hi(x), ha(x) < G eXp{ J:(gl + g2) ds} , 0 < x < x4).

This lemma may be applied to the inequalities (7) to yield the result

il el < 3 exp], [Tl + Il s}

and since ¢;(x), g2(x) are L(0, ) it follows that ki(x), k2(x) are bounded for
all x. Hence for large x, ¢1(x, \) = O(e®), ¢2(x, \) = O(e™).
Now for real A as x — « (5) and (6) may be written

(8) é1(, \) = u(N) cos Ax 4+ v(A) sin Ax + o(1),
da(x, \) = u(\) cos \x — »(\) sin Ax + o(1),

where

©) p(\) = —sina + fo [g1¢2 cos As + g2 sin As] ds,

v(A) = cosa+ f [g1¢2 sin As — g2¢1 cos As] ds,
0

and o(1) indicates terms which approach zero as x — «. The integrals in (9)
converge uniformly in A and hence g, v are continuous and bounded functions
of X. If 6(x, N\) is that solution of (2) satisfying §,(0) = —cos «, 6:(0) = —sin «,
we may similarly write

(10) 6:(x, \) = £(\) cos \x + n(N\) sin Ax + o(1),
02(x, N) = n(A) cos Ax — £(N) sin Ax + o(1),

where

(11) t\) = —cosa + f [g182 cos N s + gi0; sin X s] ds,
0

7(A\) = —sine + f [q:02 sin A s — @401 cos A s] ds.
0
Hence we have
Wig, 0] = ¢102 — ¢of1 = pn — v£ + o(1).

But from the boundary conditions at x = 0 we know that W]¢, 6] = 1, so
that for real A as x — «
(12) pn — vE = 1.

We deduce from (12) that u, v cannot both vanish for the same A.
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Now for complex XA we can show by making use of the order properties on the
solutions ¢, 8 and by the fact that ¢1(x), g2(x) are L(0, =) that

(13) ¢1(x, N) = e [M1(N) + o(1)],
(14) $a(x, \) = e~ [Ma2(N) + o(1)],
(15) 0:1(x, N) = e~ [N:(N) +o(1)],
(16) 02(x, \) = e~ ™ [Ny(N) + o(1)],
where
Mo(A) = — 51;11:(1 + co;oz - %J;wem[imtﬁz + g2 1] ds,

_ _sina cosa |, [ as .
a7) Mi(\) = “‘_"2 2 + 2«[0 e [q12 , 1g2¢1] ds,

M) = =SB+ Iy [Tobpgp, — iga] s,

No(\) = — 9;—“ - E‘;—“ -1 ‘fo e™igif2 + g:01] ds.

Now let ¥(x,\) = 08(x,\) + m()\) ¢(x, \) be that solution of (2) which for
complex X is L2(0, ). Using (13)-(16) we have

Y1 =0, + mé;s = ¢ [Ny + mM: + o(1)],
1!/2 = 02 + m¢2 = e‘m [N2 + mM2 + 0(].)]

Now ¢, 8 certainly do not belong to L2(0, =), and if ¢ is to be L2(0, «») we
must have

- _MN__ N
m(\) = w= T
In (17) let X tend to a real limit formally, i.e., let ¢ — 0. We obtain
Ni— (& + ), My — iu+ ),
Ny — 3(n — 1), My— (v — 1),

where £, 7, u, v are defined by (9), (11). Hence
A ((V ()

0 w(A) + ()’
The imaginary part of m(\) for real A is therefore
(18) S{mN} = =@ + )7

and from (12), (18) it is apparent that §{m(A)} is a non-positive, non-
vanishing continuous function bounded forall A over therange[— » < A < «].

4. The expansion theorem. We define a function pair ®(x,\) = [®;, &,]
by the equations

2= eV [ 00,0701 dy + axte ) [ 96,0 76) a,
2= vl V) [ 90,0500 dy + 060 [ W0, 10 d,
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where N\ is a complex parameter, ¢(x, \), 0(x, \) are those solutions of (2)
discussed in §3, f(x) = [fi(x), f2(x)] is a pair of functions which are continuous
and of bounded variation and which belong to L?(0, =), and, for example,
¢-f = ¢1fi + ¢2f2. It may be verified directly that &;, ®, satisfy the in-
homogeneous equations

P — [N+ @(x)]P2 = fa(x),

@5 + [N+ g (x)] D1 = fi(x).
It can be shown by deforming the straight line joining —R + 46 to R + 45
into the semicircle on that base and lying in the upper half plane that

L _1— R+16 }
(19) f(x) - g:r:o{— i f—R—H‘B (I’(x’ k) arf

uniformly in § > 0. The proof of this is straightforward provided that the
following theorem on the asymptotic behavior of the solutions of (2) for large
) is available.

TueoreM II. Under the initial condition u(0) = —sin o, v(0) = cos a the
system (2) has the following asymptotic solution for large N = o + it, ¢t > 0,

u(x) = sin (£ — a) + 0(e”/|A]),
v(x) = cos (£ — a) + O(e”/]A]),

where .
() =+ 1 [ 00 + e ds
The proof of Theorem II is given in §5. Let us proceed to the limit formally
in (19), recalling that ¢ = 6 + m¢, that
J{mN)} = —(* 4+ )7,
and that ¢, 6 are real for real \. Letting R — «, § — 0, we obtain

1 R+ 8
3‘{— - <I>1(x, )\) d)\}
T J —R+ 18
R+15 z
- s{— R ¢~fdy}
T J—Rtid 0
{ 1 R+18 © }
+3 -2 awna [ v

ST s+ | eray
+ 1 [T wmnan [0+ s a

The real part is non-contributing and hence upon combining the last two terms
above we have the expansion for fi(x):

e =2 [T BN 16,000 10) + 86,0 :0))
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The expansion for fs(x) is found similarly. The functions f;(x), f2(x) are not
entirely independent but must satisfy at x = 0 the condition

cos a f1(0) + sin « f5(0) = 0.
As a simple example of the expansion theorem consider the system (2) with
¢1(x) = g2(x) = 0. The solution of (2) for #(0) = —sin a, 2(0) = cos a is
¢1(x, \) = sin \x — «), ¢2(x, N) = cos (A\x — «).

From §3 we have p = —sina, v = cosa, S{m(A\)} = —1. The expansions for

f=[filx), f2(x)] are
@) fi@ =L 7 snow—a) dr [ (sin0y—a) i)+ cosO—a) fs3) ),

@) i) = L [ costu—a ar [ (sin 0 =0 i)+ cosOr—a) fs3)

To obtain the ordinary Fourier sine integral from these, set a = 0, f2(x) = 0.

Then using the fact that the integrand in (20) is an even function of A we
obtain

filx) = %fmsin A d)\f sin Ay f1(y) dy.
0 0

5. An asymptotic solution for large A. The proof of Theorem II may be
outlined as follows. W. Hurwitz (3) has obtained a similar asymptotic solution
to the system (2) but for real A and in the regular case. We introduce functions
U(x, N), V(x, \) by the relations

(22) u(x) = U+ (1 + q/2\) sin (¢ — a),
v(x) = V+ (14 g2/2\) cos (¢ — o),

where £(x) is defined as in Theorem II. We wish to show that U, V are
O(e*/ ])xl). Substitute into equation (2) and rearrange it to obtain

(23) U'(x) — [N+ 1]V = P(x, \)/A,
V'(x) + [N+ ¢2]U = Q(x, N/,

where
P(x,\) = Ci(x) sin £ + Cs(x) cos &,
Q(x,\) = Cs(x) cos & + Cu(x) sin &,

and the coefficients Ci, C,, C;, C4 are continuous functions of x, independent of
M. Equations (23) may be written as integral equations

24) U(x,\) = F(x,\)/\ + f:[—gzUsin AMx — s) + @1V cos AMx — 5)] ds,

V(x,\) = G(x,\) /N + fo [—g2Ucos AMx — s) + 1V sin A(x — s)] ds,

where F and G are functions which for large A can be shown to be O(e**). Now
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set U = e* Ui(x, N), V = e® Vi(x, \), substitute into (24) and take absolute
values. We obtain the inequalities

O 1Val < 0/ + [ Tlasl- 10l + laal- Vill .

Now since U, V; are continuous functions of x for all x and since ¢, g2 are
L(0, »), the lemma in §3 applies and hence

Ui, 17l < 00/ esp [ (sl + sl s

Thus Uy, V; are O(l/l)\]) and U, V are O(e"/[k[) for each x over the interval
[0 <x < »]. Theorem II follows immediately upon substituting these
asymptotic expressions for U, V into relations (22).
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