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GENERALIZED CONVEXITY IN

NONDIFFERENTIABLE PROGRAMMING

I BEVIL M. GLOVER

S For an abstract mathematical programming problem involving

» quasidifferentiable cone-constraints we obtain necessary

(and sufficient) optimality conditions of the Kuhn-Tucker

type without recourse to a constraint qualification. This

extends the known results to the non-differentiable setting.

To obtain these results we derive several simple conditions

r connecting various concepts in generalized convexity not

requiring differentiability of the functions involved.

1. Introduction

A great deal of recent research in mathematical programming has

been devoted to the problem of establishing optimality conditions of the

i Kuhn-Tucker type for abstract programming problems without requiring a

-\ constraint qualification to be explicitly satisfied (see, for example,

i [13], [5], [10]). Craven and Zlobec [13] and Borwein and Wolkowicz [5]

j considered this problem for abstract differentiable convex programs and
i

i obtained necessary Lagrangian conditions for a minimum. Zlobec and

•j Jacobson [36] obtained related results for problems involving a finite

: number of convex constraints and an arbitrary differentiable objective

function. These results were further extended to abstract programming

• problems with arbitrary differentiable objective function and pseudoconvex

constraints in Craven, Glover and Zlobec [10]. The basic tool which has
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194 Bevil M. Glover

enabled these results to be obtained is a 'stability' condition for the

system of constraints, similar to the Slater constraint qualification,

which is inherent in the programming problem by virtue of the mild

convexity assumptions on the system. This approach was first suggested

for convex programs in [5] and extended in [10],

The object of this paper is to further extend the results outlined

above to a large class of nondifferentiable programming problems. We

derive both necessary and sufficient optimality conditions in a

Lagrangian form without requiring a constraint qualification. We discuss

these conditions for both finitely constrained and abstract programming

problems. In order to obtain these results in the nondifferentiable

setting it was necessary to derive several results connecting various

concepts of generalized convexity; these appear in section 3 and extend

and simplify several results from Diewert [IS], In the final section of

the paper we consider an application of these results to fractional

programming problems which includes a duality result not requiring a

constraint qualification.
*

2. Notation

Throughout this paper X and Y shall denote normed vector spaces

with X C X an open convex set; X' (respectively Y') denotes the

continuous dual space of X (Y) equipped with the weak* topology. For a

set V ̂  X let ol V3 coV3 ~coV, and int V denote the closure, convex

hull, closed convex hull, and interior of V, respectively; the set cone

V = {Xx : X e R 3 x e V} is the cone generated by V and we shall say V

is a convex cone if V + V C V and (WX e R ) XV C V. The dual cone of V

is the (weak*) closed convex cone V* = {u e X' : (Vx e V) v (x) > 0} C X'.

Since X' is endowed with the weak* topology we have (V*)* = V** C X.

The tangent cone to V at a point a e V is the set

T(V,a) E ix e X : 3(0^) c V, U^) c R+\{0) with x^ -*• a, and

X (x - a) •*• x> (for related definitions see Guignard [22] and Dempster

and Wets [77]). For convenience we shall let N(Vta) B (T(V,a))*.

A function f:X -*• (-<*>1+
co] is convex on X if

https://doi.org/10.1017/S0004972700001908 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700001908


Generalised convexity 1 9 5

( 1 ) dx, aeX )(v\ e (0,1)) f(a + \(x-a)) < f(a) + \(f(x) - f(a))
o

The essential domain of / is the set dom f = {x e X: f(x) is finite}.

The subdifferential of / at a point a e dom f is denoted by 3/(a)

where

3/(a) E lv e X' : (Mx e XQ) f(x) > f(a) + v(x - a)\.

Clearly df(a) is a weak* closed convex set; if f is continuous at a

then 3/(<2) is non-empty and weak* compact (see [32]).

A function is said to be sublinear if it is convex and positively

homogeneous (of degree one). Let WC X' be a weak* closed convex set,

then we define the support function of W, denoted by s (. ,W) : X+ (-<*>,+<*>] ,

as

s{x,W) E sup'ju(x) : v e P/f, for x e X.

Clearly s(',W) is a sublinear function

We can extend the concept of convexity to vector-valued functions

as follows; let S C J be a closed convex cone then f: X •+ Y is

S-convex on X if
o

(vx, a 6 XQ) Vi\ e (0,1) f(a + \(x - a)) - f(a) - \(f(x) - f(a)) e - S.

It is easily shown that f is S-convex if and only if V ° / is convex

for each v e S*. For convenience we shall denote composition of mappings

by juxtaposition, i.e. V ° f as vf.

A function f: X -*- Y is locally Lipschitz on X if for each

point in X there exists a neighbourhood U of this point and a

positive real number k such that II f(x) - /(z/)ll < k\\ x - y\\ for all

x, y e U.

We now consider several concepts of the derivative for real-valued

functions. Let f: X ->• R, then the (upper right) Dini derivative of f

at a e X in the direction x e X is given by

D+f(a,x) E limsup X" [f(a + Xx) - f(a)]
\\0

The Clarke derivative (or generalized directional derivative) of / at a

in the direction x (see Clarke [6]) is given by
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f(a,x) = limsup \~1[f{y + Xx) -
XiO

Clearly D f(a,x) < f^(a,x), for each a e X and any x e X. Clarke

has shown that, for each a e X , j (a ,•) is a sublinear function and

finite and continuous when f is locally Lipschitz. Thus if / is

locally Lipschitz the subdifferential of j(a,') is a non-empty weak*

compact convex set, this set, denoted by dpf(a) , is the Clarke

subgradient of / at a.

The function f: X -*• R is said to be in class C on X if, for

each a e X , j(a,') is lower semi-continuous (l.s.c) at 0 and

f{a,x) > -», for every x e X. Thus if / is in class C it follows

that (using Zalinescu [34, Prop. 1] and Rockafellar [32]) S^fta) is a

non-empty weak* closed convex set with f(a,x) = s(x, 3_/(a)). This class

C is more general than the class of locally Lipschitz functions defined

on X .
o

A function h : X ->• X is directionally differentiate at a e X

if the limit

(2) h'(a,x) = lim \~2[h(a + Xx) - h(a)]

HO
exists for each x s X, in the strong topology of Y. If the limit (2)

exists in the weak topology of Y then h is said to be weakly

directionally differentiable at a, and we denote the limit by h'(a,x)
— • D

for each x e X. If h is directionally differentiable at a e X with

h'(a,') a continuous linear function then f is linearly Gateaux

differentiable at a. If Y = B and h is convex then h'(a,') exists

and is sublinear for each a e X ([32]).

o

In section 4 we consider a class of nondifferentiable programming

problems, the objective and constraint functions involved will satisfy a

quasidifferentiability condition. Namely, let 5 C Y be a closed convex

cone then h : X -*• Y is S*-quasidifferentiable at a e X if h is
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weakly directionally differentiable at a, and for each V e S* there is

a non-empty weak* compact convex set d{vh)(a) such that

{vh) ' (a,x) = s{x, d{vh) (a)) for each xeX. if h is S-convex then

?(y/z) (a) = 3(y/i)(a). The set "d {vh) (a) is known as the quasidif ferential

of vh at a. Clearly every continuous S-convex function and every

linearly Gateaux differentiable function is S*-quasidifferentiable, for

further examples of classes of nondifferentiable functions satisfying this

condition see Pshenichnyi [37], Borwein [4], Craven and Mond [77], and

Glover [20]. If Y = R and S = R then quasidifferentiable refers to

R -quasidifferentiable.

It should be noted that if h ; X-*• Y is weakly directionally

differentiate at a e X and V e. X' then V(h'(a,x)) = {vh) ' (a,x) , for
o w

each x e X.

We conclude this section by giving a slightly generalized version of

a result due to Clarke [7] for locally Lipschitz functions, we extend the

result to functions in class C.

PROPOSITION 2.1. Let f:XQ-+R and g:XQ+R be functions, with.

co{f,g) c C Let a e XQ> then

(3) 3C(/ + g) (a) c c

Proof. Let h = f + g, then he C, and, clearly, for each x e X,

(4) h°(a,x) < f°{a,x) +g°(a,x).

For convenience let F(x) = f°(a,x) and G(x) = g°(a,x) for x e X. Now

let V e djl(a) and x e X, then using (4) above we have

V{x) < F(x) +G(x); thus V ed(F + G)(0) (since F and G are l.s.c

sublinear functions).

Now, (F + G)(x) = sup

= sup'

= sup-

= sup'

U(x) : v e 3(F + G) (0)

>J + supiv(x) : V £ 3F(0)> + supju(x) ; v e 3G(0)

V{x) : v e W(0) + SG(O)}
V(x) : v e cl\dF{0) + 3G(0)^)F(O) + 3G(0)]\
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Hence 3 (/ + g) (a) = 3 ^ (a)

C Z(F + G) (0)

*• 3 ^ (a)

It is worth noting that every linearly GSteaux differentiable

function is in class C, and, even more generally, every quasi-

dif ferentiable function is in this class. These results follow since

f'(a,.) < j(a,.) for a directionally differentiable function

f: X -*• R at any a e X , thus if f is quasidif ferentiable then

0 # 9/(<3) c 3p/"(<2) - Hence the Clarke subgradient, which corresponds to

the subdifferential of j(a,'), is non-empty which, by [34], implies

f°(a,•) is l.s.c at 0.

A function f: X -*• Y is said to be radially continuous (resp.

l.s.c) if, for each x, a e X , the function p(X) = f(a + Ax) is

continuous (l.s.c) as a function p : R -*• Y.

For convenience, for a function 6 : R -*• R we shall denote the Dini

derivative at o. by D 6 (CX) which is equivalent to D Q(a,l).

3. Generalized convexity

We begin this section by establishing a mean-value theorem for real-

valued functions without requiring the existence of (one-sided)

directional derivatives.

THEOREM 3.1. Let x : [a,b] -+ R be a continuous function on the

compact interval [a,b] , a ? b. Then there is a B e (a,b) such that

(5) D+x(B)(fc - a) > x(b) - T(a)

Proof. Since T is continuous it attains its maximum and minimum

at some points c and d (resp.) in [a,b] . We assume T is not

constant on [a,b] , or we find D t(ct) = 0 for all a e (a,b) and (5)

follows immediately.
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We begin by assuming x (a) = T (£>); i t then follows tha t for some

6 £ (O.,b), D T(fi) > 0. Consider the following two cases:

(i) d ? a. Thus de(a,b) and x (d) < x(a)=x{b). Hence,

x(<2 + X) > x(d), for a l l X e [0,b - d) ; consequently zA (<2) ^ 0.

( i i ) d = a. Thus T (x) 2 T(<2) = x(Z>), for a l l x e (a,b) and

x(e) > x(a) , since T i s not constant on [a,b]. Now define the

function

y (y) =minjx(a) : a e [y»c] > , for y « [a,e] .

Now consider the following cases:

(a) U ( Y ) = T ( Y ) , for all y e (a,c). Thus, if o > x > y > a

then x e [y,c], hence x(x) > x (y). Thus x is non-decreasing on

la,a]. Hence if a e [a,a) then x(a + X) > x (a) , for all X e 10,a -a)

and consequently D x(a) > 0.

(b) \i(.y) ^ X ( Y ) , for some y £ (a,e) . Since x is continuous

U(Y) = T ( 6 ) for some 6 e (y,c). Thus x(6 + X) > x(6), for all

X £ (0,e-6) and so D+x(6) > 0.

Thus the theorem is established for the special case x(a) = x(b).

For the general case define the function

r ~r
p(x) = "~x -lUs \lSPl-—ll°±\ & ~

Clearly p is continuous and p(a) = p(b) = 0 also, for each

a e (a,b) ,

Thus, by the special case above, there is a B e (a,b) with D p(6) 5 0,

which is equivalent to (5). •

REMARK 3.2. Theorem 3.1 remains valid provided T is l.s.c and

satisfies the following condition:

(6) (ae e [a,b]) x(c) = sup{x(a) : a e la,b]}

It is easily shown (see [7S]) that (6) is satisfied when x is quasi-

convex; Thus (6) is true when L (a) = {x e R : x(x) S a} is closed and
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convex for each a e R. Theorem 3.1 improves upon the mean-value theorem

of Diewert [18] in which (5) was shown to hold for some Be [a,b)

(under hypotheses closely related to condition (6) above). If T

possesses a right derivative at each point a e \o.,b) (possibly infinite)

then D T (cv.) = T ' (a) and the result of Theorem 3.1 can be found in

Flett [79].

We now establish the Generalized Mean-Value Theorem for functions

defined on abstract spaces.

THEOREM 3.3 (Generalized Mean-Value Theorem)

Let f:X ->• R be radially continuous. Let x, a e X . Then there

exists a A e (0,1) such that

(7) fix) - f(a) < D+f(a + A(x - a),x - a).

Proof. Define the function F: [0,1] ->• R by F(X) = f(a + \(x - a)).

Since / is radially continuous F is a continuous function. Thus, by

Theorem 3.1, there is a A e (0,1) such that

(S) F(l) - F(0) < D+F(X)

N O W , D+F(\) = limsup x'1 (f(a + A (x - a) + X(x - a)) - f (a +1(x - a)))

WO

= D+f(a + A(x - a) ,x - a).

Thus (7) and (8) are equivalent and the result follows. •

REMARK 3.4. By Remark 3.2, (7) remains valid provided / is

radially l.s.c and satisfies the following line segment maximum property

(see [H\)

(9) (Vx,a e XQ) (3A e [0,1] )

f(a + ~(x - a)) = sup|/(a + \(x - a)) : A e [0,1]\

If f possesses a two-sided directional derivative on XQ then

Theorem 3.3 provides the generalized mean-value theorems of Nashed [30]

and Yamamuro [33]; in this case F(-) is differentiable and
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(consequently) continuous on (0,1). The radial continuity assumption on

/ is automatically satisfied if / is finitely directionally

differentiable (see [30]).

For the special case in which f is locally Lipschitz on X ,

Theorem 3.3 yields the following:

(10) x,a e XQ => (aX e {0,1)) fix) - f{a) < f {a + X (x - a) ,x - a)

This follows easily from (7) since it is always true that fl/S f ,

Lebourg [26] established the mean-value theorem represented by (10) in a

more general form as follows:

(11)
x,a e XQ => (aX e (0,1), v e ZfQ{a + \(x - a)))XQ

f(x) - f(a) = V(x - a)

It is clear by the definition of dfp(x) that (11) implies (10).

We now define several concepts of generalized convex functions.

DEFINITION 3.5. For a function f:X •+ R we define the following

properties:

(i) (Hiriart-Urruty [24] pseudoconvex (Clarke) (PCX(Clarke))

(w,a e XQ) f(a,x - a) > 0 =» fix) > f{a)

(ii) (Diewert [IS]) pseudoconvex (Dini) (PCX(Dini))

(vx,a e XQ) D
+f(a,x -a) > 0 => fix) > f(a)

(iii) (Diewert [18]) quasiconvex (Dini) (QCX(Dini))

(we, a e X ) D+fia,x -a) > 0 =» fix) > f{a)

(iv) (Mangasarian [27]) strictly quasiconvex (SQCX)

{vx,a e *o) /(x) < f{a) => (VX e (0,i)) f(a + \{x-a)) < f(a).

(v) (Mangasarian [27]) quasiconvex (QCX)

(YX,a e XQ) fix) < f(a) =» (vX e (0,2)) /(a + X (x - a)) < /(a).

We can consider these concepts locally (about a e X) by replacing X

by X r> N for a suitable open neighbourhood N. Similarly the

properties can be considered at a point, this follows by allowing x to

vary with a fixed. It follows easily that every PCX(Clarke) function is

https://doi.org/10.1017/S0004972700001908 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700001908


202
Bevil M. Glover

PCX(Dini) (since D f :£ f) . Similarly every QCX(Clarke) function (where

this concept is defined in a manner analogous to (iii)) is QCX(Dini). It

has been shown by Karamardian [25] that every radially l.s.c SQCX function

is QCX (and, consequently, l.s.c, by Crouzeix [16, p.114]). In the

following theorem we establish relationships between and characterizations

for the concepts described above analogous to those established by

Mangasarian [27] for differentiable functions.

THEOREM 3.6. Let f : X -»- R be a radially continuous function.

Then,

(i) f is QCX(Dini) if and only if f is QCXj

(ii) if f is PCX(Dini) it is also QCX, QCX(Dini) and SQCX.

(iii) f is PCX(Dini) if and only if
(12) [(\fx,a e XQ) f(x) < f(a) =» (3.b(x,a) > 0) (vX e (0,1))

f(a + \(x-a)) - f(a) + \b(x,a) < 0]

Proof. (i) That QCX implies QCX(Dini) is straightforward.

Conversely, suppose f is QCX(Dini), f(x) < f(a) and that for some

~X e (0,1) f(a + A~(x - a)) > f(a) 2 fix); hence / is not QCX. Define

the set U = {\ : f(a + \(x - a)) ^ f(a) and \ e [0,1]}. Clearly U ± 0

since 0 e U. Now, by the radial continuity of /, there is a £e [0,\)

such that M !/ and X i U for all X e (g,A~] .

By Theorem 3.3 there is a y e (&,*) such that

(13) f(a + X(x - a)) - f(a + 6(x - a))

< D+f (a + y (x - a), (X - e) (x - a)).

By the choice of B, y i U; thus f(a + y(x - a)) > f(a) ̂  fix). Now, as

/ is QCX(Dini), it follows that

(14) D+f(a + y(x - a) ,(1 - y) (x - a)) ̂  0

(15) =» D+fia + yix - a) , x - a) < 0.

Hence combining (13) and (15) yields the following

f ( a + X ( x - a ) ) < f ( a + &(x - a ) ) .

H o w e v e r B e t / , t h u s f ( a ) < f ( a + X(x - a ) ) < f ( a + B ( x - a ) ) < f ( a ) ;
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this gives the required contradiction. Thus QCX(Dini) implies QCX.

(ii) The proof that PCX(Dini) implies QCX can be fashioned on (i)

above. If we suppose that jf is PCX(Dini) and not QCX (13) will follow

as in the proof of (i) with fia + y{x - a)) > fia) S f(x). Now, since /

is PCX(Dini), (14) will follow with a strict inequality; thus the

contradiction still remains, and the result easily follows.

Now suppose / is not SQCX, thus there are x,a e X with

fix) < fia) and, for some T e (0,1), fia + M x - a)) ̂  fia). Since f

is PCX(Dini) it follows that D f{a,x- a) < 0. Hence there is a y > 0

such that fia + X (x - a)) < f(a), for all X e (0,y). Since f is

radially continuous there is a 3 e (0,y) with

f(x) < fia + 3(x - a)) < fia) < fia + Tix -a)). By the above, / is QCX

at z = a + Six - a); hence

(16) fiz + ail - 6) (x - a)) < f(z) , for all a e iO,l) .

L e t a = ( I - &)/il - 6 ) , t h e n a e iO,l) s i n c e 0 < B < x" < 1. T h u s ,

by putting a = a into (16), we find fia + X(x - a)) < fia + g(x - a)).

However this is a contradiction to our choice of Q. Hence f is SQCX.

(iii) It is easily shown that (12) implies PCX(Dini).

To prove the converse suppose f is PCX(Dini) and (12) is not

satisfied. Hence there are x,a e X with fix) < fia) and such that

(17) (vZ? > 0 ) (3X( fc ) e iO.D) fia + X ( b ) ( x - a ) ) - fia) + \ib)b > 0.

T h u s , f o r e a c h i e N, t h e r e i s a X . e iO,l) s u c h t h a t

(18) ifia + X . ( x - a)) - f(a))/\. > -1/i.

By taking a subsequence if necessary we can assume X . -»• X e [0,1). Now

consider the following two cases:

(a) X = 0. From (18) it follows that

D+fia,x - a) > l i m s u p ifia + X . ( x - a ) ) - fia))/X. > 0.

However this contradicts the PCX(Dini) assumption since fix) < fia).
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(b) X > 0. Now, by assumption, /(a + X(x - a)) is continuous in

X. Hence, by (18), f(a + T(x - a)) ^ /(a). However, by part (ii) above,

/ is SQCX, hence f(a + \(x - a)) < f(a); thus we have a contradiction.

Hence (12) must be satisfied as required. Q

REMARK 3.7. Parts (i) and (ii) of Theorem 3.6 are valid under the

more general hypothesis that f is radially l.s.c and satisfies the line

segment maximum property (9). It has been shown by Diewert [18] that it

is not possible, in general, to weaken the continuity assumption in part

(iii) (a counterexample is given [IS, p.70]). Parts (i) and (ii) can be

found in [18] where they are established using different methods to those

adopted here. The proofs given here are simpler than those in [18]

without greatly strengthening the continuity assumptions involved. The

method of proof used in part (iii) has been adapted from the proof, for

differentiable functions over R given by Avriel et al [/].

Mifflin [18] has shown that Theorem 3.6(ii) is valid for semiconvex

functions, (a function / : X•*• R is semiconvex if it is locally

Lipschitz, directionally differentiable, PCX(Clarke) and

(Va e X ) f'(a,') = j{a,')); clearly this is a special case of part (ii) .

For locally Lipschitz functions it follows immediately from

Theorem 3.6 and Definition 3.5 that every PCX (Clarke) function is QCX,

SQCX, and satisfies condition (12). That PCX(Clarke) implies SQCX was

stated, without proof, in Hiriart-Urruty [24]. It should be noted that

condition (12) would not, in general, be sufficient for a function to be

PCX(Clarke); this follows since the latter depends on the nature of the

function on a whole neighbourhood whereas the former is a 'line segment1

condition.

4. Applications in mathematical programming

In this section we consider applications of the results in the

preceding section to mathematical programming problems. In particular we

establish Kuhn-Tucker type optimality conditions both for finitely and

infinitely constrained problems without assuming a constraint
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qualification. This extends the work in Craven, Glover and Zlobec [10] to

allow non-convex, nondifferentiable constraint and objective functions.

The following lemma forms the basis of the results to follow.

LEMMA 4.1. (Craven, Glover and Zlobec [10])

Let g : X -*• Y with S C y a closed convex cone. Let H be a

generating set for S* (hence S* = cone{co H)); define the set

H* = {v e H : vg{x) < 0 for some x e g~ i-S)}. Let Q be a weak*

compact subset of H ; also assume that vg is l.s.c and SQCX for each

v e H. Then 0 i co Q, co Q is weak* compact, int Q* is non-empty and

there exists an x e g~ (-S) with g(x) e. -int Q*.

REMARK 4.2. Lemma 4.1 was originally established, under the

assumption that g is S-convex, by Borwein and Wolkowitz [5]. Craven,

Glover and Zlobec [JO] extended this result to differentiable pseudoconvex

functions (i.e. vg is PCX(Dini) and differentiable for each V£ H);

however a close examination of the proof shows that SQCX is sufficient,

the lower semi-continuity assumption is necessary to ensure vg is also

QCX, for each VeH. It is not difficult to show that Lemma 4.1 remains

valid if vg is QCX and SQCX for each V e Q and g (-S) is convex.

As a consequence of Theorem 3.6 and Remark 3.7 the above result holds

under either of the following conditions:

(a) Vg is radially continuous and PCX(Dini) for each V e H,

(b) vg is locally Lipschitz and PCX(Clarke) for each V e H.

In [10] two further concepts of generalized convex functions were defined

under which an appropriate version of Lemma 4.1 can be stated; however it

is not difficult to show that both these concepts imply SQCX and QCX. It

was also shown in [70] that the conclusion of Lemma 4.1 does not hold if

the condition on the function vg is weakened to quasiconvexity.

(A) Finitely constrained programs

Consider the following program:

(P) Minimize f(x) subject to x e C, g. (x) < 0, i e B = {2,...^} ;

where f: X -* R and (for each i e B) g. : X ->• R are locally Lipschitz
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functions, and C is a non-empty closed subset of X .

Define the following sets:

F = {x e C : (vi e B) g-{x) < 0}, the feasible set;

I = {i € B : (va: e F) a. (a:) = 0 } I* = S\I.

Let <2 e JF be the putative minimum of (P) and define

J = {i e B : g.(a) = 0}.

THEOREM 4.3. Consider program (P) with a e F. Then a necessary

condition for (P) to attain a local minimum at a is that there are

\. > 0, i e {CJI,...J«}J not all zero, such that

n n
(19) 0 c Xo9c/(a) + I X^tf^a) - N{C,a), I ̂ g^a) = 0

i=l i=l

Proof. Let a e F be a local minimum of (P) . Now suppose, if

possible, that the following system has a solution d e X,

(20) f{a,d) < 0, (Yi e B) g.(a) + g°.{a,d) < 0, d e T(C,a).

Since D f{a,d) S f^(a,d) < 0, it easily follows that for some y > 0,

sufficiently small, f(a + Xd) < f(a), for all X e (0,y). Similarly,

since D g.(a,d) < -g. (a) for each i e B, there are y.>0 such that
1s Is If

g.(.a + Xd) < 0 for all X e (0,y.) and each i e B. Let

6 = min{Y,Y^,... ,y }. Then a + Xd e F and f{a + Xd) < f(a), for all

X e {0,6); this is a contradiction to a e F being a local minimum.

Hence system (20) has no solution d e X.

Define the function F : X -*• R where

Fid) = (f (a,d) ,g°(a,d),... ,g°n(a,d)).

Also let s = (0 ,g*(a) ,... ,g (a)) € Ft . Since / and (for each

i £ B) g. are locally Lipschitz, F is continuous and R -sublinear.

Now no solution to the system (20) is equivalent to no solution existing

to

(21) F(d) + s e -int i?"+2, d e T(C,a) .

Since T(C,a) is convex this is equivalent, by the Basic Alternative
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Theorem ([8, p.3/]), to the following

(22) (30 ft p e K^+1) (Vd e T(C,a)) pF'(d) s -p(S)

Hence, by [20, Corollary / ] , (22) is equivalent to

(23) 0 e 3(pF)(0) x {p(s)} - (tf(C,a) x R+)

Let p = (X ,\ , , X ) , then it follows that (using [7,Theorem /])

n n

0 e X 3^f(a) + £ X.3^.(a) - N(C,a), I X .a. (a) > 0

which is easily seen to be equivalent to (19) since a e F. D

RLMARK 4.4. Theorem 4.3 has been established previously by

Clarke [6], and Hiriart-Urruty [23], however the method of proof used here

differs considerably from the earlier versions which relied critically on

the local Lipschitz behavior of the functions. The above theorem can be

extended to include functions in the class C; if we assume

co{f,g. (i=l,.,n)} is contained in C then (23) can be replaced by the

following condition:

(24) 0 ecl[Z(pF)(0) x ip(s)} - (ff(C,a) * R+)\.

That (24) is equivalent to (22) follows from the Generalized Non-

homogeneous Farkas1 Theorem, [20,Theorem 2.2]. As we are assuming f and

(for each i) g. are in C the function F may not always take values

in R (since the generalized gradients may take the value +<°),

however this problem can be overcome by restricting F to the set

n
A = dom f n ( n dom g.).

i=l *

Then no solution d e A to system (20) is easily seen to imply (22) and

the result then follows as above. If we let p = (X ,X,,...,X ) then

using an induction argument on (3), (24) can be expressed in the following

form

(25) 0 e cllcl (X^cfia) + \ X^^^d)) * | \ V^te)} - (ff (C ,a) * i

Thus we have established the following theorem.
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THEOREM 4.5. Consider program (P) with a e F. Let f and {for

each i e B) g. be functions in class C. Then a necessary condition

for (P) to attain a local minimum at a is that there are

X. > 0, i e {0,1,...,n), not all zero, such that (25) holds,
i*

The main result of this section is the following Kuhn-Tucker type

theorem for program (P). For convenience let

D = ix e X : (Mi e I) g.(x) s 0},
O Is

THEOREM 4.6. Consider program (P) with a e F. Let f and (for

each i e B) g. be locally Lipschitz with g. PCX(Clarke) for each

i e I and QCX for each i e I. Furthermore assume C is convex. Then

a necessary condition for (P) to attain a local minimum at a is that

there are X • > 0 for i e J such that

(26) 0 e 3^(0:) + I < V c ^ ( a ) " N{C ° D'a) ' ^ <Xi9i{a) =

iel id

Proof. Program (P) can be expressed in the following form:

(P1) Minimize f(x) subject to x e C r. D g.(x) < 0, i e I .

By assumption C n D is a closed convex set, hence

HI (C n D,a) — (C n D - a)*. By choosing the standard basis vectors in

R as a generating set for the cone R and noting that g. is

continuous and PCX (Clarke) for each i e I , we can apply Lemma 4.1.

Thus there is a point x g F with g. (x) < 0 for each iel. Let

a e. F be a local minimum for (P) , thus by Theorem 4.3 there are

X , X . > 0, i e I , such that
o x.

(27) 0 e X 3^(0) + I ̂ ^^.(a) - N(C n D,a) , I^g^te) = °

° ieJ t iel

Hence it suffices if we can show X > 0. Suppose, if possible, that

X = 0. Thus, by (27), there are W. e 3 ^ . (a), for iel O J, with
O Is O Is

(28) v E y x.u. e N{C n D,a)
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Now, for each i e I n J, X. > 0 and g-ix) < g-(a) = 0. Thus, since

g. is PCX(Clarke), g°.(a,x -a) < 0, for each i e I r j. Hence

V(x - a) < 0; however this is a contradiction to (28) since

x-aeC^D-a, so that v (x - a) 2 0. Hence \Q > 0 is required

and (26) follows immediately from (27). It can be assumed that

j n j ^ 0 in (27) since, for X = 0, there is some X. > 0 with
o if

i e I<, it easily follows that i e I n J. Q

REMARK 4.7. Theorem 4.6 provides a necessary optimality condition

for program (P) which does not require a constraint qualification to be

satisfied. By virtue of Lemma 4.1 and the expression of (P) in the form

of (P1) we are able to use a 'Slater-type1 constraint qualification which

is implicit in (P1). We are tacitly assuming in Theorem 4.6 that J is

non-empty, however this may not always be the case; if J is empty then

we are dealing with a program involving only equality constraints and (26)

yields the well-known necessary optimality condition ([23])

*ofW n (F - a)* £ 0

where F is a closed convex set.

If f and (for each i e S) a• are finite convex functions

defined on n , then the Clarke subgradient coincides with the normal

convex subdifferential; in this case a similar result to (26) has been

established by Ben-Tal, Ben-Israel and Zlobec [3]. This latter result

differs from (26) in that T(C ̂  D,a) is replaced by the cone of

directions of constancy, denoted by DAa), namely

D=T(a) =
 n Id £ / : (aa > 0) g.ia + Ad) = g.(a) for all X e (0,a] \.

1 i el*- V % >

It is easily shown that N(D,a) = (T{D,a))* = (D - a)* C (£T(<2))*, thus

the necessary (and sufficient) condition of [3] is a direct corollary of

Theorem 4.6. If / is PCX(Clarke) and (for each i e B) g. is

QCX(Clarke) then it is straightforward to show that (26) is a sufficient

optimality condition for (P).
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From a computational viewpoint it is worth noting that Zlobec and

Craven [35] have suggested a finite iterative method for calculating the

minimal index set of binding constraints (in our notation the set I) for

differentiable convex programs.

It is possible to extend Theorem 4.6 to include the case in which

the objective and constraint functions are (more generally) in class C.

In this case we replace the necessary condition (26) by the following:

0 e al {["(cZOg/ta) + I ̂ 3^.(0))) * { I < V i ( a ) N - (N(C n D a) x sj\
"•1— iel '•iel ' —' 'iel

The proof follows using a similar (although more complicated) argument to

that of Theorem 4.6 and, for the sake of brevity, we omit the detai ls .

(B) Mathematical programming in abstract spaces with cone

constraints.

Consider the following program:

(P") Minimize fix) subject to -g ix) e 5;

where f : X -*• R and g : X •*• Y are weakly directionally differentiable

functions. Let F = {x £ X : -g (x) e S}, the feasible region for (P") .

THEOREM 4 . 8 . (G lover [ 2 1 ] )

Consider program (P") with a e F. At a, let f be quasi-

differentiable and g S*-quasidifferentiable. Let H be a generating

set for S*, define H as in Lerma 4.1 and let Q c u be weak*

compact. Furthermore assume that vg is PCX(Dini) for each v e H and

l.s.c for each v e H\Q. Then the implications (a) =* (b) =» (e) are

satisfied where

(a) (P") attains a local minimum at a.

(£>) There exists a v e Q** such that

(29) 0 e df{a) + d(vg)(a) - (D(.Q) - a)*, vgia) = 0

where D(Q) = {x e XQ : (Wu e H\Q) vg(x) < 0}.

(c) There is no solution d e X to the following system:

f'(a,d) < 0, g^ia.d) e - e J cone (Q* + g(a)) , d e cl cone (D(Q) - a)\
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REMARK 4.9. The proof of Theorem 4.8 is similar to the proof of

Theorem 1 in Craven, Glover and Zlobec [10], it requires the Generalized

Fritz John Theorem in Glover [20, 27] and relies, critically, on Lemma 4.1.

Since g is weakly directionally differentiable and Vg is PCX(Dini) for

each v e H, it follows that (vg) ' (a,d) = vg'(a,d) = D (vg) (a,d) , also

by Theorem 3.6 vg is SQCX and so Lemma 4.1 is applicable. Hence there

is an x e F such that -g(x) e int Q*; this supplies the 'stability1

result necessary to ensure we obtain the (modified) Kuhn-Tucker

conditions (29). It is not difficult to show that (c) implies (a)

provided / is PCX(Dini) and vg is QCX(Dini) for each V e H.

Theorem 4.8 is more general than Theorem 1 in [10]; the latter result

required that f be linearly Gateaux differentiable and g be either

linearly Gateaux differentiable or S-convex and continuous, clearly these

conditions are special cases of the quasidifferentiability conditions of

Theorem 4.8. If both f and g are linearly Gateaux differentiable then

(29) becomes (3u e Q**) f (a) + vg'(a) e (D(Q) - a)*.

It is possible to further extend Theorem 4.8 to minimization

problems involving vector-valued objective functions, with an appropriate

extension of the concept of local minima (see [9]).

We now consider Theorem 4.8 applied to program (P).

THEOREM 4.10. Consider program (P) with a e F. At a, let f and

(for each i e B) g. be quasidifferentiable. Let g. be PCX(Dini) for

each iel and QCX for each i e I. Furthermore assume C is convex.

Then a necessary condition for (P) to attain a local minimum at a is

that there are \ . > 0, i e I with

(30) 0 elf (a) + I X.la. (a) - (C n D - a)*, \ X-g-(a) = 0
iel % t iel V %

REI'iARK 4.11. It is worth noting that Theorems 4.6 and 4.10 present

similar but independent results. The directional differentiability

assumption in Theorem 4.10 is not required in Theorem 4.6 where we use,

instead, the Lipschitz properties of the functions. Clarke [7] has shown
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that if f : X •*• R is quasidif ferentiable with the multifunction 3/( •)

(strongly) upper semi-continuous then f is locally Lipschitz with

3_f(<z) = 3_f(a), for each a e X • If f and g. are differentiable in

program (P) then (30) becomes

(31) f'(a) + I \.g'.{a) e (C n D - a)*, \ A .g. (a) =0 ,

However (31) does not follow from Theorem 4.6 unless the functions are

continuously differentiable (this follows since the Clarke subgradient may

contain continuous linear functionals other than the derivative, see [7],

[26, Theorem 2.2]).

(C) Application to fractional programming

In this section we consider the following fractional programming

problem:

(PI) Minimize f. (x) /f (x) subject to x e C, g. (x) < 0, i e B;

where jf7, fo:X ->• R and (for each % e B) g. : X •*• R are convex

functions with j% (a;) S 0 and /„ (x) > 0 for each x e X feasible for

(PI). Further we assume C is closed and convex. We shall also assume

all functions involved are continuous.

Borwein [4] (and others) have shown that j = Ji/fn i s quasi-

differentiable with df{a) = (f2 (a) 3/^ (a) - f1 (a) 3/2(a)) / (/2<a))
 2.

Similarly, Bector [2] has shown that / is PCX(Dini). Since

f. (i = 1,2) is a continuous convex function it is locally Lipschitz

([J4]), and consequently / is also locally Lipschitz ([4]). It should

be noted that f is not in general convex or dif ferentiable, hence the

results in [10] would not be directly applicable to problem (PI). In this

case 3/(a) coincides with 3_/(a) so that Theorem 4.10 and 4.6 yield

identical optimality conditions. Thus, using (26), a necessary optimality

condition for (PI) is the following with a e F the putative minimum:
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(32)

0 e

with \. > 0, for each i e J<, and D = {x e X : ( W £ J) g.(x) < 0}.

It follows immediately that the above condition is also sufficient for

optimality since f is PCX(Dini); consequently this condition

characterizes optimality for (PI) without requiring a constraint

qualification to be satisfied (and also without recourse to equivalent

convex programs).

Mond and Zlobec [29] have presented a duality result for a finitely

constrained, nondifferentiable, convex program without a constraint

qualification being required using the work of [3]. This result can

easily be extended to include non-convex programs such as (PI). Thus a

dual program to (PI) (related to the Wolfe dual) can be given as

(Dl) Maximize / (u) + £ \.g.(u) \/fAu)
'— ieB —I

subject to (Vi e 3) \. > 0, and g. (u) < 0, for i e I, with

0 e fAu)dfAu) - fAu)ZfAu) + \ \Af (u)dg.(u)

fAu)) - N(D,u).
v &

A related dual, assuming a constraint qualification, was derived by

Craven and Mond [72]. The proof of duality follows easily from the

following lemma which we include without proof (similar results can be

found in [27], [75], and [37]).

LEMMA 4.12. Let h : X •*• R and k : X' -*• R be continuous convex

functions on a convex set U C X , furthermore assume h(x) < 0 and

k{x) > 0 for each x e U. Then, for each x, a e U, we have

f3(a:,a) (#(x) - H{a)) > H'(a,x - a)

where e(x,a) = k(x)/k(a) and H = h/k.
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THEOREM 4.13. (Dl) is a dual program to (PI).

Proof. (Weak duality) Let a; e X be feasible for (PI) and

(M,A7,...,X ) be feasible for (Dl). For convenience let F = f~/fg and

G-; = 9*/fo (for i e B) . Thus it is easily seen that the main constraint

of (Dl) is equivalent to

(33) 0 e !>F(u) + I X.'dG.(u) - N(D,u)
veB

Hence, by (33), there are V e 8F(w) , and w. e "%G. (u) such that

(34) v + I X.W.e N(D,u) .

veB

Now consider the following:

Fix) - (F(u) + I X.G.(u)) > Fix) - F(u) + \ \.(G.(x) - G.(M))
UB % % iB r V

(since x e F and fo(x) > 0)

a(F' (u,x - u) + I \.G'.(u,x - u))

(using Lemma 4.12, with a = f2(u)/f(x))

> a({v + I XAO^ (x - u))
ieB

5 0 by (34) since X - u e D - u.

In this final step we require that N(D,u) = (D - u)*, which follows by

the convexity conditions and the fact that u e D from the constraints of

(Dl). Hence since F = f-,/fp is the objective function of (PI), weak

duality is established.

(Strong duality) Let a e X be optimal for (PI). Thus a is optimal

for the following equivalent program,

(PI1) Minimize F (x) subject to G.(x) < 0, for i e B ,

(we are assuming C = X , for the sake of brevity) . By the convexity

assumptions in (PI) F and G. (for ieB) are quasidifferentiable,

PCX(Dini) functions; thus, by Theorem 4.10, there are X. S 0,
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(for i e I ), such that

(35) 0 e I F ( a ) + I X . 3 C . (a) - lUD,a), T A . G . ( a ) = 0 .

Thus, by letting X. = 0 for £ e B\I , (a,X7,...,X ) is feasible for

(Dl) with Y \.G.(a) = 0. Now strong duality follows, using weak
i V %

duality, since

Min (PI) = F{a) = F(a) + \ X^GAa) = Max (Dl). Q
ieB

REMARK 4.14. A dual program closely resembling that of [29] can be

deduced from Theorem 4.13 and (Dl) by letting /o(x) = 1 for each
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