
Bull. Aust. Math. Soc. 83 (2011), 96–107
doi:10.1017/S0004972710001681

CONVEX STANDARD FUNDAMENTAL DOMAIN
FOR SUBGROUPS OF HECKE GROUPS

BOUBAKARI IBRAHIMOU and OMER YAYENIE ˛

(Received 10 February 2010)

Abstract

It is well known that if a convex hyperbolic polygon is constructed as a fundamental domain for a
subgroup of SL(2, R), then its translates by the group form a locally finite tessellation and its side-pairing
transformations form a system of generators for the group. Such a hyperbolically convex fundamental
domain for any discrete subgroup can be obtained by using Dirichlet’s and Ford’s polygon constructions.
However, these two results are not well adapted for the actual construction of a hyperbolically convex
fundamental domain due to their nature of construction. A third, and most important and practical, method
of obtaining a fundamental domain is through the use of a right coset decomposition as described below.
If 02 is a subgroup of 01 such that 01 = 02 · {L1, L2, . . . , Lm} and F is the closure of a fundamental
domain of the bigger group 01, then the set

R=
( m⋃

k=1

Lk(F)
)o

is a fundamental domain of 02. One can ask at this juncture, is it possible to choose the right coset
suitably so that the set R is a convex hyperbolic polygon? We will answer this question affirmatively for
Hecke modular groups.
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1. Introduction

To study Dirichlet series satisfying some functional equations, Hecke [6] introduced
a class of subgroups of SL(2, R) (a group of orientation-preserving isometries of the
upper half-plane H) generated by two fractional linear transformations of the upper
half-plane on itself,

Sλ : τ → τ + λ and T : τ →
−1
τ

where λ is a positive real number. These groups are discrete if and only if λ≥ 2 or
λ= λq = 2 cos(π/q), where q is an integer greater than or equal to 3. These groups
are called Hecke modular groups or Hecke triangle groups. In this article we restrict
ourselves to the case λ= λq = 2 cos(π/q), where q ≥ 3. We denote these Hecke
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[2] Convex standard fundamental domain 97

groups by Hq . It is known (see [2]) that the Hecke modular groups are isomorphic
to the free products of two finite cyclic groups of orders two and q; that is,

Hq ∼= 〈T 〉 ? 〈Pλ〉 ∼= Z2 ? Zq ,

where Pλ = T Sλ is an elliptic element of order q . The group Hq is a Fuchsian group
of the first kind with signature (2, q,∞) (see [1, 4, 6]). The best known and most
interesting Hecke group is the modular group H3, namely SL(2, Z), which is usually
denoted by 0(1). Hence the Hecke modular groups can be thought of as natural
generalizations of the modular group 0(1), thus validating the name. When q is 4
or 6, the Hecke groups are G(

√
2) and G(

√
3), respectively (see [20]). These two

groups are the only Hecke groups, aside from the modular group, whose elements are
completely known (see Remark 3.2). Also, Hq is commensurable with SL(2, Z) if and
only if q = 3, 4 or 6 (see [14, 19, 20, 27]). We will consider the group H4 at the end
of Section 3.

Let G ⊂ SL(2, R) be a Fuchsian group. The group G acts on the upper half-plane
homeomorphically and the images of a single point under the group action form an
orbit of the action. To illustrate the action of G, we usually picture a fundamental
set, which, roughly speaking, is a subset of the upper half-plane containing exactly
one point from each of these orbits of G. A fundamental set with desirable properties
serves as a geometric realization for the abstract set of representatives of the orbits.
A fundamental set with some topological niceties is called a fundamental domain.
There are slightly different versions of fundamental domain in the literature but this
causes little or no confusion. Here we follow Lehner’s (see [13]) version of the
fundamental domain of a subgroup G of SL(2, R).

DEFINITION 1.1. An open subset F of H is called a fundamental domain of G if:

(1) no two distinct points of F are equivalent under G (a packing of H);
(2) every point of H is G-equivalent to a point of F (a covering of H).

For any subgroup of Hq , a fundamental domain can be constructed using Ford’s
isometric circle method [5] or Dirichlet’s method [1]. Even though these methods
yield hyperbolically convex fundamental domains, they are not well adapted to
actual construction. A third and easier method of obtaining a fundamental domain
for subgroups of the Hecke modular group is through the use of a right coset
decomposition. Before we pursue this, we need to set the stage. It is well known
that (see [4, 6]) the interior of the set

Fq =

{
τ ∈H : 0≤ Re(τ )≤

λ

2
,

∣∣∣∣τ − 1
λ

∣∣∣∣≥ 1
λ

}
is a fundamental domain for Hq . Even though the point i (elliptic of order two) splits
the positive imaginary axis into two sides of Fq with interior angle π , from here on we
will not view i as a vertex of Fq , since it plays no role in our discussion; that is, the
h-line joining 0 and i∞ is considered as a single side of Fq . Thus, the vertices of Fq
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FIGURE 1. Tessellation T5.

are i∞, 0, and ηλ(= eπ i/q). Also, note that the interior angle at the vertex ηλ (the only
vertex of Fq in H) is 2π/q . The translates of Fq by members of the group Hq , called
tiles, define a tessellation or tiling Tq of H as shown in Figure 1 for q = 5. Moreover,
exactly q tiles are joined at the elliptic point ηλ and the same is true at any other elliptic
point of order q . Each edge or side of one tile is an edge of precisely one other tile. As
seen in Figure 1, the tile F5 is adjacent to only three tiles, namely T (F5), SλT (F5), and
T S−1

λ (F5). In general, it is not difficult to show that the tile Fq is adjacent only to the
tiles T (Fq), SλT (Fq), and T S−1

λ (Fq). Similarly, one can show that, for any M ∈Hq ,
the tile M(Fq) is adjacent only to the tiles MT (Fq), M SλT (Fq), and MT S−1

λ (Fq).
Suppose that G is a subgroup of Hq of finite index. One way of obtaining a

fundamental domain for G is through the use of a right coset decomposition. If

Hq = G ·A

is a right coset decomposition, then the interior of the set

R=
⋃

M∈A

M(Fq)

is a fundamental domain for G. Fundamental domains obtained in this way are called
standard fundamental domains. Both Rademacher [21] and Zagier [28] used this
approach to construct an independent system of generators and to give an explicit
formula for the Petersson norm of a cusp form of some congruence subgroups of
the modular group, respectively. The standard fundamental domain R which, as just
shown, is not difficult to construct, might not have desirable topological and geometric
properties. It may not even be connected. However, the right coset system A of G in
Hq can be chosen suitably to make R connected (see [23]).
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Kulkarni [9] (for q = 3) and Lang [11] (for q > 3 and q prime) have shown
that every subgroup of Hq of finite index admits a fundamental domain which is a
convex hyperbolic polygon with special properties. These polygons are called special
polygons. One of the objectives of this article is to extend their results to any subgroup
of the Hecke modular group Hq for any q ≥ 3 by using right coset decomposition.
Another objective of this article is to provide an elementary and algorithmic proof that
will enable us choose a right coset system A suitably to make R a special polygon
(convex hyperbolic polygon with special properties). We would like to point out that
Yayenie has shown in [26] that some h-convex standard fundamental domains cannot
be obtained using either Ford’s and/or Dirichlet’s method; that is, the three methods
mentioned above are independent.

In Section 2 we introduce the necessary facts concerning hyperbolic geometry and
prove a proposition about standard fundamental domains. In Section 3 we prove the
main result, Theorem 3.1, and conclude with a few examples and remarks.

2. Preliminaries

A polygon in hyperbolic geometry on the upper half-plane is the interior of a closed
Jordan curve

[τ1, τ2] ∪ [τ2, τ3] ∪ · · · ∪ [τn−1, τn] ∪ [τn, τ1].

The interior angle at the vertex τk is denoted by θk for k = 1, 2, . . . , n. We allow the
vertices to lie on the closure of the real axis R. If τ j is such a vertex, then θ j = 0.
A subset S of H is h-convex, we will also say convex, if the h-line segment of any two
points in S is also contained in S . We say that a set D is locally convex if for each
point τ ∈ D there exists an open set U containing τ such that the set D ∩U is convex.
The notions of convexity and local convexity are meaningful in both Euclidean and
hyperbolic spaces, and they extend in an obvious way to the closed hyperbolic plane.
The following result concerning convex polygons is used in this article very often. It
is a necessary and sufficient condition for a polygon to be convex. The first part is a
theorem due to Tietze [24].

PROPOSITION 2.1.

(a) Let E be the Euclidean plane or the closed hyperbolic plane. A closed subset D
of E is convex if and only if it is connected and locally convex.

(b) Let P be a polygon with interior angles

θ1, θ2, θ3, . . . , θn

and vertices
τ1, τ2, τ3, . . . , τn.

Then P is convex if and only if each θk satisfies 0≤ θk ≤ π .

The proof of this proposition can be found in [1, 24].
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PROPOSITION 2.2. Let G be a subgroup of Hq with [Hq : G] = µ <∞ and suppose
that A is a finite set consisting of inequivalent elements of Hq modulo G. If

R=
⋃

M∈A

M(Fq)

is connected and if every tile adjacent to R is equivalent to a tile contained in R
modulo G, then |A | = µ, that is,

Hq = G ·A .

PROOF. Since R has a finite number of sides, M(R), where M ∈ G, has a finite
number of sides as well, and at each side of M(R) there exists a tile which is adjacent
to it at that side. Moreover, if M1(Fq) is adjacent to M(R) for some M ∈ G, then
M−1 M1(Fq) is adjacent to R. So M−1 M1 ∈ G ·A and M1 ∈ G ·A , since M ∈ G.
Thus, if a tile, say F, is adjacent to M(R) and equivalent to one of the tiles contained
in M(R), then every tile adjacent to F is also contained in N (R) for some N ∈ G.
Let

A =

( ⋃
M∈G

M(R)
)o

=

( ⋃
M∈G·A

M(Fq)

)o

and

B =

( ⋃
M∈Hq−G·A

M(Fq)

)o

.

From the definition of the two sets and the above observation we can easily verify
that:

(i) A ∩ B = ∅, (ii) H= A ∪ B, and (iii) A ∩H 6= ∅.

The connectedness of H implies that B = ∅. Hence Hq − G ·A = ∅. Therefore,
|A | = µ. 2

To proceed we shall recall the definition of the stabilizer of a point in the upper
half-plane with respect to the group of Möbius transformations. Suppose that τ is any
point of H and G is a subgroup of Hq . The stabilizer of τ modulo G is defined to
be the subset Gτ of G consisting of all M ∈ G for which M(τ )= τ . Clearly, Gτ is a
subgroup of G and if M ∈Hq , then

(M−1G M)τ = M−1G M(τ )M

and
Gτ ⊂ (Hq)τ and (Hq)ηq = 〈T S−1

λ 〉.

It can be shown that if G 5 Hq and B ∈Hq , then there exists a smallest positive
integer d with d | q such that

G B(ηλ) = 〈B(T S−1
λ )d B−1

〉.
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3. Convex standard fundamental domains

In this section we show that any finite index subgroup of Hq admits a convex
standard fundamental domain. The approach we take is algorithmic and at each step
in the process we construct a convex polygon which will be contained in the standard
fundamental domain obtained at the end of the algorithm.

THEOREM 3.1. If G is a subgroup of Hq and [Hq : G] = µ <∞, then there exist a
finite number of elements M1, M2, . . . , Mm in Hq and m disjoint sets

S j := {M j , M j (T S−1
λ ), . . . , M j (T S−1

λ )δ j−1
} ∀ j = 1, 2, . . . , m

such that:

(1) µ= δ1 + δ2 + · · · + δm and δ j | q ∀ j = 1, . . . , m;
(2) Hq = G ·6, where 6 =

⋃m
j=1 S j ;

(3) R= {
⋃

M∈6 M(Fq)}
0 is a convex hyperbolic polygon. Moreover, R is a

standard fundamental domain for G.

PROOF. We will construct a sequence of sets contained in Hq such that:

(a) 61 ⊂62 ⊂63 ⊂ · · · ⊂6m =6;
(b) 6k contains elements of Hq that are inequivalent under the group G for all

k = 1, 2, . . . , m;
(c) Rk =

⋃
M∈6k

M(Fq) is a convex hyperbolic polygon for all k = 1, 2, . . . , m.

At step k we adjoin at least the smallest divisor of q and at most q elements of Hq
to 6k−1. We terminate the process at step m if either |6m | = µ or every tile adjacent
to Rm is equivalent to a tile contained in Rm . By Proposition 2.2 these two conditions
are equivalent.

Step 1. We take M1 to be the identity element I , but one can choose any element
of G as M1. There exists a smallest positive integer d1 such that d1 | q and

G M1(ηλ) = 〈M1(T S−1
λ )d1 M−1

1 〉.

Now we let
61 = {M1, M1(T S−1

λ ), . . . , M1(T S−1
λ )d1−1

}.

If d1 = q , then 61 contains q elements, otherwise 61 contains at most q/2 elements,
since d1 | q and d1 6= q . Moreover, the set

R1 =
⋃

A∈61

A(Fq)

is a closed connected set. Next we will show that R1 is a convex hyperbolic polygon.
If d1 = q , then R1 has no vertex in H and hence it is locally convex. Therefore, by
Proposition 2.1, R1 is convex. If d1 < q , then the only vertex of R1 in H is v1 =

M1(ηλ) and the interior angle at v1 is (2π/q)d1, which is at most (2π/q)q/2= π .
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0 λ
2

λ

when d1 = 4

0 λ
2

λ

when d1 = 2

0 λ
2

λ

when d1 = 1

FIGURE 2. The different possibilities of R1 for q = 4.

Therefore, R1 is locally convex and hence convex by Proposition 2.1. See Figure 2 for
different possibilities for R1 in the case q = 4.

To simplify things we will use the notation M
G∼A if M ∈ G ·A and M

G�A
otherwise. Next we will show that, for any A ∈61,

A(T S−1
λ )t

G∼61 ∀t ∈ Z.

Since A ∈61, there exists an integer r , 0≤ r < d1, such that

A(T S−1
λ )t = M1(T S−1

λ )t+r

= M1(T S−1
λ )ad1+t0

= M1(T S−1
λ )d1a M−1

1︸ ︷︷ ︸
∈G

M1(T S−1
λ )t0︸ ︷︷ ︸

∈6

where t + r = ad1 + t0 and 0≤ t0 ≤ d1 − 1. Hence

A(T S−1
λ )t

G∼61 ∀t ∈ Z.

Terminate the process if either [Hq : G] = |61| or there is no B ∈Hq such that

B(Fq) is adjacent to R1 and B
G�61. Otherwise go to the next step.

Step 2. If there exists B ∈Hq such that B(Fq) is adjacent to R1 and B
G�61, then

there exists A ∈61 such that B(Fq) is adjacent to A(Fq) and from this adjacency we
conclude that

B = AT, B = AT S−1
λ , or B = A(T S−1

λ )q−1.

Since AT S−1
λ

G
∼61 and A(T S−1

λ )q−1 G
∼61, we have B = AT . That means B(Fq)

and A(Fq) share the common side B(I), where I is the positive imaginary axis. There
exists d2, the smallest positive integer such that d2 | q and

G B(ηλ) = 〈B(T S−1
λ )d2 B−1

〉.
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d1 = 2, d2 = 4
B = T

d1 = 2, d2 = 4
B = TSλ

–1T

d1 = 2, d2 = 2
B = T

d1 = 2, d2 = 2
B = TSλ

–1T

d1 = 2, d2 = 1
B = T

d1 = 2, d2 = 1
B = TSλ

–1T

FIGURE 3. The six possibilities for R2 in the case q = 4, M1 = I , and d1 = 2.

We want to show that B(T S−1
λ )t

G�61 for all 0≤ t ≤ d2 − 1. Suppose that there

exists 0≤ t ≤ d2 − 1 such that B(T S−1
λ )t

G∼61. Then there exists M ∈ G and 0≤
a ≤ d1 − 1 such that

B(T S−1
λ )t = M M1(T S−1

λ )a

B = (M M1)(T S−1
λ )a−t

= (M M1)(T S−1
λ )bd1 M−1

1︸ ︷︷ ︸
∈G

M1(T S−1
λ )t0︸ ︷︷ ︸

∈61

,

where a − t = bd1 + t0, for 0≤ t0 ≤ d1 − 1. This contradicts the fact that B
G�61.

Thus, if we let

62 =61 ∪ {B, B(T S−1
λ ), . . . , B(T S−1

λ )d2−1
} and R2 =

⋃
A∈62

A(Fq),

then:

(1) any two elements of 62 are inequivalent under the group G;
(2) v2 = B(ηλ) 6= v1 = M1(ηλ);
(3) a vertex of R1 which lies inH is also a vertex of R2 with the same interior angle;
(4) if d2 = q , then v2 is an interior point of R2;
(5) if d2 < q , then v2 is the only additional vertex of R2 which lies in H and the

interior angle at vertex v2 is (2π/q)d2 (which is at most π );
(6) R2 is closed and connected.

Therefore, R2 is closed and locally convex and hence, by Proposition 2.1, R2 is
convex. Figure 3 shows some of the possibilities for R2 in the case q = 4 and d1 = 2.

Terminate the process if either [Hq : G] = |62| or there is no B ∈Hq such that

B(Fq) is adjacent to R2 and B
G�62. Otherwise go to the next step.
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Step k (The inductive step). If there exists B ∈Hq such that B(Fq) is adjacent to

Rk−1 and B
G�6k−1, then there exists A ∈6k−1 such that B(Fq) is adjacent to A(Fq)

and because of adjacency

B = AT, B = AT S−1
λ or B = A(T S−1

λ )q−1.

From the definition of 6k−1 we can easily see that

AT S−1
λ

G
∼6k−1 and A(T S−1

λ )q−1 G
∼6k−1.

Therefore, B = AT . That means B(Fq) and A(Fq) share the common side B(I).
There exists a smallest positive integer dk such that dk | q and

G B(ηλ) = 〈B(T S−1
λ )dk B−1

〉.

Using a similar reasoning as in the previous steps we can show that B(T S−1
λ )t

G�6k−1
for any 0≤ t ≤ dk − 1. Thus, if we let

6k =6k−1 ∪ {B, B(T S−1
λ ), . . . , B(T S−1

λ )dk−1
}

and
Rk =

⋃
A∈6k

A(Fq),

then:

(1) any two elements of 6k are inequivalent under the group G;
(2) every vertex of Rk−1 which is in H is a vertex of Rk ;
(3) Rk contains one additional vertex vk = B(ηλ) in H, if dk < q;
(4) if vr ∈H is a vertex of Rk , for some r = 1, 2, . . . , k, and θr is its interior angle,

then θr = (2π/q)dr ≤ π ;
(5) Rk is closed and connected.

Therefore, Rk is closed and locally convex and hence, by Proposition 2.1, Rk is
convex.

Terminate the process if either [Hq : G] = |6k | or there is no B ∈Hq such that

B(Fq) is adjacent to Rk and B
G�6k . Otherwise go to the next step.

Since the index [Hq : G] = µ <∞, the process has to terminate, say it terminates at
step m. The process terminates if either |6m | = µ or every tile which is adjacent to Rm
is equivalent to some tile contained in Rm . By Proposition 2.2, these two statements
are equivalent. Therefore, (Rm)

o is a convex standard fundamental domain for G. 2

REMARK 3.2. The convex standard fundamental domain R obtained in Theorem 3.1
is a special polygon as defined by Kulkarni [9] and Lang [11] with minor modification
for the case q > 3 and q not a prime. When q > 3 and q is not a prime, we allow the
interior angle at the intersection of elliptic vertices of order q to be (2π/q)d (which is
≤π ), where d is a proper positive divisor of q .
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FIGURE 4. Standard fundamental domains for G
√

2
0 (n), where n = 4, 5, 6, and 7.

REMARK 3.3. The previous theorem can be implemented on a computer using Maple
to generate a convex hyperbolic standard fundamental domain for any congruence
subgroup of Hecke groups. A few examples are given below. It is well known [3, 25]
that the group H4 (also denoted by G(

√
2)) consists of the mappings of all of the

following types:

(i) N (τ )=
aτ + b

√
2

c
√

2τ + d
, a, b, c, d ∈ Z, ad − 2bc = 1,

(ii) N (τ )=
a
√

2τ + b

cτ + d
√

2
, a, b, c, d ∈ Z, 2ad − bc = 1.

It is also known that [3, 12, 25] the congruence subgroup

G
√

2
0 (n)= {M ∈ G(

√
2) : c ≡ 0 mod n}

of H4 satisfies

[H4 : G
√

2
0 (n)] =


n
∏
p|n

(
1+

1
p

)
if (2, n)= 1

2n
∏

p|n,p 6=2

(
1+

1
p

)
if 2 | n.

Figures 4 and 5 show hyperbolically convex standard fundamental domains for the

subgroups G
√

2
0 (n) for 4≤ n ≤ 11.

REMARK 3.4. The number of vertices (in H) of R (of Theorem 3.1) is exactly the
same as the number of elliptic cycles of order q , which in turn is the same as the
number of inequivalent (in G) elliptic points of order q under G in the class 〈eπ i/q

〉.

For the examples given above, only G
√

2
0 (5) has exactly two inequivalent elliptic points

of order four; the rest have zero elliptic points of order four, which is consistent with
the results of Lang [12].
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FIGURE 5. Standard fundamental domains for G
√

2
0 (n), where n = 8, 9, 10, and 11.

REMARK 3.5. Theorem 3.1 does not hold as shown in [26] if we replace Fq by

Fq =

{
τ : |Re(τ )| ≤

λ

2
, |τ | ≥ 1

}
.

Note that the interiors of both sets are fundamental domains of Hq .
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