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INJECTIVITY IN THE TOPOS OF COMPLETE 
HEYTING ALGEBRA VALUED SETS 

DENIS HIGGS 

1. Introduction. Let j / b e a complete Heyting algebra (CHA). An 
stf-valued set is a pair (X, 8) where X is a set and 8 is a function from XXX 
to s/ such that 

8(x, y) = 8(y, x) and 8(x, y) A 8(y, z) ^ 8(x, z) 

for all x, y z in X. j^-valued sets form a category £f(s/) as follows: a 
morphism from (X, 8) to ( Y, 5) is a function / from XX Y to stf such 
that 

(i) f(x) A «(*, x') ^ / ( * ' , >;), / ( * , >0 A 8(y, y') ^ f(x, / ) , 

(ii) /(*,>>) A / ( * , / ) ^ 8(y,y')9 and 

(hi) V / ( * , > 0 = «(*,*) 
.V 

for all x, x' in X and 7, / in Y; if /:(X, 8) -» (y, 8) and g:( Y, 8) -> (Z, 8) 
are morphisms then gf(X, 8) —> (Z, 8) is given by 

(gf)(x,z) = Vf(x,y)Ag(y,z); 
y 

the identity morphism l(x,8) a t ( ^ ^) is just 8. 
The use of a CHA as truth-value algebra includes both the complete 

boolean algebras used in boolean-valued set theory and the lattices of 
open subsets of topological spaces used in sheaf theory. The 8 function has 
two purposes: e(x) = 8(x, x) measures the extent to which x is granted 
membership in (X, 8) (in the case of a sheaf of functions on a topological 
space, it gives the domain of x), and 8(x, y) itself measures the extent to 
which x and y are equal in (X, 8) (in the topological case, it gives the 
largest open set on which x and y agree). Thus the present conception of 
an s/-valued set is somewhat broader than is customary in multivalued set 
theories (fuzzy set theory for example) where one or the other of the above 
two considerations is frequently absent. A morphism is to be thought of as 
described by the (j^-valued) characteristic function of its graph, so that 
f(x, y) measures the extent to which y is associated by f to x. (It might 
have been technically more convenient to construct first the category of 
j^-valued sets and relations.) In the definition of morphism, (i) is 
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extensionality; the replacement of equals by equals ( [13] ), (ii) states that 
/ i s single-valued, and (iii) t h a t / i s everywhere defined. 

The aim of this paper is to describe injectives and injective hulls in 
Sf(jtf). Sections 2 and 3 are devoted to the concepts and results needed for 
this description, which is itself obtained in Section 4. Section 2 contains 
various preliminaries such as the construction of products, etc. in Sf(s/), 
leading to a direct proof that Sf(s/) is a topos: although this fact is a 
consequence of the equivalence, shown in Section 3. ofS?(s/) to the topos 
of sheaves on J ^ the explicit construction of power objects in Sf(s/) is 
needed later on, as is that of the object (X, 8) of 'partial elements' of (X, ô). 
also in Section 2. Much of what is in Sections 2 and 3 has been obtained 
independently by Fourman and Scott [2]. 

Injectivity in this paper is to be understood in the usual external sense: 
an object X of a category ^ i s injective if for all monos m:A >-• B and 
morphisms/y4 —> X, there exists a morphism g:B —> X such t h a t / = gm. 
In a series of papers [10], [7], [9], Linton, Paré and Johnstone have studied 
this and related notions of injectivity in a topos. In his thesis [11], Meyer 
also investigated injectivity in a topos and in particular he proved that, in 
a Grothendieck topos, every object has an injective hull ( [11, (4.10) ]; a 
more general result has been obtained recently by Ebrahimi [1] ). The 
same is true a fortiori for the situation considered here, namely that of 
£f(s/)\ however the present approach is quite different from Meyer's and it 
leads to a simple explicit description of injective hulls in Sf(s/). 

An earlier version ( [5] ) of this paper was accepted for publication in 
the Canadian Mathematical Bulletin but for various reasons I discontin­
ued the process of seeing it through into print. In addition to the present 
contents, [5] contained: a brief account of logic in Sf(s/)\ the Lawvere-
Tierney version (for S^(s/) ) of the independence of the continuum 
hypothesis [14]; a sketch of a proof that<^(j^) is equivalent to the category 
of sets within the universe F ^ of se-valued set theory; a mention of 
sheaves on an arbitrary site from the point of view of s#-valued sets; and 
some elementary remarks on boolean powers and ultrapowers in relation 
to S?(s/). 

I would like to express my thanks to the Département de Mathémati­
ques, Université de Montréal, and to the Department of Mathematics. 
University of Guyana, for their kind and generous hospitality during my 
period of leave, in which this work was done, and in particular to Gonzalo 
Reyes for his stimulating encouragement and advice. 

2. Preliminary results. The representation of (some) morphisms of 
S?(s/) by actual functions, introduced by Scott [13], is very useful. Let (X 
8) and ( Y. 8) be sf-valued sets, let fcX-> Y. and define To'.X X Y -» sf 
by 
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fo(x,y) = e(x) A 8(fQ(x), y). 

If/o is a morphism from (X, 8) to (Y, 8) we say tha t / 0 represents f). For 
example, 1^ represents \(x,8y 

(2.1) (a). Let f be a morphism from (X, 8) to (Y, 8) and fy.X —> Y a 
function. Then fo represents f if and only if 

f(x, y) = 8(fo(x), y) for all x in X and y in Y. 

(b) A function f$:X —> Y represents some morphism from (X, 8) to ( Y, 8) if 
and only if 

ô(x, x') â 8(f0(x),Mx') ) for all x, x' in X. 

(c) Let fo and f represent morphisms from (X, 8) to (Y, 8). Then they 
represent the same morphism if and only if 

e(x) ^ 8(fo(x), fi(x) ) for all x in X. 

(d) Let fo represent a morphism from (X, 8) to (Y, 8). If g is a morphism 
from (Y, 8) to (Z, 8) then 

(gfo)(x, z) = c(x) A g(fo(x), z) for all x in X and z in Z; 

if go represents a morphism from (Y, 8) to (Z, 8) then 

gofo = gofo-

Proof In (a) it is clear that if^o represents / then the stated inequality 
holds, and the converse follows from: 

f(x,y) ^ €(*) A 8(f0(x\y) = V / ( * , / ) A 8(f0(x), y) 
y' 

= y f(x, y') A d(fQ(x),y') A S(Mx), y) 
y' 

=i V / ( * , / ) A «(/,>>) = f(x, y). 
y' 

The remaining results are quite straightforward. 

An j^-valued set is said to be ample if every morphism to it is 
represented by a function; such J#valued sets are characterized in Section 
3. 

(2.2) 5f(s/) has finite products and a terminal object. 

Proof We show that the product of (X, 8) and ( Y, 8) is given by (X X Y, 
8) where 

8ax,y), ( * ' , / ) ) = 8(x,x') A8(y,y') 

and the projections p and q to (X, 8) and (Y, 8) are represented by the 
projections from XX Y to X and Y respectively. (Note. (X X Y, ô) and 
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(X, 5) X (7, 8) always denote the s/-valued set just constructed, and 
similarly for more factors.) Let/:(Z, 8) —> (X, 8) and g:(Z, 8) —» (7, S) be 
morphisms; then the unique morphism 

h = (/, g):(Z, S) -> (X X 7, 8) 

such that ph = f and g/z = g is given by 

A(z, (x,y)) = f(z, x) A g(z, y). 

To see this, take any such h. Then ph = /gives 

(1) V h(z, (x', / ) ) A £ ( / ) A ô(x', x) = f(z, x) 
x'.y' 

for all z in Z and x' in X Now 

h(z,(x',y')) A £ ( / ) A V , x) 

= /i(z, (x', / ) ) A S( (x', / ) , (x, / ) ) ë A(z, (x, / ) ), 

with equality for x' = x. Thus (1) becomes 

yh(z,(x,y')) =f(z,x), 
y' 

and qh = g leads similarly to 

The meet of these two equations gives 

(2) V h(z, (x, / ) ) A h(z, (*', y) ) = / (z , x) A g(z, y). 
x'y 

Now 

h(z, (x, / ) ) A h(z, (x', ^) ) ^ «( (x, / ) , (x', j ) ) 

^ 8( (x, / ) , (x, y) ) 

and hence 

h(z, (x, /) ) A h(z, (*', y) ) ^ h(z, (x, y) ), 

in which equality occurs for x' = x, y' = y. Thus (2) becomes 

k(z9(x,y)) =f(z,x) Ag(z,y) 

and simple calculations show that this h is indeed a morphism satisfying 
ph = / , qh = g. Note that if / = /Q and g = go t n e n 

(/> g) = (/o> ^o)-

Thej#valued set 1 with set part {*} and c(*) = 1 is easily seen to be 
terminal in SfÇstf). 

For each s/-valued set (X, Ô), define P(X, 8) to be the set of all functions 
a:X —» j^such that 
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a(x) ^ e(x) and 

a(x) A ô(x, y) ^ a(y) for ail x, 7 in X 

For a in P(X, 8), define 8a:X X X ^ ^ b y 

âaC^.y) = à(x> y) / \ «(*)• 

Then (X Sa) is an J#valued set with ea = a and 1 x represents a morphism 
from (X, 8a) to (X S). 

(2.3) A morphism f:(X, S) —> (y, 5) w mono if and only if 

/ ( x , y) A / (x ' , y) = S(x, xf) for ail x, x' in X and y in Y. 

Proof. Define £ in P(X X X X y, S) by 

è(x,x',y) = f(x,y) Af(x',y) 

and let g, g':(X X X X y, ô̂ ) —> (X, 8) be the morphisms represented by 
the first and second projections respectively; then/g = fg'. Thus if / i s 
mono we have g = g' and (2.1) (c) leads to the above inequality. Suppose 
that this inequality is given to hold and let g, gf:(Z, 8) —> (X, 8) be 
morphisms such that /g = fg'. Then for all z, x, y we have 

g(z, x) A / ( * , y) ^ V g'(^ x') A / ( * ' , ^) A / (x , y) 
x' 

g V ^(2, x') A «(*, *') = g'(z, x). 
x' 

Taking the join of this over all y gives 

g(z, x) A c(x) ^ g'(z, x), 

that is, g(z, x) ^ g'(z, x). The reverse inequality is obtained similarly and 
hence g = g' as required. 

(2.4) ,4 morphism f(X, 8) —» (y, 8) zs e/?z if and only if 

\J f(x, y) = e(y) for all y in Y. 
X 

Proof. Define /? in P ( 7 , 6) by 

A j ) = Vf(x,y). 
X 

Let y0 and yi be disjoint copies of Y and let (Y0 U y1? ô*) be the 
j^-valued set with 

8*(yo, yb) = 8(yo,y'6), 

8*(y\,y\) = 8(y\,y\), 

s*(yo,y\) = s*(yhy0) = s^y0, y\) 
where the subscripts show which copy of Y the yt concerned comes from. 
Let 
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g,g?:(Y,8)->(Y0 U YUS*) 

be the morphisms represented by the functions Y ^ 70 and 7 ^> Y\ 
respectively; then gf = g'f. Thus iff is epi we have g = g' and hence e(y) 
= Sp(y>y) f° r allj^ in 7 by (2.1) (c) so that e(y) = /i(y) as required. That 
this condition is sufficient for / to be epi is shown by a calculation very 
similar to the one used in the second half of the preceding proof. 

(2.5) Iff:(X, 8) —> (7, 8) is mono and epi then it is iso. 

Proof. Define g:Y X X->stfby g(y, x) = f(x9 y). Then (2.3) and (2.4) 
show that g is a morphism from (7, 8) to (X, 8). Furthermore 

(g/)(*, x') = Vf(x,y) /\f(x\y) = Vf(x,y) A 8(x, *') 
V V 

= €(x) A 8(x, x') = 8(x, x') 

for all x, x' in X, so that g / = l(x,8y Interchanging/and g, as we may, we 
obtain fg = 1 ( 7 5 ) too. 

(2.6) Letf:(Z, 8) —> (X, 8) 6e a morphism and let a be in P(X, 8); define aj 
in P ( X 8) by 

otf(x) = \Jf(z, x), 

y in P(Z9 8) by 

y(z) = Vf(z, x) A a(x), 

and g: (Z, Sy) -» (X, Sa) 6y 

g(z, x) = / ( z , x) A a(x). 

77? e« 
(a) 1^ represents a mono (X, 8a) >-• (X, 8); 

(b) g 
(Z,Sy) >(X,Sa) 

Y V 

(Z,S) >(X,8) 

f 

is a pullback: 
(c) j factors through (X, 8a) —> (X, 8) if and only if aj ^ a and if this is so 

then the above diagram becomes 
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JX, Sa) 

(Z, S ) _ >(X,Ô) 

f 
(d) taking a = afin the last diagram gives the epi/ mono factorization of f. 

The proof of this is straightforward. 

COROLLARY. The subobjects of (X, 8) are bijective with the elements of 
P(X, 8). 

Another way to obtain a subobject of (X, 8) is to take a subset 7 of X, 
restrict 8 to 7 X 7, and consider the mono (Y,8)>-> (X, 8) represented by 
the inclusion of Y into X. It is not the case in general that every subobject 
of (X, 8) can be obtained in this way (it is if (X, 8) is a sheaf in the sense of 
Section 3) but what is useful is the fact that (7, 5) >-> (X, 8) may be an 
isomorphism even when 7 is a proper subset of X. If (7, 8) >-> (X, 8) is an 
isomorphism then 7 is said to be an adequate domain for (X, 8) ( [12]; if in 
addition (7, 8) is ample then 7 is an ample domain for (X, 8) ). It follows 
from (2.4) and (2.5) that 7 is an adequate domain for (X, 8) if and only 
if 

V 8(x, y) = e(x) for all x in X. 
ye=Y 

(2.7) In (2.6), let f be represented by /Q. Then 
(a) y(z) = c(z) A a(./oC*) ) for a^ z m Z and S ^ represented by fc 
(b) fo(Z) ^ an adequate domain for the image (X, 8af) off and if fo 

preserves e (in particular if e(z) = 1 for all z in Z) then the epi/mono 
factorization of f may be taken to be 

(Z, S) -» (/o(Z), 8) ~ (X, S) 

where the epi part is represented by fo; 
(c) if the epi part of f is split and (Z, 8) is ample then fo(Z) is an ample 

domain for (X, 8a). 

Proof (a) is clear. For/0(2') to be an adequate domain for (X, 8a) we 
need 

V8a (fo(z), x) = 0Lf(x) for each x in X 

and this is easily verified, as is the fact that if fo preserves e then 

oif(x) = e(x) for all x in / 0 (Z) . 

To obtain (c), suppose that g:(X, 8a/) —> (Z, 8) is such that/g is the identity 
on (X, 8af) and let h be any morphism to (X, 8a); then gh = ko for some 
ko since (Z, 8) is ample and therefore 
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h =fgh = f0k0 = f0k0. 

Define the power object 0>(X, 8) of an ^-valued set (X, 8) to be (P{X, 8), 
8) where 

S(a9 P) = A OL(X) *-> fi(x) for all a, p in P(X, 3) 
X 

(notice that then e(a) = 1 for all a in P(Ar, 8) ), define € in P{ (X, 8) X 
&>(X, 8) ) by <= (*, a) = a(x) and let 

<f(X, 8) ^ (X, 8) X &{X, 8) 

be the associated mono. The next result shows that &*(X, 8) is ample; it is 
essentially, but with some sharpening, what follows from the two theorems 
on pages 1-35 and 1-43 of Scott [13] (note that every complete d gives a 
definite v). 

(2.8) For all ^/-valued sets (X, 8) and (7, 8), every morphism 

h:(Y, 8) -+&>(X, 8) 

is represented by a unique function /i0 such that 

hç)(y)(x) = e(y) for all x in X and y in Y. 

Proof Given /z, define h0 by 

where p runs over P(X, 8); then 

h0(y)(x) ^ e(y). 

By(2.1)(a), 

h0 represents h 

<=> h(y, a) ^ 8(h0(y), a) for all y in Y and a in P(X, 8) 

<̂> h(y, a) â (V A(^, j8) A £(x) ) <-> a(x) for all JC in X, 

_y in y, and a in P(X, 8) 
[ A(.y, a) A V /*(;>, P) A J8(JC) ^ a(jt) and 

«=> £ 
A(_y, a) A a(x) ^ V A(j, P) A yS(x) for all such x, y and a; 

the first of these follows from 

h(y9 a) A h(y, P) ë 8(a, 0) 

and the second is obvious. The uniqueness of /z0 is an easy consequence of 
(2.1) (c). 
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(2.9) Sf(s/) is a topos. 

Proof. We already know from (2.2) and (2.6) t h a t ^ ( j / ) has finite limits. 
Therefore by [8] (see also [6, p. 43] ), it is sufficient to show that for every 
mono 

(X x y, sy) >-» (X x y, 8) 

in Sf(j/) there exists a unique h:(Y, 8) —> &{X, 8) such that for some g 

(X X y, 8 ) 1 >S>(X, 8) 

Y Y 

y y 
(X X y, 8) > (X, 8) X 0>(X, 8) 

1 X /z 

is a pullback, the power object pullback. By (2.8), any such /z is represented 
by an /z0 satisfying 

Ao(.yXx) ^ ^ ) -

But then by (2.7) (a), 

y(x, y) = e(x) A e ( ^ ) A e (/z0(j), x) = h0(y)(x) for all x 
and y 

which shows both that /z0 exists and that it is unique, and thus the same is 
true for h. 

One way to construct the object (X, 8) of 'partial elements' of an 
j^-valued set (X, 8) is as follows (see [6, p. 28] ): (i) the mono 

A:(X, 8) ~ (X X X, 8) 

is represented by (1^, 1^); (ii) the corresponding element of P(X X X, 8) 
is 8; (iii) the singleton morphism 

{ }:(X, 8) ->^»(X 8) 

which corresponds to A by the power object pullback is represented by do 
where 

d0(x)(y) = 8(x, y) for all x, y in X; 

(iv) the mono 

(1, { } ):(X 8) -> (*, 8) X ^ ( I J ) 

is represented by (1^, do); (v) the corresponding element of P( (X, 8) X 
^ ( X 8) ) is 0 where 

0(x, a) = V «(*, V) A 8(a, </0( v) ) 
y 

= V 8(x, j ) A A a(z) <-> 8(y, z) 
V z 
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= e(x) A A a(z) ^ 8(x. z); 

(vi) the morphism h from @{X, 8) to itself which corresponds to the mono 
(1, { } ) by the power object pullback is represented by /i0 where 

h0(a)(x) = 6(x, a) for all a in P(X, 8) and x in X; 

(vii) (xTô), the image of h, may be taken by (2.7) (b) to be (h0(P(X, 8) ), 8) 
(note that this is ample by (2.7) (c) since &(X, 8) is ample and /z, being 
idempotent, has its epi part split ( [3]: in fact /i0 is idempotent) ); (viii) 
h0(P(X, 8) ) = S(X, 8) where S(X, 8) consists of those as in P(* , 8) such 
that 

a(x) A a(y) ^ 5(x, y) for all x, y in X 

(it is easily verified that h0(a) is in S(X, 8) for all a in P(X> 8) and that h (a) 
^ a with equality if a is in S(X, 5) j - j ind finally (ix) (X, 8) = (S(X, 5), 8). 
As noted, this representation of (X, 8) is ample and for it, the mono 

(X, 8) >- (JFS) 

is represented by d0. 

3. £f(s/) and sheaves. We first describe how the category Sh(s/) of 
(set-valued) sheaves on J /may be regarded as a full subcategory of S?(s/). 
Since each j^-valued set is easily seen to be isomorphic to a sheaf on j ^ 
SfÇs/) is thus equivalent to Sh(j^) (and in particular ^(2) is equivalent to 
the category S^oî sets). 

Recall that a sheaf on ^ where s/ is considered as a category carrying 
the canonical 'topology', is a functor F:s/op —» y with the property that if 
xz in F{al), i in / , are such that 

•X/U-Afl,- = Xj\a.Aa. for all / and j 

then there is a unique x in F(VZ-Û/) with x|fl. = xz for all / (x|a denotes the 
element F(k)(x) of F(#) where x is in F(b), a ^ b, and k is the unique 
morphism insefrom « to 6). If F i s a sheaf o n 4 let |F| = the union of the 
F(a)9s, which we assume to be disjoint, and for x, y in \F\ let 8F(x, y) = 
the largest c in j^for which x\c = y\c. Then ( |F|, 8F) is an j^-valued set, 
from which F is recoverable since 

F(a) = {x e \F\:eF(x) = a], 

and x\a = the unique _y in |F| such that 

8F{x,y) = CF(JO = a. 

We may thus identify sheaves on se with certain se-valued sets and it is 
convenient to refer to the j^valued sets which arise in this way as being 
themselves sheaves on s0\ thev will now be characterized. 
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Let (X, 8) be any J # valued set. If x, y in X satisfy S(x, y) = e(y) writer 
^ x (this is a preorder on X) and if S(x, y) = c(x) A c(^) write x|[y and 
say that x and 7 are compatible. It is easy to see that (X, 8) is a sheaf if and 
only if (i) ^ is a partial order, (ii) for each x in X and a = e(x) there exists 
j ^ x with £(>>) = a, and (hi) every (pairwise) compatible family of 
elements in Xhas a join in (X, ^ ) . Suppose that (X, 8) is a sheaf; then the 
following further facts are also easily checked: the element y in (ii) is 
unique, being just x\a of course; (X, â ) is a meet semilattice with smallest 
element 0; a join Vzxz exists in (X, ^ ) if and only if the xz's are 
compatible; this is the case for chains, so that (X, ^ ) admits the 
application of Zorn's Lemma; for every a in P(X, 5), y ^ x implies 

a(y) ^ a(x), a{x\a) = a(x) A a, 

a(x A y) = 8a(xy y), a(0) = 0, and 

a(\J Xj) = V a(xz) whenever V */ exists. 

Now a morphism in Sh(j/) from a sheaf (X, 8) to a sheaf (F, 8) is just a 
func t ion /o^ ~^ Y such that 

c(/o(*)) = e O) a n d 

/o(*L) = /o(*)L 
for all x in X and « ^ c(x) or, equivalently, such that 

8(x,x') ^ 8(f0(xlf0(x')) 

for all x, x' in X with equality if x = x'. Thus/o represents a morphism in 
£f(s/) and that we thereby obtain a bijection between morphisms from (X, 
8) to (7, 8) in Sh(aO and in S?(s/) follows from: 

(3.1) For any sheaf (X, 8) ands/-valued set (Z, 8), every morphism f(Z, 8) 
—» (X, Ô) in S^(s/) is represented by a unique (.-preserving function f$. 

Proof Define f0:Z -> X by 

/o(z) = V ^!/"(z^) 
X 

(the terms here are compatible; incidentally,/o(z) could also be defined as 
the unique x in X such tha t / (z , x) = e(z) = c(x) ). Using the fact that 
S( —, x) is in .P(X, 8) we obtain 

8(/o(z), x) = V 8(JC', x) A / (z , x') = / ( z , x) 
x' 

for all z and x so tha t / ) represents/; also 

</o(*)) = Vf(z9x) = €(z) for all z, 
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that i s , / 0 preserves e. Let / 0 be any function with these properties; then 

8(fo(z), x) = f(z, x) for all z and x 

and therefore 

/o(z) = V -xk/0(zu) = V x|/-(2^) 

so that/o is unique. 
That every s#-valued set (X, 8) is isomorphic to a sheaf may be seen by 

taking the element o = ctj0 of P(S(X, 8), 8) corresponding to the mono 

(*, 8) ~ (S(*, 8), 8) 

represented by the function 

Jo :* -> £(* , 8) 

(see the end of Section 2): then (X, 8) is isomorphic to (S(Xy 8), 8a) by the 
results of Section 2 and it is not difficult to verify that (S(X, 8), 8a) is a 
sheaf (the following facts concerning (S(X, 8), 8a) are useful: 

a(a) = V a(x), 8a(a, 0) = V «(*) A j3(x), 

a ^i /? if and only if 

a(x) ^ /?(.*) for all JC in X, 

and a11)8 if and only if 

a(x) A /?(j) ^ 8(x, y) for all x, y in X). 

It may also be verified that (X, 8) is itself a sheaf if and only if dQ is 
bijective, in which case (X, 8) and (S(X, 8), 8a) are exact copies of each 
other. 

(3.2) Let (X, 8) be a sheaf. Then a subset Y of X is an ample domain for 
(X, 8) if and only if Y contains the set M of maximal elements of X. 

Proof Suppose that Y is an ample domain for (X, 8). Then (Y, 8) >-+ (X, 
8) is an isomorphism and the isomorphism inverse to it is represented by 
some function r0:X —» Y. By (2.1) (c) and (d), the fact that 

(X,8)%(Y,8)~(X,8) = V , 5 ) 

gives 

e(x) ^ 8(r0(x)9 x) 

(that is, x ^ r0(x) ) for all x in X and taking x to be in M shows that M Q 
Y. Suppose conversely that M Q Y is given and let r&X —> 7 be such that 
x ^ r0(x) for all x in X. Then 
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8(x,y) ^ S(r0(x), r0)(y)) and 

8(r0(x), x) = e(x) for ail x, y in X, 

so that r0 represents a right, and therefore two-sided, inverse to ( Y, 8) >-• 
(X §). Thus 7 is an adequate domain for (X S) and that it is an ample 
domain follows from the ampleness of (X, 8) by (2.7) (c). 

COROLLARY. An s/-valued set (X, 8) is ample if and only if d§{X) contains 
the set of maximal elements of the associated sheaf (S(X, 8), 80). 

As an aside, we mention briefly the étale approach to sheaves on s/. Let 
(X, 8) be an se-valued set. Then the unique morphism (X, 8) —» 1 gives rise 
to a morphism 3P{\ ) —» &>(X, 8) which by (2.8) is represented by a unique 
function 

h0:P(\) -> P(X, Ô); 

P(l) may be identified withj /and it is easily checked that /z0 is then given 
by 

h0(a)(x) = a A c(.x). 

P(JV", 5) is a CHA under the pointwise order and h0:s/ —-> P(X, 8) is a A, 
V-preserving function of a particular type which we may call étale (if p:T 
—* S is a local homeomorphism of topological spaces then the inverse 
image function from the open set lattice of S to that of T is étale). 
Conversely, every étale function h$ from se to a CHA 38 determines an 
j^-valued set and this way*9%s/) and therefore Sh(stf) become equivalent to 
ê°v Isé where «fis the category of CHA's and étale functions ( [4] in effect 
deals with the particular case in which se is boolean and only injective 
j^-valued sets are considered, such j^valued sets corresponding to étale, 
there called analytic, embeddings se —> 38). In the CHA analogue of the 
situation described in [6, p. 10], the equivalence 

Sh(j/) = g^lst 

arises by restriction from adjoint functors 

where ^fis the category of CHA's and all A, V-preserving functions. 

4. Injectives and injective hulls in Sf(s/). Throughout this section, (X, 8) 
is a sheaf, M is the set of maximal elements of X, and T is the set of global 
elements of X, where x is global if and only if e(x) = 1; clearly TQM. 
(Some of the definitions and results go through for arbitrary^valued sets 
but they can then seem rather artificial; for example one can have (X, 8) 
= (Y, 8) yet (X, 8) ^ (Yj).) 
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Define S I X X - ^ j / b y 

8(x,y) = (i(x)Ve(y))^S(x,y) 

= (e(x) -^ 8(x, y)) A (e(y) ^ 8(x, y)). 

It is easily verified that an equivalent definition is obtained by transfering 
the 8 function in (S(X9 S), 8) across to X via the bijection 

d0:X-+ S(X, 8) 

and this shows that, like (S(X, <5), 5), (X, 8) is an ample j^valued set 
isomorphic to (X, 8). Since A is injective in any topos (see [3, Proposition 
2.23] ), it follows that (X, 8) is injective. 

(4.1) (M, 8) is ample and injective. 

Proof. We show that there exists a function r^.X —> M such that 

(i) x = r0(x) for all x in X, and 

(ii) Ô(JC, y) ^ 8(r0(x), r0(y) ) for all x, y in X. 

Suppose that we have shown the existence of such an r0; then r0 

represents a morphism 

70:(X, 8) -> (M, 5) 

which, since r0(m) = m for all m in M, is left inverse to 

(M, 8) >-> (X, S); 

the fact that (X, 8) is ample and injective then implies the same for (M, S) 
(for the ampleness one uses (2.7) (c) ). 

To show that an r0 with the required properties does exist, let @ be the 
set of all functions r0:X —> X satisfying (i) and (ii). Then under the 
pointwise order, & satisfies the hypotheses of Zorn's Lemma. To see this 
let, {rt}lŒl be a non-empty chain in & and let 

>o = V rt\ 
i 

then r0 certainly satisfies (i). Also, since each rz satisfies (ii), we have 

e(n(x) ) A 8(x9 y) tk 8(rt(xl n(y) ) for all /; 

taking the join of this over / and using on the right-hand side the fact that 
the r/s form a chain, we obtain 

€(r0(x)) A 8{x9y) ta S(r0(x)9 r0(y))9 

and similarly with x and y interchanged, whence r0 satisfies (ii). Also 0t is 
non-empty since 1^ is in 01. Let r0 be a maximal member of 0t. We want to 
show that ro(X) Q M. Let xo be in X. Then r0(xo) = some element of M, 
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ro(*o) = mo s a v- For e a c n -̂  in X put 

m0(x) = m0|e(mo)Aô(A-0,-Y)-

Then 

e(r0(x) ) A €(w0(x) ) ^ c(w0(x) ) = 8(m0(x), m) 

and 

eOoCx) ) A e(m0(x) ) ^ c(r0(x) ) A ô(r0(x0), r0(x) ) 

= 8(r0(x0), r0(x)) ^ c(wo(*) ) = 8(m0(x), m0); 

hence 

€(r0(x) ) A e(m0(x) ) â 8(r0(x), m0(x) ), 

that is, r0(x) and m0(x) are compatible. Let 

r\(x) = r0(x) V mç)(x) for ail x; 

we claim that rx is in 9t. Clearly rx satisfies (i). Now for each x, y in X, 

e(m0(x)) A 8(x,y) = c(w0(^) ) A S(x, y) = a 

say, and 

™o(*) L = w0(^) L 
(each = m0\a). Hence 

a ^ 8(m0(x)9 m0(y)) 

and this shows that m$ satisfies (ii). Using the fact that r0 satisfies (ii), 
together with the inequality 

ô(x, y) A 8(x\ /) â 8(x V I ' J V / ) , 

we see that rx satisfies (ii). Since rx ^ r0, the maximality of r0 gives r\ = r0, 
so that m0(x) ^ ôC*) f° r e a c n x m ^- Taking x = XQ gives 

m0 = m0(x0) ^ r0(x0) 

and thus r0(xo) = mo e M as desired. 

(4.2) The following are equivalent: 
(i) (X, 5) w injective, 
(ii) M = T, 
(iii) T is an ample domain for (X, 8). 

Proof The equivalence of (ii) and (iii) follows from (3.2). Suppose that 
(i) holds; then (X, 8) >-• (X, 8) has a left inverse, represented by r0 say, and 
r0(X) is an ample domain for (X, 8) by (2.7) (c); but T ^ r0(X) (e(r0(x) ) 
i^ ?(x) = 1 for all x), whence (iii). That (ii) implies (i) follows from (3.2), 
(4.1), and the fact that 8(m, n) = 5(m, n) for m, n in T. 
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In order to describe injective hulls we need the fact that 

8(m, n) = (e(m) A e(n) ) —» S(ra, n) for m, « in M 

and the following terminology seems to be useful here: if m and x are 
elements of X satisfying the condition: for all y ê x, y\\m implies^ ^ m, 
say that m is maximal with respect to x. 

(4.3) The following are equivalent: 
(i) m is maximal with respect to x, 
(ii) 8(m, n) = e(m) —* 8(m, x), 
(iii) (c(m) A e(x) ) —» <5(ra, x) = c(x) —> <5(ra, x). 

Proo/. We have 

(ii) <̂> €(w) —> 8(m, x) ^ c(x) —» 8(m, x) 

^> e(x) A (e(m) —> <5(m, x) ) = ô(m, x) 

*=> c(x) A ( (e(m) A £(x) —» ô(ra, x) ) ^ ô(ra, x) <̂> (iii). 

To prove that (i) implies (ii), let 

a = e(x) A (e(m) —* §(ra, x) ) 

and let y = x\a. Then 

e(m) A a = e(m) A e(x) A <5(ra, x) = 8(m, x) 

and hence 

ô(ra, y) = ô(m, x) A a = e(m) A a = e(m) A e(y), 

that is y\\m. If (i) holds, this gives y = m so that 

a = e(y) ^ c(m) and ô(m, x) == e(m) A a = #, 

which implies (ii) by the equivalence at the beginning of this proof. 
Suppose that (ii) holds and let y ^ x, y\\m. Then 

ô(m, y) = c(m) A e(j) 

and hence 

e(y) ^ €(x) A (c(m) -> 8(m9 y) ) ^ e(x) A (e(m) -* 8(m, x) ) 

= 8(m, x) = e(m) 

so that 6(m, y) = e(y), and ^ i m a s required for (i). 

(4.4) An element m of X is in M if and only if it is maximal with respect to 
each x in X. 

Proof It is enough to note that m is in M if and only if for all y in X, y\\m 
implies y = m (for the necessity of this condition consider m V y, and for 
the sufficiency take y to be in M and = m). 
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As an immediate consequence of (4.3) and (4.4) we have 

(4.5) If m and n are in M then 

8(m, n) = (c(m) A e(n) ) —» ô(m, n). 

(4.6) 77z£ injective hull of (X, 8) is given by (M, 8). 

Proof Since (X, 8) = (M, ô) by (3.2) and (M, S) is injective by (4.1), it is 
enough to prove that the mono 

w:(M, 8) >-+ (M, ô) 

represented by 1M is essential. So let 

/ : ( M , y ) - > ( y , f i ) ; 

we require that/w mono implies / m o n o . Now 

(fu)(rn,y) = e(m) A f(m, y) 

for all m in M and y in 7 by (2.1) (d); thus we require that 

e(m) Af(m,y) A e(n) A f(n, y) = S(m, n) 

for all m, n in M and >> in Y implies 

f(m9y) Af(n,y) ^ 8(m, n) 

for all such m, « and 7. But this is immediate from (4.5). 

(Note. The theorem on page 1-40 of [13] implicitly involves the 
construction of injective hulls, in the boolean case.) 

We conclude with a simple example of an injective hull. Let s/be 

I f 

u / \v 

0 
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and consider thej/-valued set ( {x0, x\}, 8) where 8 is the usual Kronecker 
8 (it is easy to see that ( {x0, x\}, 8) = 1 + 1). The associated sheaf 
(X, 8) is 

x2 x3 

where the values of c are as shown. The two maximal elements x2 and x3 

are not global and so (Xy 8) is not injective (since T = {XQ, X\} is an 
adequate domain for (X, 5), this shows that we cannot replace "ample" by 
"adequate" in (4.2) (hi) ). The injective hull (M, 8) of (X, ô), or rather the 
whole sheaf associated with it, is 

•*o x2 x3 X\ 
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