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Abstract

The variable generalised stochastic epidemic model, which allows for variability in both
the susceptibilities and infectivities of individuals, is analysed. A very different epidemic
model which exhibits variable susceptibility and infectivity is the random-graph epidemic
model. A suitable coupling of the two epidemic models is derived which enables us to
show that, whilst the epidemics are very different in appearance, they have the same
asymptotic final size distribution. The coupling provides a novel approach to studying
random-graph epidemic models.
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1. Introduction

The generalised stochastic epidemic (GSE) model is the most widely studied SIR (susceptible
→ infected → removed) epidemic model in a closed community. The GSE model assumes that
infectives have independent and identically distributed infective periods distributed according
to an arbitrary, but specified, nonnegative random variable Q. Whilst infective, individuals
make infective contact at the points of an independent, homogeneous Poisson point process
with rate λ > 0. Each infective contact is with an individual who is chosen uniformly at random
from the population. Note that GSE usually refers to the general stochastic epidemic, which is
the special case where Q ∼ Exp(γ ) for some γ > 0.

The GSE model assumes that there is variability in the infectivity of different individuals.
The homogeneous mixing assumption for infective contacts implies that all individuals are
equally susceptible to the disease. It is more realistic to assume that individuals have both
variable susceptibilities and infectivities. Therefore, we consider the variable generalised
stochastic epidemic (VGSE), which incorporates both of these elements. A number of au-
thors have considered variable susceptibility and infectivity, in particular Ball [3] and Scalia-
Tomba [19]. However, in these cases it was assumed that the susceptibility and infectivity
of each individual are independent, whereas we allow explicitly for dependence between
susceptibility and infectivity. Another model which allows for variability in both suscepti-
bility and infectivity of individuals, but in rather specialised ways, is the two-stage epidemic
model of [4].

The VGSE model is closely related to the multitype SIR epidemic model; see, for example,
[5], [6], and [17]. In fact, the VGSE model is the continuous limit of an important special
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case of the multitype model of [17, Section 6], where the rate at which an infective makes
infective contacts with susceptibles of type j only depends upon the susceptibility of type-j
individuals. The model in [6] is the above model with susceptibility independent of type.
The VGSE model is also related to a vaccine response model introduced in [10]. In [10], a
proportion of the individuals in a homogeneous population are given a vaccine which affects
an individual’s susceptibility and infectivity. The emphasis of [10] is on the critical vaccination
coverage for the population. More recently, in [14], the exact final size distribution of epidemics
with variable susceptibilities and infectivities has been derived, the final size of an epidemic
being defined as the total number of initially susceptible individuals who are ultimately infected
during the course of the epidemic. Therefore, we focus on the asymptotic final size distribution
as the initial number of susceptibles, n, goes to ∞.

Very different epidemic models which exhibit variability in the susceptibilities and infectivi-
ties of individuals are epidemics upon random graphs. These models are particularly relevant to
social and computer networks, where an individual’s susceptibility and infectivity are linked to
his activity levels and/or connectedness. Prime examples are sexually transmitted diseases and
e-mail viruses. In such models there is assumed to be an underlying (random) graph connecting
the individuals in the population. In particular, individuals are associated with vertices in the
graph and two individuals are said to be acquaintances (connected) if and only if an edge exists
between the corresponding two vertices in the graph. Individuals, whilst infective, can only
make infective contact with their acquaintances. For the Bernoulli random graph an edge exists
between two vertices with probability α, 0 < α ≤ 1, independent of the remainder of the
graph. We shall consider epidemics upon variable Bernoulli random graphs, that is, ones in
which an edge exists between two vertices with a probability dependent upon the connectivity
of the vertices in question but independent of the remainder of the graph. The connectivity
random variables for the vertices are assumed to be independent and identically distributed. A
fuller description of the model will be given in Section 5.

A coupling of the two epidemic processes is constructed. In particular, we show that, for
any variable Bernoulli random-graph epidemic, there exists a VGSE with the same asymptotic
final size distribution. Therefore, it is sufficient to analyse the VGSE in detail and translate
the results in terms of the random-graph epidemic. The fact that we can couple these two
rather different epidemic models may at first seem rather surprising. However, the infection
processes in the models are similar in nature. In both cases, the probability that, whilst
infective, an infective makes an infective contact with a susceptible is dependent only upon
the infectivity (and connectivity) of the (potential) infector and the susceptibility/connectivity
of the susceptible. For theVGSE model this consists of just the infection probability between the
two individuals. For the random-graph epidemic model this consists of two parts: first the prob-
ability that the individuals are acquainted/connected, and second, given they are acquainted, the
probability that the infective infects the susceptible. Furthermore, in constructing the random-
graph epidemic we combine these two steps and the link between the two epidemics appears
more natural.

The paper is structured as follows. A description of the VGSE model is given in Section 2.
In Section 3 a branching process approximation for minor epidemic outbreaks is obtained for
the VGSE. In Section 4 major epidemic outbreaks are considered and a central limit theorem
for the number infected in a major epidemic outbreak derived. In Section 5 the random-graph
epidemic model and the coupling of the two epidemic processes are described. The asymptotic
results of Sections 3 and 4 can then be applied to the random-graph epidemic model. Finally,
a brief discussion of extensions of the current work is presented in Section 6.
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2. Model description

Consider a closed population consisting ofa initial infectives andn initial susceptibles. Label
the initial infectives individuals −(a − 1),−(a − 2), . . . , 0, and label the initial susceptibles
individuals 1, 2, . . . , n. Suppose that an initial infective i, −(a − 1) ≤ i ≤ 0, has infective
period Q̃i

d= Q̃, for some arbitrary, but specified, nonnegative random variable Q̃ (where
‘

d=’ denotes equality in distribution). Let (D1,Q1), (D2,Q2), . . . , (Dn,Qn) be independent
and identically distributed according to (D,Q), where D and Q are arbitrary, but specified,
nonnegative random variables. We assume that D and Q are dependent and we will make
assumptions upon the distributions of D and Q as required. For 1 ≤ i ≤ n, let Di and Qi

respectively denote the susceptibility and the infective period of individual i.
For −(a − 1) ≤ i ≤ n and 1 ≤ j ≤ n, we assume that, during his infective period,

individual i makes infective contact with individual j at the points of a homogeneous Poisson
point process with rate Dj/n. A susceptible individual is infected when he is contacted by an
infective contact. Otherwise the infective contact has no effect. Therefore, whilst infective,
individual i has probability 1 − exp(−QiDj/n) of making at least one infective contact with
individual j .

The epidemic can be constructed in real time as follows. We assume that the initial infectives
become infective at time 0. An individual i, say, who becomes infective at time t , say, is infective
for the time period (t, t + Qi] (or (0, Q̃i] if individual i is an initial infective). During its
infective period, individual i makes infective contacts at the points of a homogeneous Poisson
point process with rate λn = (1/n)

∑n
i=1Di . For 1 ≤ j ≤ n, the probability that individual j is

contacted by a given infective contact isDj/nλn. There is the possibility that some individuals
are totally immune to the disease (prior to infection), corresponding to D = 0. Hence, we
assume that P(D = 0) ≥ 0 and that E[D] > 0. Therefore, it is possible that λn = 0 with all
the initial susceptibles being immune, in which case no infection can take place. For λn = 0,
we employ the convention that Dj/nλn = 1/n, 1 ≤ j ≤ n. The following observation will
prove useful throughout. For all m ∈ N, if E[Dm] < ∞ then

E

[(
D1

λn

)m]
→ E[Dm]

E[D]m as n → ∞. (2.1)

In the special case D ≡ λ, for some λ > 0, the model is the generalised stochastic epidemic
model.

The Sellke construction of the epidemic based upon [20] and [18] is an alternative approach
but is equivalent in terms of the final size distribution of the epidemic process. We apply the
Sellke construction to theVGSE as follows. Rather than considering infectives making infective
contacts, we consider the susceptibles. We assume that each susceptible has a threshold for
infection. That is, an individual accumulates exposure to infection and is susceptible whilst
the accumulated infection is below the infective threshold. However, once the total amount of
accumulated infection exceeds the threshold, the susceptible becomes infected. This description
of the epidemic process is most easily (in terms of analysis) made fully rigorous by using an
embedding approach introduced in [18].

For 1 ≤ i ≤ n, let Hi ∼ Exp(Di), where Hi denotes the infective threshold of indi-
vidual i. For 1 ≤ i ≤ n and t ≥ 0, let χi(t) = 1{Hi≤t}. Let Rn(t) = ∑n

i=1 χi(t) and
An(t) = ∑n

i=1 χi(t)Qi . Thus, Rn(t) and An(t) denote the total number of initial susceptibles
infected and the corresponding sum of infective periods when each individual is exposed to
t units of global infective pressure. Let Sn0 = nS̄n0 = ∑0

i=−(a−1) Q̃i denote the sum of the
infective periods of the initial infectives.
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The epidemic process can be constructed as follows. Let the initial infectives form genera-
tion 0 and, for k ≥ 1, let generation k comprise those individuals infected by the infectives in
generation k− 1. For k ≥ 1, let T nk = nT̄ nk and Snk = nS̄nk respectively denote the total number
of initial susceptibles infected in the first k generations of the epidemic and the corresponding
sum of these individuals’ infective periods, with T n0 = 0. In particular, for 1 ≤ i ≤ n and
k ≥ 0, an individual i, say, is said to be infected by the individuals in generation k, and hence
be an infective in generation k+ 1, if S̄nk−1 < Hi ≤ S̄nk with the convention Sn−1 = 0. Thus, for
k ≥ 1,

Snk = Sn0 + An(S̄
n
k−1),

T nk = Rn(S̄
n
k−1).

Consequently, the above sequence stops at generation k∗, where k∗ = min{k : (T nk+1, S
n
k+1) =

(T nk , S
n
k )}. Since n is finite, k∗ is well defined. Let T n∞ = nT̄ n∞ and Sn∞ = nS̄n∞ respectively

denote the final size of the epidemic (the total number of initial susceptibles infected during
the course of the epidemic) and the final severity of the epidemic (the total sum of the infective
periods of all individuals infected in the epidemic). Then S̄n∞ and T̄ n∞ respectively satisfy

S̄n∞ = S̄n0 + 1

n
An(S̄

n∞),

T̄ n∞ = 1

n
Rn(S̄

n∞).

In particular,

S̄n∞ = min

{
s ≥ 0 : s = S̄n0 + 1

n
An(s)

}
. (2.2)

Finally, since the results of this paper are asymptotic we shall consider a sequence of
epidemics, {En}, each indexed by the total number of initial susceptibles, n, as n → ∞.
For a fixed n ≥ 1, the epidemic En is constructed as outlined above. Note that Q̃ and (D,Q)
are assumed to be independent of n. For each n, we denote the total number of initial infectives
by an. We shall consider the respective cases in which an = a for n ≥ 1 and an → ∞ as
n → ∞. For ease of notation, the index n will usually be omitted.

3. Branching process approximation

For a fixedn ≥ 1, we shall construct the epidemicEn and a suitable approximating branching
process Bn on a common probability space (�,F ,P). We shall then define the branching
process B as the limit of the sequence of branching processes Bn as n → ∞. LettingZ denote
the total progeny (excluding the initial ancestors) of the branching process B, we shall show
in Theorem 3.1 that T n∞

d−→ Z as n → ∞ (where ‘
d−→’ denotes convergence in distribution).

In Corollary 3.1 we summarise the useful results which can be obtained from the coupling of
the epidemics En to the branching process B. We shall require that there exist a κ > 0 such
that E[D1+κ ] < ∞, but impose no moment conditions upon Q. Throughout this section it
is assumed that an = a, n ≥ 1. (For the case in which an → ∞ as n → ∞, the results of
Section 4 are sufficient.)

Fix n ≥ 1 and construct Bn as follows. We assume that there are a initial ancestors, born at
time t = 0. Label the individuals −(a−1),−(a−2), . . . , 0, and let the ith initial ancestor have
lifetime V ni = Q̃i, −(a − 1) ≤ i ≤ 0. Let D1,D2, . . . , Dn be independent and identically
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distributed according to D, with Dn = (D1,D2, . . . , Dn). For 1 ≤ i ≤ n, let Pni = Di/nλn.
Let ψn1 , ψ

n
2 , . . . be independent and identically distributed according to ψn, where

P(ψn = i | Dn) =
{
Pni , 1 ≤ i ≤ n,

0, otherwise.

For i ≥ 1, let Gni = Dψni
and let V ni

d= Q̂Gni , where Q̂x d= [Q1 | D1 = x] for x ≥ 0. Let V ni
denote the length of the lifetime of the ith individual born inBn. For i = −(a−1),−(a−2), . . . ,
let ηni be a homogeneous Poisson point process with rate λn. Suppose that the ith birth occurs
at time tni . Then the ith individual dies at time tni + V ni , and whilst alive reproduces at the
points of ηni .

Let Mn = min{k > 1 : ψnk ∈ {ψn1 , ψn2 , . . . , ψnk−1}}. The epidemic En can then be coupled
to the branching process Bn up to time tMn as follows. Label the initial infectives individuals
−(a−1),−(a−2), . . . , 0, with respective infective periods Q̃−(a−1), Q̃−(a−2), . . . , Q̃0. Whilst
infective, individual i, −(a − 1) ≤ i ≤ 0, makes infective contacts at the points of ηni . For
1 ≤ i ≤ n, assign to individual i susceptibility Di . For 1 ≤ i < Mn, let the individual
contacted by the ith global infective contact be individualψni . SetQψni

= V ni
d= Q̂

Dψn
i . Whilst

infective, individual ψni , 1 ≤ i < Mn, makes infective contacts at the points of ηni . Therefore,
the infective period and the infection rate of the ith infected individual, ψni , have the correct
distribution. Furthermore, up until time tMn the infective contacts in the epidemic process and
the births in the branching process are in one-to-one correspondence.

Let Zn denote the total progeny of the branching process Bn. Then T n∞ = k for any
k, 1 ≤ k < Mn, if and only if Zn = k. Therefore, we consider the random variable Mn before
studying the limiting distribution of Zn. The limiting distribution of Mn has been studied in
detail in [13, Theorem 5.2], under extra conditions upon D. However, Lemma 3.1 is sufficient
for our needs and is valid for more general choices of D.

Lemma 3.1. Suppose that there exists a κ > 0 such that E[D1+κ ] < ∞. Then, for any α with
0 < α < κ/2(1 + κ),

P(Mn > nα) → 1 as n → ∞.

Proof. Fix α < (1 − γ )/2 < κ/2(1 + κ). For n ≥ 1, let

Sn =
n⋂
i=1

{Di ≤ nγ } ∩
{
λn ≥ 1

2
E[D]

}
.

It is trivial using Markov’s inequality to show that P(Sn) → 1 asn → ∞. For 2 ≤ k ≤ 
nα�+1,
it straightforwardly follows by induction that

P(Mn > k | Sn) ≥
k−1∏
i=1

(
1 − inγ

nE[D]/2
)

(where, for x ∈ R, 
x� denotes the integer part of x). Therefore, P(Mn > nα | Sn) → 1 as
n → ∞, and the lemma is proved.

Returning to Bn, note that the offspring distributions of an initial ancestor and an individual
born in the branching process are R̃n ∼ Po(λnQ̃) and Rn ∼ Po(λnV n), respectively, where
V n

d= V n1 .
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Let V
d= Q̂G, where G is a random variable with probability density function

fG(x) = x

E[D]fD(x) as n → ∞

and E[V ] = E[DQ]/E[D]. Let B denote a branching process in which there are a initial
ancestors and the offspring distributions of an initial ancestor and an individual born in the
branching process are R̃ ∼ Po(E[D]Q̃) and R ∼ Po(E[D]V ), respectively. It is a trivial
extension of [15, Lemma 3.6] to show that if R̃n

d−→ R̃ and Rn
d−→ R, then Zn

d−→ Z as n →
∞. Now suppose that V n

d−→ V as n → ∞. Then, since λn
p−→ E[D] (where ‘

p−→’ denotes
convergence in probability), λnV n

d−→ E[D]V as n → ∞. Therefore, by [15, Lemma 5.8],
R̃n

d−→ R̃ and Rn
d−→ R as n → ∞. Therefore, we proceed by firstly showing that V n

d−→ V as
n → ∞, in Lemma 3.2, and secondly showing that T n∞

d−→ Z as n → ∞, in Theorem 3.1.

Lemma 3.2. V n
d−→ V as n → ∞.

Proof. For x, y ≥ 0, let H(x; y) = P(Q1 ≤ x | D1 = y). Then, for all n ≥ 1 and y ≥ 0,

P(V n ≤ y) = EDn [P(V n ≤ y | Dn)] = E

[
1

n

n∑
i=1

H(y;Di)Di
λn

]
= E

[
H(y;D1)

D1

λn

]
. (3.1)

By (2.1), the right-hand side of (3.1) converges, as n → ∞, to

E

[
H(y;D1)

D1

E[D]
]

= P(V ≤ y),

and the lemma is proved.

Theorem 3.1. T n∞
d−→ Z as n → ∞.

Proof. An immediate consequence of Lemma 3.2 is that Zn
d−→ Z as n → ∞ (see the

discussion proceeding Lemma 3.2). Therefore, for all k ∈ Z, by Lemma 3.1,

P(T n∞ ≤ k) = P(T n∞ ≤ k | Mn > k)P(Mn > k)+ P(T n∞ ≤ k | Mn ≤ k)P(Mn ≤ k)

= P(Zn ≤ k | Mn > k)P(Mn > k)+ P(T n∞ ≤ k | Mn ≤ k)P(Mn ≤ k)

→ P(Z ≤ k) as n → ∞,

as required.

We say that a global epidemic occurs if, in the limit as n → ∞, the epidemic process infects
infinitely many susceptibles. Then, utilising standard branching process theory, we have the
following immediate results concerning T n∞.

Corollary 3.1. Let

f (s) = E[sR] = E[exp((s − 1)E[D]Q̂G)],
f̃ (s) = E[sR̃] = E[exp((s − 1)E[D]Q̃)].

Then, as n → ∞,

(a) a global epidemic occurs with nonzero probability if and only if E[R] = E[DQ] > 1;
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(b) the probability of a global epidemic is 1 − pEXT = 1 − f̃ (p)a , where p is the smallest
solution to f (s) = s in [0, 1] and pEXT is the extinction probability of the branching
process B; and

(c) the probability generating function of T∞
d= Z, the limiting final size of the epidemic, is

(f̃ (h(s))/s)a , where h(s) satisfies h(s) = sf (h(s)).

4. Central limit theorem

The aim of this section is to establish a central limit theorem for the final proportion of the
population infected by the epidemic in the event of a major epidemic outbreak. In particular,
for n ≥ 1 we shall say that a major epidemic occurs if T n∞ > log n. Thus, Gn = {T n∞ > log n}
denotes the event that a major epidemic occurs. We shall require that E[D2],E[Q2] < ∞.

The first step is to show that [(T̄ n∞, S̄n∞) | Gn] p−→ (τ, σ ) asn → ∞, for some suitably defined
τ, σ > 0. The second step is to show that [√n(T̄ n∞ − τ) | Gn] converges in distribution to
a Gaussian random variable as n → ∞. Thus, we begin by deriving σ and τ and a suitable
Gaussian random variable. For s ≥ 0, let

r(s) = E[χ1(s)] = E[1 − exp(−sD)],
a(s) = E[χ1(s)Q1] = E[(1 − exp(−sD))Q].

Therefore, r(s) and a(s) are respectively the mean probability that an individual is infected
when each member of the population is exposed to s units of global infective pressure and the
corresponding mean infective contribution. Furthermore, for all n ≥ 1 and s ≥ 0, E[Rn(s)] =
nr(s) and E[An(s)] = na(s). We summarise some simple, but useful, results concerning r(·)
and a(·) in the following lemma.

Lemma 4.1. The functions r(·) and a(·) are increasing, concave, and continuously differen-
tiable on [0,∞). Moreover, for s ≥ 0, r ′(s) = E[De−sD] and a′(s) = E[QDe−sD].

For ζ ≥ 0, let

σ = ζ E[Q̃] + a(σ ). (4.1)

Since a(·) is a nondecreasing, concave function with a(∞) = E[Q], for ζ > 0 there exists a
unique solution, σζ ∈ (0,∞), to (4.1). Moreover, a′(σζ ) < 1. For ζ = 0, σ = 0 is a solution
to (4.1) and a second solution, σ0 > 0, exists if and only if a′(0) = E[QD] > 1. Note that
a′(0) = R0; thus, by Corollary 3.1(a), this second solution exists if and only if the probability
of a global epidemic is nonzero. Therefore, for ζ = 0 and a′(0) ≤ 1, the branching process
approximation of Section 3 is sufficient for the analysis of T n∞. We shall thus assume that σ0
exists. Finally, for ζ ≥ 0, let τζ = r(σζ ).

For n ≥ 1, s ≥ 0, and α, β ∈ R, let

Zα,βn (s) = 1√
n

n∑
i=1

{χni (s)(α + βQi)− (αr(s)+ βa(s))}

= α
1√
n
(Rn(s)− nr(s))+ β

1√
n
(An(s)− na(s)).

From the central limit theorem, we have the following trivial, but useful, result.
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Lemma 4.2. For all s ≥ 0 and α, β ∈ R,

Zα,βn (s)
d−→ Zα,β(s) as n → ∞,

where Zα,β(s) is a Gaussian random variable with mean 0 and variance

var(χ1(s)(α + βQ1)) = α2 var(χ1(s))+ 2αβ cov(χ1(s), χ1(s)Q1)+ β2 var(χ1(s)Q1).

Returning to τζ and σζ , we have the following result.

Lemma 4.3. Suppose that a/n
p−→ ζ ≥ 0. Then, for ζ > 0,

(T̄ n∞, S̄n∞)
p−→ (τζ , σζ ) as n → ∞

and, for ζ = 0,

min{|(T̄ n∞, S̄n∞)| |(T̄ n∞, S̄n∞)− (τζ , σζ )|} p−→ 0 as n → ∞,

where, for x1, x2, y1, y2 ∈ R, |(x1, x2)− (y1, y2)| = ∑2
i=1 |xi − yi |.

Proof. It follows from Lemma 4.2 that, for all t ≥ 0,

1

n
An(t)

p−→ a(t) as n → ∞. (4.2)

Then, sinceAn(t) and a(t) are increasing, continuous functions of t , with a(∞) = E[Q] < ∞,
it follows from (4.2) that

sup
t≥0

∣∣∣∣1

n
An(t)− a(t)

∣∣∣∣ p−→ 0 as n → ∞.

(See the proof of [7, Lemma 5.1]; see also [8], [4], and [17]). Similarly,

sup
t≥0

|n−1Rn(t)− r(t)| p−→ 0

as n → ∞, and the lemma follows since a/n
p−→ ζ ≥ 0 as n → ∞.

Therefore, for ζ > 0, [(T̄ n∞, S̄n∞) | Gn] p−→ (τζ , σζ ) and P(Gn) → 1 as n → ∞. Consid-
erably more work is required for the case in which ζ = 0. We shall utilise a lower-bound
branching process for the epidemic process. This idea originated in [21], and it is usually trivial
to construct a suitable lower-bound branching process. However, the dependence between
the susceptibility and infectivity of each individual causes added complications. The required
result is proved in Corollary 4.2, via a series of intermediary lemmas.

Fix n ≥ 1. For 1 ≤ i ≤ n, let ψ̃ni be drawn without replacement from {1, 2, . . . , n} as
follows. For 1 ≤ j ≤ n, let 
nj = {ψ̃n1 , ψ̃n2 , . . . , ψ̃nj−1}. Then, for 1 ≤ j, k ≤ n,

P(ψ̃nj = k | 
nj ) =

⎧⎪⎨
⎪⎩

Dk∑
i �∈
nj Di

, k �∈ 
nj ,

0, k ∈ 
nj .
Therefore, for 1 ≤ i ≤ n, let the ith susceptible infected in the epidemicEn be the individual ψ̃ni
(assuming that there are at least i infections in En).
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Lemma 4.4. For all n ≥ 1 and 1 ≤ i ≤ n− 1, Dψ̃ni+1
≤st Dψ̃ni

, where ‘≤st’ means ‘stochasti-
cally less than’.

Proof. Fix n ≥ 1. It is sufficient to show that Dψ̃n2
≤st Dψ̃n1

, since the general result then
follows straightforwardly by induction.

Let {Ďni } denote the set of Dn ordered such that

Ďn1 ≤ Ďn2 ≤ · · · ≤ Ďnn.

Let ψ̌ni be drawn without replacement from {1, 2, . . . , n} with the probability that ψ̌ni = j

proportional to Ďnj conditional upon ψ̌nk �= j, 1 ≤ k ≤ i − 1. To prove the lemma, it is then
sufficient to show that ψ̌n2 ≤st ψ̌

n
1 or, equivalently, that [ψ̌n2 | Ďn] ≤st [ψ̌n1 | Ďn] for all Ďn.

Note that, for all k, 1 ≤ k ≤ n,

P(ψ̌n1 ≤ k | Ďn) =
k∑
i=1

Ďni

nλn
(4.3)

and

P(ψ̌n2 ≤ k | Ďn) =
k∑
i=1

∑
j �=i

Ďni

nλn − Ďnj

Ďnj

nλn
=

k∑
i=1

Ďni

nλn

∑
j �=i

Ďnj

nλn − Ďnj

. (4.4)

The lemma follows from (4.3) and (4.4) since
∑
j �=i Ďnj /(nλn − Ďnj ) is nonincreasing in i.

Corollary 4.1. For any sequence of positive integers bn such that bn/n → 0 as n → ∞, let
δn = √

bn/n. Then δn → 0 as n → ∞ and

P

(
1

nλn

∑
i∈
nbn

Di ≥ δn

)
→ 0 as n → ∞.

Proof. Since Dψ̃n1
d= Dψn1

, by Markov’s inequality and Lemma 4.4,

P

(
1

nλn

∑
i∈
nbn

Di ≥ δn

)
≤ 1

δn
EDn

[ ∑
i∈
bn

Dψ̃ni

nλn

]

≤ bn

nδn
E

[Dψ̃n1
λn

]

= bn

nδn
E

[ n∑
i=1

Di

λn

Di

nλn

]
. (4.5)

By (2.1), the right-hand side of (4.5) converges to 0 as n → ∞, and the corollary is proved.

Lemma 4.5. For any sequence of positive integers bn such that bn/n → 0 as n → ∞,

Dψ̃nbn

d−→ G as n → ∞.

Proof. For n ≥ 1 and 1 ≤ i ≤ n, couple ψ̃ni and ψni as follows. Draw ψni from
{1, 2, . . . , n} with probability P(ψni = j) = Dj/(nλn). If ψni �∈ 
ni then set ψ̃ni = ψni ; other-
wise, draw ψ̃ni from {1, 2, . . . , n} \
ni with probability P(ψ̃ni = j) = Dj/

∑
k /∈
ni Dk . Fol-

lowing the proof of Lemma 3.2, Dψn1 = Gn
d−→ G as n → ∞. The lemma then follows by

https://doi.org/10.1239/jap/1175267162 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1175267162


50 P. NEAL

Corollary 4.1 and [11, Theorem 4.1], since

P(ψ̃nbn �= ψnbn) = E[P(ψ̃nbn �= ψnbn | Dn)]

= E

[ ∑
i∈
nbn

Dψ̃ni

nλn

]
→ 0 as n → ∞.

We are almost in a position to show that [T̄ n∞ | Gn] p−→ τ0 as n → ∞. However, we shall
require the following assumption. For any sequence of positive integers bn such that bn/n → 0
as n → ∞, there exists a sequence of random variables Q̌n,bn with the following properties.

Firstly, Q̌n,bn
d−→ Q̂G ≡ V as n → ∞ and, secondly, Q̌n,bn ≤st Q̂

D
ψ̃n
i for all i, 1 ≤ i ≤ bn.

Note that if, for all x < y, Q̂x ≤st Q̂
y or Q̂y ≤st Q̂

x , then we can take

Q̌n,bn d= Q̂
D
ψ̃n
bn or Q̌n,bn d= Q̂

D
ψ̃n1 ,

respectively.

Lemma 4.6. Under the above conditions,

lim
ε↓0

lim
n→∞ P(T̄ n∞ ≤ ε) = pEXT,

where pEXT is as given in Corollary 3.1.

Proof. Let {bn} be any sequence of positive integers such that bn → ∞ and bn/n → 0 as
n → ∞. To prove the lemma, it suffices to show that P(T n∞ ≤ bn) → pEXT as n → ∞. In
Section 3 it was shown that T n∞ ≤st Zn. Therefore,

lim inf
n→∞ P(T n∞ ≤ bn) ≥ lim inf

n→∞ P(Zn ≤ bn) ≥ pEXT. (4.6)

For n ≥ 1, let the branching process Bbn
n be constructed as follows. Let D1,D2, . . . , Dn

be independent and identically distributed according to D. Let there be a ancestors in the
branching process Bbn

n . We assume that each initial ancestor has an independent lifetime
distributed according to Q̃ and that each subsequent individual has an independent lifetime
distributed according to Q̌n,bn . Furthermore, whilst alive, individuals reproduce at the points
of independent Poisson point processes with rates (1 − δn)λn, where δn = √

bn/n. Thus, the
offspring distributions of an initial ancestor and a subsequent individual are mixed Poisson;
respectively, R̃bnn ∼ Po((1 − δn)λnQ̃) and Řbnn ∼ Po((1 − δn)λnQ̌

n,bn).

Let Žn,bn denote the total progeny of the branching process Bbn
n . Then, since (1− δn)λn p−→

E[D] and Q̌n,bn
d−→V as n → ∞, it follows that Žn,bn

d−→ Z as n → ∞, where Z denotes
the total progeny of the branching process B (see Section 3). Let pn,bnEXT denote the extinction
probability of the branching process Bbn

n . Then pn,bnEXT → pEXT as n → ∞.
Let

Abnn =
{

1

nλn

∑
i∈
nbn

Dψ̃ni
≤ δn

}
.

From Corollary 4.1, P(Abnn ) → 1 as n → ∞. Therefore, whilst fewer than bn of the initial
susceptibles have been infected in the epidemicEn, the epidemicEn and the branching process
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Bbn
n can be coupled in such a way that, conditional upon Abnn , every birth in the branching

process has a corresponding successful infection in En. This is because

Q̌n,bn ≤st Q
D
ψ̃n
i

for 1 ≤ i ≤ bn and the probability of an infective contact being made with a nonsusceptible is
less than δn for (1/nλn)

∑
i∈
nbn Dψ̃ni ≤ δn. Therefore,

P(T n∞ ≤ bn) ≤ P({Žn,bn ≤ bn} ∩ Abnn )+ P((Abnn )
c)

≤ P(Žn,bn ≤ bn)+ P((Abnn )
c)

≤ p
n,bn
EXT + P((Abnn )

c). (4.7)

The lemma follows immediately from (4.6) and (4.7) by taking the supremum limit in the latter
equation.

Corollary 4.2. For ζ = 0,
lim
n→∞ P(Gn) = 1 − pEXT

and
[(T̄ n∞, S̄n∞) | Gn] p−→ (τ0, σ0) as n → ∞.

Proof. The proof is similar to [8, Theorem 3.12] and the details are thus omitted.

We can now focus on the limiting behaviour of a major epidemic. The main result is presented
in Theorem 4.1 and follows standard arguments. The crux of the proof relies on the following
lemma.

Lemma 4.7. Suppose that S̄n∞
p−→ σζ as n → ∞. Then, for any α, β ∈ R,

|Zα,βn (S̄n∞)− Zα,βn (σζ )| p−→ 0 as n → ∞.

Proof. The proof is similar to [17, Lemma 5.4]. Fix ε > 0. By the theorem of total
probability and Chebychev’s inequality,

P(|Zα,βn (S̄n∞)− Zα,βn (σζ )| > ε) ≤ 1

ε2 E[var(Zα,βn (S̄n∞)− Zα,βn (σζ ) | S̄n∞)]. (4.8)

For any s, t ≥ 0, note that the (χi(t) − χi(s))(α + βQi) are independent and identically
distributed, whence

var(Zα,βn (t)− Zα,βn (s)) = var((χ1(t)− χ1(s))(α + βQ1))

≤ E[(χ1(t)− χ1(s))
2(α + βQ1)

2]
= E[χ1(s ∨ t)(α + βQ1)

2] − E[χ1(s ∧ t)(α + βQ1)
2]. (4.9)

Therefore, from (4.8) and (4.9),

P(|Zα,βn (S̄n∞)− Zα,βn (σζ )| > ε) ≤ 1

ε2 {E[χ1(S̄
n∞ ∨ σζ )(α + βQ1)

2]
− E[χ1(S̄

n∞ ∧ σζ )(α + βQ1)
2]}

= 1

ε2 {E[{1 − exp(−{S̄n∞ ∨ σζ }D1)}(α + βQ1)
2]

− E[{1 − exp(−{S̄n∞ ∧ σζ }D1)}(α + βQ1)
2]}.

(4.10)
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Since (S̄n∞ ∨ σζ ,D1,Q1)
p−→ (σζ ,D1,Q1) as n → ∞, from [11, Theorem 5.1 and Corol-

lary 2],

{1 − exp(−{S̄n∞ ∨ σζ }D1)}(α + βQ1)
2 p−→ {1 − exp(−σζD1)}(α + βQ1)

2.

Since E[Q2] < ∞, from the bounded convergence theorem we find that

E[{1 − exp(−{S̄n∞ ∨σζ }D1)}(α+βQ1)
2] → E[{1 − exp(−σζD1)}(α+βQ1)

2] as n → ∞.

Similarly,

E[{1 − exp(−{S̄n∞ ∧σζ }D1)}(α+βQ1)
2] → E[{1 − exp(−σζD1)}(α+βQ1)

2] as n → ∞.

Therefore, the right-hand side of (4.10) converges to 0 as n → ∞, and the lemma is proved.

Theorem 4.1. Suppose that there exists a ζ ≥ 0 such that
√
n(a/n− ζ )

d−→ 0 as n → ∞.
Then

[√n(T̄ n∞ − τζ ) | Gn] d−→ Z1,r ′(σζ )/(1−a′(σζ ))(σζ )+ r ′(σζ )
1 − a′(σζ )

I as n → ∞,

where
√
n(S̄n0 − ζ E[Q̃]) = In

d−→ I ∼ N(0, ζ var(Q̃)) as n → ∞.

Proof. The proof is similar to that of [17, Theorem 5.5], so only an outline is given here. By
the mean value theorem, there exists a sequence {b1

n} such that b1
n

p−→ σζ as n → ∞ and such
that √

n(T̄ n∞ − τ) = Z1,0
n (S̄n∞)+ √

nr ′(b1
n)(S̄

n∞ − σζ ). (4.11)

Simple algebraic manipulation of
√
n(S̄n∞ − σζ ) gives

√
n(S̄n∞ − σζ ) = In + Z0,1

n (S̄n∞)+ √
na′(b2

n)(S̄
n∞ − σζ ), (4.12)

where {b2
n} is a sequence such that b2

n

p−→ σζ as n → ∞.
From Lemmas 4.7 and 4.2 and [11, Theorem 4.1], Z0,1

n (S̄n∞)
p−→ Z0,1(σζ ). Therefore, since

a′(σζ ) < 1, by [11, Theorem 5.1, Corollary 2, and Theorem 4.4], we have

√
nr ′(b1

n)(S̄
n∞ − σζ ) = Z

0,r ′(σζ )/(1−a′(σζ ))
n (S̄n∞)+ r ′(σζ )

1 − a′(σζ )
In + B1

n,

where {B1
n} is a sequence such that B1

n

p−→ 0 as n → ∞. Finally, from (4.11) and Lemma 4.7,

√
n(T̄ n∞ − τ) = Z

1,r ′(σζ )/(1−a′(σζ ))
n (σζ )+ B2

n + r ′(σζ )
1 − a′(σζ )

In + B1
n, (4.13)

where {B2
n} is a sequence such that B2

n

p−→ 0 as n → ∞. The theorem follows from (4.13) and
Lemma 4.2, since Z

1,r ′(σζ )/(1−a′(σζ ))
n (σζ ) and In are independent.
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5. Random-graph epidemic models

For an epidemic upon a mixed Bernoulli random graph, we shall bound the final size
distribution of the random-graph epidemic by the final size distributions of a suitably defined
VGSE and a perturbed VGSE. By showing that both these lower- and upper-bounding VGSEs
have the same final size distributions, we can obtain the final size distribution of the epidemic
upon a mixed Bernoulli random graph. We proceed by studying the perturbed VGSE. This is
followed by a description of epidemics upon random graphs and an analysis of their final size
distributions.

We shall consider a sequence of epidemics, {Eεnn }, indexed by the total number of initial
susceptibles, n, and a constant εn. For fixed n ≥ 1 and εn > −1, we can construct the
epidemics Eεnn and En on a common probability space (�,F ,P), with En constructed as in
Section 2 andEεnn constructed as follows. We assume that there a initial infectives and n initial
susceptibles in Eεnn , with the individuals labelled −(a − 1),−(a − 2), . . . , n as before. Let
individual i in the epidemic Eεnn have life history (Di,Qi) for 1 ≤ i ≤ n and infective period
Q̃i for −(a − 1) ≤ i ≤ 0. Then, for −(a − 1) ≤ i ≤ n and 1 ≤ j ≤ n, we assume that,
during his infective period (of length Qi or Q̃i) in Eεnn , individual i makes infective contact
with individual j at the points of a homogeneous Poisson point process with rate (1+εn)Dj/n.
Alternatively, we can assume that the infective period is of length (1 + εn)Qi and that the
infection rate isDj/n. Either way, the probability that individual i makes infective contact (at
least once) with individual j is 1 − exp(−(1 + εn)QiDj/n).

Let T n,εn∞ = nT̄
n,εn∞ and Sn,εn∞ = nS̄

n,εn∞ respectively denote the final size and severity of the
epidemic Eεnn . Clearly, the epidemic E0

n is the epidemic En. We therefore have the following
results if εn → 0 as n → ∞.

Theorem 5.1. Suppose that εn → 0 as n → ∞. For all n ≥ 1, if an = a then

T n,εn∞
d−→ Z as n → ∞, (5.1)

where Z is as defined in Section 3.
Suppose that a/n

p−→ζ ≥ 0. Let σζ and τζ = r(σζ ) be as defined in Section 4. Then

min{|T̄ n,εn∞ |, |T̄ n,εn∞ − τζ |} p−→ 0 as n → ∞. (5.2)

Furthermore, if
√
nεn → 0 and Gεnn = {T n,εn∞ > log n}, then

[√n(T̄ n,εn∞ − τζ ) | Gεnn ] d−→ Z1,r ′(σζ )/(1−a′(σζ ))(σζ ) as n → ∞, (5.3)

where Z1,r ′(σζ )/(1−a′(σζ ))(σζ ) is as defined in Section 4.

Proof. The proof of this theorem requires only minor modifications of the proofs in
Sections 3 and 4. Therefore, only an outline of the changes is given.

To prove (5.1), simply replace λn by λεnn = (1 + εn)λn, such that λεnn
p−→ λ as n → ∞, in

the proofs in Section 3.
The Sellke construction can then be used again, with Hi ∼ Exp(Di) and (1 + εn)Qi

respectively denoting the infective threshold and infective period of individual i. Let Rεnn (t)
and Aεnn (t) (corresponding to Rn(t) and An(t)) denote the total number of initial susceptibles
infected and the corresponding sum of infective periods when each individual is exposed to t
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units of global infective pressure in Eεnn . Then Rεnn (t) = Rn(t) and Aεnn (t) = (1 + εn)An(t).
Let Sn,εn0 = (1 + εn)S

n
0 denote the sum of the infective periods of the initial infectives. Then

S̄n,εn∞ = min

{
s ≥ 0 : s = (1 + εn)

(
S̄n0 + 1

n
An(s)

)}

(cf. (2.2)). Thus, it is trivial to adapt Lemma 4.3 to prove (5.2).
The adaptation of the lower-bounding branching process to the epidemic sequence {Eεnn } is

straightforward by multiplying the birth rate by a factor of 1 + εn. Therefore, Corollary 4.2
holds with (S̄n,εn∞ , T̄

n,εn∞ ,G
εn
n ) in place of (S̄n∞, T̄ n∞,Gn). Thus, [S̄n,εn∞ | Gεnn ] p−→ σζ as n → ∞

and Lemma 4.7 holds. Therefore, the proof of Theorem 4.1 can straightforwardly be used to
prove (5.3) by replacing (4.12) with

√
n(S̄n,εn∞ − σζ ) = √

n(1 + εn)

{
S̄n0 + 1

n
An(S̄

n,εn∞ )− ζ E[Q̃] − a(σζ )

}

= √
nεn

(
S̄n0 + 1

n
An(S̄

n,εn∞ )

)
+ In + Z0,1

n (S̄n,εn∞ )+ √
na′(b2

n)(S̄
n,εn∞ − σζ )

(5.4)

and noting that the first term on the right-hand side of (5.4) converges in probability to 0 as
n → ∞.

We now turn our attention to random-graph epidemics. We shall consider a sequence of
epidemics, {Ên}, indexed by the total number of initial susceptibles, n, as n → ∞. We assume
that there are a initial infectives and n initial susceptibles. Let

(C̃−(a−1), Ĩ−(a−1)), (C̃−(a−2), Ĩ−(a−2)), . . . , (C̃0, Ĩ0)

be independent and identically distributed according to (C̃, Ĩ ). Let

(C1, I1), (C2, I2), . . . , (Cn, In)

be independent and identically distributed according to (C, I ). Let C and I respectively
denote the connectivity and infectivity of an initial susceptible and let C̃ and Ĩ respectively
denote the connectivity and infectivity of an initial infective. For example, C could denote
the sexual activeness of an individual in an epidemic of a sexually transmitted disease, or the
connectedness of a computer in an epidemic of a network computer virus. There is assumed to
be an underlying graph Gn on n+ a vertices which defines the acquaintance structure between
the n + a individuals in the population. The vertices are labelled −(a − 1),−(a − 2), . . . , n
with vertex i corresponding to individual i. An edge exists between vertices i and j with
probability (1/n)CiCj ∧ 1, where Ck = C̃k, −(a − 1) ≤ k ≤ 0. In the epidemic Ên,
individuals i and j are said to be acquaintances if and only if there exists an edge between
vertices i and j in Gn. Individual i, whilst infective, makes infective contact with a given
acquaintance j with probability Ii , independently of all other infective contacts. The epidemic
and the random graph can be constructed in unison; see [16] and [17]. Specifically, whilst
infective, individual i makes infective contact with a susceptible individual j with probability
((1/n)CiCj ∧ 1)Ii . That is, the epidemic is constructed and then, if so desired, the random
graph can be constructed retrospectively using the correct conditional distributions for the
existence of edges between vertices. If the connectivity and infectivity random variables are
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independent, then increased connectivity (activity) leads to increases in both the susceptibilities
and infectivities of individuals. In particular, we can observe the effect of highly (sexually)
active individuals such as prostitutes in the spread of a disease. Finally, let T̂ n∞ = nŤ n∞ denote
the final size of the epidemic Ên.

Let (D,Q)
d= (C,CI). For −(a − 1) ≤ i ≤ 0 set Q̃i = C̃i Ĩi , and for 1 ≤ i ≤ n set

(Di,Qi) = (Ci, CiIi). The epidemics En, Eεnn , and Ên can be constructed upon a common
probability space. For −(a − 1) ≤ i ≤ 0, let the ith individuals in the epidemics En and
E
εn
n have infective periods of length Q̃i and let the ith individual in the epidemic Ên have

connectivity and infectivity random variables (C̃i , Ĩi ). For 1 ≤ i ≤ n, let the ith individuals in
the epidemicsEn andEεnn have life histories (Di,Qi) and let the ith individual in the epidemic
Ên have connectivity and infectivity random variables (Ci, Ii). For −(a − 1) ≤ i ≤ n and
1 ≤ j ≤ n, letUij be independent and identically distributed according toU ∼ U[0, 1]. InEn,
E
εn
n , and Ên, individual i, whilst infective, makes infective contact with individual j if and only

ifUij ≤ 1−exp(−QiDj/n),Uij ≤ 1−exp(−(1+εn)QiDj/n), andUij ≤ ((1/n)CiCj∧1)Ii ,
respectively.

Suppose, for 0 < εn < 1 and all i, −(a− 1) ≤ i ≤ n, and j, 1 ≤ j ≤ n, that (1/n)CiCj ≤
εn. Then, since 0 ≤ Ii ≤ 1, Qi = CiIi , and Dj = Cj , it follows that

1 − exp

(
−QiDj

n

)
≤

(
1

n
CiCj ∧ 1

)
Ii ≤ 1 − exp

(
−(1 + εn)

QiDj

n

)
. (5.5)

Therefore, using the above construction of the epidemics, we have

T n∞ ≤ T̂ n∞ ≤ T n,εn∞ . (5.6)

Thus, the final size of the epidemic Ên is sandwiched between the final sizes of the epidemics
En and Eεnn . Therefore, although the epidemics En and Ên are very different in appearance,
we can show that they have the same limiting asymptotic final size distributions.

Theorem 5.2. Suppose that there exists a δ > 0 such that E[C2+δ],E[C̃2+δ] < ∞. Then

T̂ n∞
d−→ Z as n → ∞, (5.7)

where Z is as defined in Section 3.

Suppose that a/n → ζ ≥ 0. Let τζ and σζ be as defined in Section 4. Then Ť n∞
p−→ τζ as

n → ∞, for ζ > 0, and

min{|Ť n∞|, |Ť n∞ − τζ |} p−→ 0 as n → ∞, (5.8)

for ζ = 0. Let Ĝn = {T̂ n∞ > log n} denote the event that a global epidemic occurs in Ên. Then
P(Ĝn) → 1 for ζ > 0 and, for ζ = 0, P(Ĝn) → 1 −pEXT as n → ∞, where pEXT is as given
in Corollary 3.1.

Furthermore, if there exists a δ > 2 such that E[C2+δ],E[C̃2+δ] < ∞, then

[√n(Ť n∞ − τζ ) | Ĝn] d−→ Z1,r ′(σζ )/(1−a′(σζ ))(σζ )+ r ′(σζ )
1 − a′(σζ )

I as n → ∞, (5.9)

where Z1,r ′(σζ )/(1−a′(σζ ))(σζ ) and I are as defined in Section 4.
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Proof. From the results of Sections 3 and 4, Theorem 5.1, and (5.6), it suffices to show that
there exists a suitable sequence {εn} such that, with probability tending to 1 as n → ∞, (5.5)
holds for all i, −(a − 1) ≤ i ≤ n and j, 1 ≤ j ≤ n.

For κ > 0, letAκn = ⋂n
i=−(a−1){Ci < nκ}, whereCi = C̃i , −(a−1) ≤ i ≤ 0. By Markov’s

inequality, P((Aκn)
c) → 0 as n → ∞, for κ > 1/(2 + δ). Therefore, let 1/(2 + δ) < κ < 1

2
and εn = n2κ−1. Then (5.7) and (5.8) follow immediately. Equation (5.9) is proved similarly,
provided that δ > 2, by letting 1/(2 + δ) < κ < 1

4 and εn = n2κ−1.
Finally, note that, for the Bernoulli random-graph epidemic, Q̂x = xI and, so, Q̂x ≤st Q̂

y

for all x < y. Therefore, the assumption in the prelude to Lemma 4.6 holds.

Alternative models can be used to fix the probability of an edge between vertices i and j in
the mixed Bernoulli random graph. In particular, in [12, Section 3] the probability that an edge
exists between vertices i and j is CiCj/(n+CiCj ). Theorem 5.2 holds since, with probability
tending to 1 asn → ∞, we can bound the resulting random-graph epidemic usingE−εn

n andEεnn .

6. Discussion

There are a number of obvious extensions of both the VGSE model and the random-graph
epidemic model. We briefly discuss two of these below.

Firstly, it would be interesting to consider a multitype VGSE model; see, for example, [5]
and [17]. This is particularly relevant for the vaccination models of [10], where an individual’s
(susceptible and infective) response to vaccination is variable. In such a case we could consider
a two-type model with the types corresponding to vaccinated and unvaccinated individuals.
Extending the results of Sections 3 and 4 to include more than one type of individual should be
relatively straightforward following [5] and [17].

Secondly, coupling an epidemic upon a random graph to a VGSE can prove fruitful in
examining epidemics upon graphs with small cliques. These cliques could correspond to
small, completely mixing social groups such as households [1], [2]. No previous analysis of
epidemics upon (random) graphs can incorporate the effect of cliques. However, the GSE
household epidemic model is well understood (see, for example, [9] and [2]), and extending
the current results to a household epidemic model with variable global (and possibly local)
susceptibility should not present any real difficulties.
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