CORE-CONSISTENCY AND TOTAL INCLUSION FOR METHODS OF SUMMABILITY

G. G. LORENTZ and A. ROBINSON

1. Introduction. We shall consider methods of summation A, B, . . defined by matrices of real elements $\left(a_{m n}\right),\left(b_{m n}\right),(m, n=1,2, \ldots)$ which are regular, that is, have the three well-known properties of Toeplitz (4, p. 43). A method A is said to be core-consistent with the method B for bounded sequences if the A-core ($3, \mathrm{p} .137$; and $4, \mathrm{p} .55$) of each real bounded sequence is contained in its B-core. B is totally included in $A, B \ll A$, if each real sequence which is B-summable to a definite limit (this limit may be finite or infinite of a definite sign) is also A-summable to the same limit. It will be shown in the present paper that if the matrix A is core-consistent with the positive matrix B, then A is "almost" divisible by B on the right. This statement is made precise in Theorem 1 below. The proof ($\$ 2$) involves some elementary properties of convex sets in Banach spaces. In $\S 3$, the same method is used to prove a similar result for the relation $B \ll A$ (Theorem 2). Some simple corollaries are given in §4.

Let l_{1} be the Banach space of elements $\mathbf{x}=\left(x_{n}\right)$, with norm

$$
\|\mathbf{x}\|=\sum_{n=1}^{\infty}\left|x_{n}\right|,
$$

so that the rows of the matrices A, B are elements $\mathbf{a}_{m}, \mathbf{b}_{m}$ of l_{1}. Elements $\mathbf{x}, \mathbf{y} \in l_{1}$ are called disjoint if $x_{n} y_{n}=0(n=1,2, \ldots)$; an element $\mathbf{x} \in l_{1}$ is positive, $\mathbf{x} \geqslant 0$, if $x_{n} \geqslant 0(n=1,2, \ldots)$. If $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}, \ldots\right) \in l_{1}$, we shall write

$$
\begin{aligned}
& \mathbf{x}^{q}=\left(x_{1}, \ldots, x_{q}, 0,0, \ldots\right), \quad \mathbf{x}_{p}=\left(0, \ldots, 0, x_{p}, x_{p+1}, \ldots\right), \\
& \mathbf{x}_{p}^{q}=\left(0, \ldots, 0, x_{p}, \ldots, x_{q}, 0, \ldots\right),
\end{aligned} \quad p \leqslant q .
$$

We also use the same notation for sets $E \subset l_{1}$, for instance $E_{p}{ }^{q}$ is the set of all $\mathbf{x}_{p}{ }^{q}$ with $\mathbf{x} \in E$. A cone $\mathrm{K} \subset l_{1}$ is a set such that

$$
\sum_{1}^{n} c_{k} \mathbf{x}_{k} \in K
$$

whenever $c_{k} \geqslant 0, \mathbf{x}_{k} \in K$. For instance, the set of all positive elements is a cone in l_{1}.

We shall prove the following theorems:
Theorem 1. Let A, B be regular matrices and let A be core-consistent with B. If B is positive, that is if $\mathbf{b}_{m} \geqslant 0(m=1,2, \ldots)$, there is a positive regular matrix C such that the norm of the mth row of $C B-A$ tends to zero for $m \rightarrow \infty$.

[^0]The case where the elements of the sequences, or of the matrices, are complex is not essentially different as will be shown in §2.

If $A=\left(a_{m n}\right)$, we shall write A_{p} for the matrix obtained from A by replacing all $a_{m n}$ with $n<p$ by zeros.

Theorem 2. If A, B are regular row-finite matrices, B positive and

$$
\begin{equation*}
B \ll A, \tag{i}
\end{equation*}
$$

there is an integer p and a regular positive row-finite matrix C such that

$$
\begin{equation*}
C B_{p}=A_{p} ; \tag{1}
\end{equation*}
$$

this remains true if (i) is replaced by the (formally weaker) hypothesis that
(ii) $\tau_{n} \rightarrow+\infty$ always implies $\left|\sigma_{n}\right| \rightarrow+\infty$, where σ_{n} and τ_{n} are the A - and the B - transforms of a sequence s_{n}, respectively.

If B is the unit matrix I, these results were known before; for the case of Theorem 1 see Agnew (1), also (3, p. 149); for Theorem 2, Hurwitz (5) or (4, p. 53).
2. Core-consistency. If Theorem 1 is true for a given pair of matrices A, B, it is also true for any two matrices A^{\prime}, B^{\prime} with rows $\mathbf{a}^{\prime}{ }_{m}, \mathbf{b}^{\prime}{ }_{m}$ satisfying

$$
\left\|\mathbf{a}_{m}-\mathbf{a}_{m}^{\prime}\right\| \rightarrow 0,\left\|\mathbf{b}_{m}-\mathbf{b}_{m}^{\prime}\right\| \rightarrow 0
$$

This and the regularity of A, B imply that we may assume A, B to be rowfinite, and such that there is a sequence $n(m)$ increasing to $+\infty$ with $a_{m n}=b_{m n}$ $=0$ for $n<n(m)$.

Lemma. In the above conditions there exist two sequences $p=p(m)<q(m)$ such that $p(m) \rightarrow \infty$ for $m \rightarrow \infty$ and that

$$
\begin{equation*}
\rho\left(\mathbf{a}_{m}, K\right)=\rho\left(\mathbf{a}_{m}, K_{p}{ }^{q}\right) ; \tag{2}
\end{equation*}
$$

here $\rho\left(\mathbf{a}_{m}, K\right)$ is the distance from \mathbf{a}_{m} to the cone K generated by the $\mathbf{b}_{\lambda}(\lambda=$ 1, 2, . . .).

Proof. For a given m, let $m_{1} \leqslant m_{2}$ be such that \mathbf{b}_{μ} is disjoint with \mathbf{a}_{m} if μ does not satisfy $m_{1} \leqslant \mu \leqslant m_{2}$; we may assume that $m_{1} \rightarrow \infty$ for $m \rightarrow \infty$. Let K^{\prime} be the cone generated by the $\mathbf{b}_{\mu}, m_{1} \leqslant \mu \leqslant m_{2}$, let $p(m)=n\left(m_{1}\right)$ and let q be so large that $b_{\mu n}=0, m_{1} \leqslant \mu \leqslant m_{2}, a_{m n}=0$ for $n>q$. Then $\mathbf{a}_{m p}{ }^{q}=\mathbf{a}_{m}, K^{\prime}{ }_{p}{ }^{q}=K^{\prime}$, and therefore

$$
\begin{equation*}
\rho\left(\mathbf{a}_{m}, K\right) \leqslant \rho\left(\mathbf{a}_{m}, K^{\prime}\right)=\rho\left(\mathbf{a}_{m}, K_{p}^{\prime}{ }^{\ell}\right) . \tag{3}
\end{equation*}
$$

On the other hand, let $\mathbf{x} \in K$, then \mathbf{x} is a linear combination, with positive coefficients, of some of the \mathbf{b}_{λ}. If we omit from it all those $\mathbf{b}_{\boldsymbol{\lambda}}$ which are not \mathbf{b}_{μ}, we shall obtain another element $\mathbf{x}^{\prime} \in K^{\prime}$. The omitted \mathbf{b}_{λ} are disjoint with \mathbf{a}_{m} and all $b_{\lambda n}$ satisfy $b_{\lambda n} \geqslant 0$. This implies

$$
\left\|\mathbf{a}_{m}-\mathbf{x}_{p}{ }^{q}\right\| \geqslant\left\|\mathbf{a}_{m}-\mathbf{x}_{p}^{\prime}{ }^{q}\right\| .
$$

Since $K_{p}^{\prime}{ }^{q} \subset K_{p}{ }^{q}$, it follows that $\rho\left(\mathbf{a}_{m}, K_{p}{ }^{q}\right)=\rho\left(\mathbf{a}_{m}, K_{p}^{\prime}{ }^{q}\right)$ and using (3) we obtain $\rho\left(\mathbf{a}_{m}, K\right) \leqslant \rho\left(\mathbf{a}_{m}, K_{p}{ }^{q}\right)$. The inverse inequality is obvious, and (2) follows.

Proof of Theorem 1. We shall show that

$$
\begin{equation*}
\rho\left(\mathbf{a}_{m}, K\right) \rightarrow 0 \tag{4}
\end{equation*}
$$

If this is not true, there exists by the Lemma an $\epsilon>0$, a sequence of disjoint $\mathbf{a}_{m_{i}}$ and a sequence of disjoint intervals $\left[p_{i}, q_{i}\right]$ with

$$
\rho\left(\mathbf{a}_{m_{i}}, K_{p_{i}}{ }^{q_{i}}\right)>\epsilon .
$$

If

$$
\mathbf{y}=\sum c_{i} \mathbf{a}_{m_{i}}
$$

is a linear combination of the $\mathbf{a}_{m_{i}}$ with $c_{i}>0, \sum c_{i}=1$ and if $\mathbf{x} \in K$, we can put

$$
\mathbf{z}_{i}=c_{i}{ }^{-1} \mathbf{x}_{p_{i}}{ }^{q_{i}} \in K_{p_{i}}{ }^{q_{i}}
$$

and have

$$
\|\mathbf{y}-\mathbf{x}\|=\left\|\sum c_{i} \mathbf{a}_{m_{i}}-\sum c_{i} \mathbf{z}_{i}\right\|=\sum c_{i}\left\|\mathbf{a}_{m_{i}}-\mathbf{z}_{i}\right\|>\epsilon .
$$

This shows that the convex set E generated by the $\mathbf{a}_{m i}$ is at a distance $\geqslant \epsilon$ from E, hence the ϵ-neighbourhood E_{ϵ} of E is disjoint with K. If K_{ϵ} is the cone generated by E_{ϵ}, K and K_{ϵ} are disjoint except for the origin. By a wellknown theorem (7, Theorem 1.2), there is in l_{1} a bounded linear functional $f(\mathbf{x})$ of norm one which is positive on K and negative on $K_{\boldsymbol{\epsilon}}$. Hence $f(\mathbf{y}) \leqslant-\boldsymbol{\epsilon}$ on E (7 , Lemma 1.2). This means that there is a bounded sequence s_{ν} with

$$
\begin{array}{cr}
\sum b_{m \nu} s_{\nu} \geqslant 0 & (m=1,2, \ldots) \\
\sum a_{m_{i}, \nu} s_{\nu} \leqslant-\epsilon & (i=1,2, \ldots),
\end{array}
$$

and contradicts the hypothesis of Theorem 1.
From (4) it follows that for some row-finite positive matrix $C=\left(c_{m n}\right)$,

$$
\left\|\mathbf{a}_{m}-\sum_{n} c_{m n} \mathbf{b}_{\boldsymbol{n}}\right\| \rightarrow 0, \quad \quad m \rightarrow \infty
$$

Finally, this C will be necessarily regular, provided we agree to take $c_{m n}=0$ whenever $\mathbf{b}_{n}=0$. For

$$
c_{m n} b_{n \nu} \leqslant \sum_{n=1}^{\infty} c_{m n} b_{n \nu}=a_{m \nu}+o(1)=o(1), \quad \quad m \rightarrow \infty
$$

implies that $c_{m n} \rightarrow 0$ for $m \rightarrow \infty$ and each n. On the other hand,

$$
\begin{aligned}
\sum_{\nu=1}^{\infty} a_{m \nu} & =\sum_{\nu} \sum_{n} c_{m n} b_{n \nu}+o(1) \\
& =\sum_{n} c_{m n} \sum_{\nu} b_{n \nu}+o(1)
\end{aligned}
$$

together with

$$
\sum_{\nu} a_{m \nu}=1+o(1), \sum_{\nu} b_{n \nu}=1+o(1)
$$

imply that $\sum_{n} c_{m n} \rightarrow 1$ for $m \rightarrow \infty$. This completes the proof.
The concept of the core is defined also for sequences of complex numbers (3, p. 137). Accordingly, we may introduce the concept of core-consistency
as well for matrices and sequences with complex elements. With this new definition, Theorem 1 holds literally as before.

For the proof assume that A is a regular matrix with complex elements, B is positive and that A is core-consistent with B for bounded sequences. Hence, by Knopp's core theorem (6, p. 115) or (4, p. 55), the core of the B transform of any bounded sequence s_{n} is included in the core of s_{n}. But A is core-consistent with B, and so the core of the A-transform of s_{n} also is included in the core of s_{n}. This implies ($3, \mathrm{p} .149$) that $A=A^{\prime}+V$ where A is a positive regular matrix, and the norm of the m th row of the matrix V tends to zero as $m \rightarrow \infty$. Clearly, A^{\prime} also is core-consistent with B, for complex or more particularly, for real sequences. It then follows from the original Theorem 1 that there exists a positive regular matrix C such that the norm of the m th row of $C B-A^{\prime}$ tends to zero from $m \rightarrow \infty$. Consequently, the norm of the m th row of

$$
C B-A=C B-A^{\prime}-V
$$

also tends to zero for $m \rightarrow \infty$. This proves our assertion.
The converse of this (as well as the converse of Theorem 1) is a direct consequence of Knopp's core theorem. Thus, let A, B, C, be three regular matrices, C positive, such that the norm of the m th row of $C B-A$ tends to zero for $m \rightarrow \infty$. Then the core of the transform of any bounded complex sequence s_{n} by $C B$ coincides with the core of the transform of s_{n} by A. The transform of s_{n} by $C B$ is the transform by C of the transform of s_{n} by B. Hence the core of the transform of s_{n} by $C B$ is included in the core of the transform of s_{n} by B, by virtue of Knopp's core theorem. In other words, $C B$, and hence A, are coreconsistent with B for bounded sequences.
3. Total inclusion. We shall now prove Theorem 2, deducing (1) from the hypothesis (ii). Let $\rho_{m p}=\rho\left(\mathbf{a}_{m p}, K_{p}\right)$; we first show that

$$
\begin{equation*}
\rho_{m p}=0 \text { for all } p \text { sufficiently large and } m=1,2, \ldots \tag{5}
\end{equation*}
$$

Let (5) be false. Since the $\rho_{m p}$ decrease for m fixed and increasing p and finally become zero, we deduce that for each $p, \rho_{m p}>0$ for an infinity of m. Now $\rho_{m p}>0$ implies the existence of $\delta>0, \epsilon>0$ such that the sphere S in l_{1} with center $\mathbf{a}_{m p}$ and radius δ does not have common points with the cone K^{\prime} generated by the points $\mathbf{b}_{\lambda p}(\lambda=1,2, \ldots)$, and by the spheres with radii ϵ around those of the $\mathbf{b}_{\mu \nu}(\mu=1,2, \ldots, m)$ which are not zero. Hence, there is a functional

$$
f(\mathbf{x})=\sum x_{n} s_{n},\|f\|=1 \text { in } l_{1}
$$

generated by a bounded sequence s_{n} with $s_{n}=0$ for $n<p$, such that the hyperplane $f(\mathbf{x})=0$ separates S and K^{\prime} and supports S (by Eidelheit's theorem, (7, Theorem 1.6)). If $f(\mathbf{x}) \geqslant 0$ on K^{\prime}, we have

$$
\tau_{\mu}=f\left(\mathbf{b}_{\mu p}\right) \geqslant \epsilon \quad \text { for } \mathbf{b}_{\mu p} \neq 0 \quad(\mu=1,2, \ldots, m)
$$

(7, Lemma 1.2) and

$$
0>\sigma_{m}=f\left(\mathbf{a}_{m p}\right) \geqslant-\| f| | \delta=-\delta .
$$

By fixing $\epsilon>0$, taking $\delta>0$ sufficiently small, and then multiplying the s_{n} with a sufficiently large positive number, we obtain the following statement:
$\left(^{*}\right)$ For each m, p with $\rho_{m p}>0$ and for any two positive numbers M, η, there is a bounded sequence s_{n} with $s_{n}=0$ for $n<p$ such that

$$
\begin{gathered}
\sigma_{m}=\sum_{n} a_{m n} s_{n}=-\eta, \quad \tau_{\lambda}=\sum_{n} b_{\lambda n} s_{n} \geqslant 0 \quad(\lambda=1,2, \ldots) \\
\tau_{\mu}>M \text { if } 1 \leqslant \mu \leqslant m \text { and } \mathbf{b}_{\mu p} \neq 0
\end{gathered}
$$

We now define inductively increasing sequences of integers $p_{1}, p_{2}, \ldots, m_{1}$, m_{2}, \ldots and bounded sequences $\mathbf{s}^{(i)}$ satisfying $s_{n}{ }^{(i)}=0$ for $n<p_{i}$. If

$$
p_{1}, \ldots, p_{i-i} ; m_{1}, \ldots, m_{i-i} ; \mathbf{s}^{(1)}, \ldots, \mathbf{s}^{(i-1)}
$$

are already defined, take p_{i} so large that $a_{\mu n}=0$ for $n \geqslant p_{i}, \mu=m_{1}, \ldots, m_{i-1}$, then find an $m_{i}>m_{i-1}$ with

$$
\left|\sum a_{m_{i}, n}\left(s_{n}^{(1)}+\ldots+s_{n}^{(i-1)}\right)\right|<\frac{1}{2}, \rho\left(\mathbf{a}_{m_{i} p_{i}}, K_{p_{i}}\right)>0 .
$$

By $\left({ }^{*}\right)$, there is a bounded sequence $\mathbf{s}^{(i)}$ with $s_{n}{ }^{(i)}=0$ for $n<p_{i}$ such that

$$
\begin{array}{lr}
\sum_{n=1}^{\infty} a_{m_{i}, n}\left(s_{n}{ }^{(1)}+\ldots+s_{n}{ }^{(i)}\right)=-1, & \\
\sum_{n} b_{\lambda n} s_{n}{ }^{(i)} \geqslant 0 & (\lambda=1,2, \ldots) \\
\sum_{n} b_{\mu n} s_{n}{ }^{(i)}>i \text { if } b_{\mu p_{i}} \neq 0 & (\mu=1, \ldots, m) \tag{8}
\end{array}
$$

Let $\mathbf{s}=\left(s_{n}\right)$ be the sequence defined by $s_{n}=\sum_{i} s_{n}{ }^{(i)}$; for each n this sum has only a finite number of terms. Since $\mathbf{a}_{m_{i}}$ and $\mathbf{s}^{(j)}$ are disjoint for $j>i$, we have by (6), $\sigma_{m_{i}}=-1$, and by (7) and (8), $\tau_{\lambda} \rightarrow \infty$, which contradicts the hypothesis and proves (5).

Fixing a p for which (5) holds, we consider an arbitrary m. For each $\epsilon>0$ there is an \mathbf{x} in K such that

$$
\begin{equation*}
\left\|\mathbf{a}_{m p}-\mathbf{x}_{p}\right\|<\epsilon, \quad \mathbf{x}=\sum c_{\mu} \mathbf{b}_{\mu}, c_{\mu} \geqslant 0 \tag{9}
\end{equation*}
$$

Let q be the last index n with $a_{m n} \neq 0$. If we omit from the last sum all \mathbf{b}_{μ} for which

$$
\sum_{n>q} b_{\mu n}>\sum_{n \leqslant q} b_{\mu n}
$$

we shall obtain an element $\mathbf{x}^{\prime} \in K$ with

$$
\left\|\mathbf{a}_{m p}-\mathbf{x}_{p}^{\prime}\right\| \leqslant\left\|\mathbf{a}_{m p}-\mathbf{x}_{p}\right\|
$$

It follows that μ in (9) may be assumed bounded for all ϵ. Then we must have

$$
\begin{equation*}
\mathbf{a}_{m p}=\sum_{n=1}^{N} c_{m n} \mathbf{b}_{n p}, \quad c_{m n} \geqslant 0 \tag{10}
\end{equation*}
$$

This proves the theorem, for the argument used in the proof of Theorem 1 shows that $C=\left(c_{m n}\right)$ is regular, provided in (10) we take $c_{m n}=0$ whenever $\mathbf{b}_{n p}=0$.

We give some corollaries to Theorem 2, assuming that the matrices A, B are regular and row-finite and that B is positive. We compare the following relations (for the definition of the core of a possibly unbounded sequence see (4, p. 55)) :
(i) $B \ll A$.
(ii) For each sequence $s_{n}, \tau_{n} \rightarrow+\infty$ implies that $\left|\sigma_{n}\right| \rightarrow+\infty$.
(iii) $A_{p}=C B_{p}$ for some p with $C \geqslant 0$.
(iv) A is core-consistent with B for all real sequences.
(v) A is core-consistent with B for all complex sequences.

Then we have:
Theorem 3. Conditions (i)-(v) are equivalent.
Proof. Clearly, (i) \rightarrow (ii). Theorem 2 shows that (ii) implies (iii) and it is easy to see that (iii) \rightarrow (i). From the definitions of the properties concerned we have (v) \rightarrow (iv) \rightarrow (ii). Finally, Knopp's core theorem states that (iii) \rightarrow (v). This completes the proof.
4. Applications. For further illustration of Theorems 1 and 2 we shall give some applications to totally equivalent and core equivalent methods. Two methods A, B are totally equivalent, if $A \ll B$ and $B \ll A$; they are coreequivalent for bounded sequences if the A-core of each bounded sequence coincides with its B-core. In what follows, V is a matrix such that the norm of the m th row tend to zero for $m \rightarrow \infty$, and I is the unit matrix.

Theorem 4. (i) A method A is core-equivalent with I for bounded sequences if and only if A has a representation

$$
\begin{equation*}
A=A^{\prime}+V \tag{11}
\end{equation*}
$$

with positive A^{\prime}, where A^{\prime} contains a sequence of rows of the form

$$
\begin{equation*}
\mathbf{a}_{m_{n}}^{\prime}=\left(0, \ldots, 0, a_{m_{n}, n}, 0, \ldots\right), \quad n=1,2, \ldots \tag{12}
\end{equation*}
$$

(then necessarily $m_{n} \rightarrow \infty, a_{m_{n}, n} \rightarrow 1$ for $n \rightarrow \infty$.)
(ii) A regular row-finite method A is totally equivalent with I if and only if for some p, A_{p} is positive and contains a sequence of rows of the form (12).

Proof. (i) The conditions are clearly sufficient. It follows from Theorem 1 that (11) with a positive A^{\prime} is necessary. Again by Theorem 1, there is a positive regular matrix C and a V^{\prime} with $C A^{\prime}=I+V^{\prime}$. For each n we have

$$
\begin{equation*}
\sum_{m=1}^{\infty} c_{n m} \mathbf{a}_{m}^{\prime}=\mathbf{e}_{n} \tag{13}
\end{equation*}
$$

with $e_{n l} \geqslant 0, \mathbf{e}_{n}=\left(e_{n l}\right), e_{n n} \rightarrow 1$ and

$$
\sum_{l \neq n} e_{n l} \rightarrow 0
$$

for $n \rightarrow \infty$. Let

$$
\epsilon_{n}=\sum_{l \neq n} \frac{e_{n l}}{e_{n n}} .
$$

Then $\epsilon_{n} \rightarrow 0$ for $n \rightarrow \infty$. Since the $c_{n m}$ are all positive, it follows from (13) that there is at least one $m=m_{n}$ such that

$$
\sum_{l \neq n} \frac{a_{m l}^{\prime}}{a_{m n}^{\prime}} \leqslant \epsilon_{n} .
$$

For otherwise, multiplying the relations

$$
\sum_{l \neq n}{a^{\prime}}_{m l}>\epsilon_{n} a_{m n}^{\prime} \quad(m=1,2, \ldots)
$$

with $c_{n m}$ and adding we would obtain by means of (13) that

$$
\sum_{l \neq n} e_{n l}>\epsilon_{n} e_{n n},
$$

which contradicts the definition of ϵ_{n}.
We now replace by zero the elements $a_{m l}$ of the rows of A^{\prime} with $m=m_{n}$, $l \neq n(n=1,2, \ldots)$. Denoting the matrix thus obtained again by A^{\prime}, we see that (11) and (12) are satisfied. This proves (i); the proof of (ii) is similar.

Theorem 4(i) may serve to show, for instance, that if a regular Hausdorff method H_{θ} is core-equivalent with I for bounded sequences, then H_{g} is identical with I.

A method A is normal if $a_{m n}=0$ for $n>m$ and $a_{n n} \neq 0(n=1,2, \ldots)$. In this case A has an inverse A^{-1}. If A, B are normal, there is a triangular matrix C with $A=C B$.

Theorem 5. Let the regular normal methods A, B be totally equivalent. Then there exists a sequence $c_{m} \rightarrow 1$ such that for some p,

$$
\begin{equation*}
a_{m n}=c_{m} b_{m n}, \quad m=1,2, \ldots ; n=p, p+1, \ldots \tag{14}
\end{equation*}
$$

Proof. Let $A=C B, B=D A$, then the matrices C, D are triangular, regular and totally equivalent with I. We have

$$
a_{m m}=c_{m m} b_{m m}, \quad b_{m m}=d_{m m} a_{m m},
$$

hence

$$
c_{m m} d_{m m}=1
$$

and we obtain $c_{m m} \rightarrow 1$. From Theorem 4 (ii) it follows that for all sufficiently large $n, c_{m n}=0$ if $n \neq m$. Putting $c_{m}=c_{m m}$, we obtain (14).

It should be added that sometimes it is even possible to prove that A, B are identical if they are totally equivalent. Let $A=H_{\theta}, B=H_{\theta_{1}}$ be two regular and normal Hausdorff methods. Then

$$
\sum_{n=0}^{m}\left|a_{m n}\right|
$$

converges for $m \rightarrow \infty$ to the "essential" total variation of $g(x)$. From (14) it follows that

$$
\sum_{n=0}^{m}\left|a_{m n}-b_{m n}\right| \rightarrow 0
$$

hence g and g_{1} are essentially identical. Thus we obtain a remark of Bosanquet (2, p. 452) that $H_{g}, H_{g_{1}}$ are identical if they are totally equivalent.

References

1. R. P. Agnew, Cores of complex sequences and of their transforms, Amer. J. Math. 61 (1939), 178-186.
2. S. K. Basu, On the total relative strength of the Hölder and Cesàro methods, Proc. London Math. Soc. (2), 50 (1949), 447-462.
3. R. G. Cooke, Infinite matrices and sequence spaces (London, 1950).
4. G. H. Hardy, Divergent series (Oxford, 1949).
5. W. A. Hurwitz, Some properties of methods of evaluation of divergent sequences, Proc. London Math. Soc. (2), 26 (1926), 231-248.
6. K. Knopp, Zur Theorie der Limitierungsverfahren. Math. Zeitschrift, 31 (1929-30), pp. 97-127, 276-305.
7. M. G. Krein and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspehi Mat. Nauk (N.S.), 3, no 23 (1948), 3-95; Amer. Math. Soc. Translations no. 26 (1950).

Wayne University
and
University of Toronto

[^0]: Received December 22, 1952; in revised form May 8, 1953

