ON THE CYCLIC COVERINGS OF THE KNOT 5_{2}

by P. BANDIERI, A. C. KIM and M. MULAZZANI*
(Received 18th November 1997)

Abstract

We construct a family of hyperbolic 3 -manifolds whose fundamental groups admit a cyclic presentation. We prove that all these manifolds are cyclic branched coverings of \mathbf{S}^{3} over the knot S_{2} and we compute their homology groups. Moreover, we show that the cyclic presentations correspond to spines of the manifolds.

1991 Mathematics subject classification: Primary 57M12, 57M50; Secondary 57M25.

1. Definitions and main results

In this paper we shall study a countable class of closed, connected, orientable 3manifolds M_{n}, whose fundamental groups are cyclically presented groups. We recall the notion of cyclic presentation of a group. Let F_{n} be the free group on n free generators $x_{0}, x_{1}, \cdots, x_{n-1}$, and let θ be the automorphism of F_{n} defined by $\theta\left(x_{i}\right)=x_{i+1}$, for $i=0,1, \cdots, n-1$ (subscripts $\bmod n$). For any reduced word w in F_{n} define $G_{n}(w)=F_{n} / R$, where R is the normal closure in F_{n} of the set $\left\{w, \theta(w), \cdots, \theta^{n-1}(w)\right\}$. Then G is said to be cyclically presented if G is isomorphic to $G_{n}(w)$ for some n and w. Some connections between cyclic presentations of groups and cyclic coverings of \mathbf{S}^{3}, branched over knots or links, have been studied in [2], [8] and [15].

A group presentation $\langle X \mid R\rangle$ is called geometric if there is a closed 3-manifold M^{3} which admits a Heegaard diagram inducing $\langle X \mid R\rangle$ as a presentation of $\pi_{1}\left(M^{3}\right)$. Equivalently, M^{3} admits a spine homeomorphic to the canonical complex associated to $\langle X \mid R\rangle$ (see [17]). As is well known, the canonical complex associated to a group presentation is a 2 -dimensional cell complex consisting of a unique vertex, a 1 -cell for each generator and a 2 -cell for each relator, whose boundary is glued to the 1 -skeleton according to the corresponding relator. Some relations between cyclic presentation of groups and spines of 3-manifolds are shown in [4].

Our main results show that the manifold M_{n} is the n-fold cyclic covering of the 3 -sphere \mathbf{S}^{3}, branched over the knot 5_{2} (Rolfsen Notation [18]), and that M_{n} is spherical for $n=1,2$ and hyperbolic for $n \geq 3$. Moreover, we find a cyclic presentation

[^0]for $\pi_{1}\left(M_{n}\right)$ and prove that such a presentation is geometric. Finally, since 5_{2} has the property of being a genus one knot, the homology characters of the manifolds can easily be computed as shown in Section 6.

2. Construction of a family of 3-manifolds M_{n}

The manifolds $M_{n}(n \geq 1)$ is defined by pairwise identification of the 2 -faces of a polyhedron P_{n}, which is homeomorphic to a 3-ball, whose boundary complex provides a tessellation of the 2 -sphere as depicted in Figure 1. The tessellation consists of $4 n$ quadrilaterals, $8 n$ edges and $4 n+2$ vertices. The n quadrilaterals around the North Pole N are labelled by $Q_{1}, Q_{2}, \ldots, Q_{n}$. The n quadrilaterals around the South Pole S which is the point at infinity in Figure 1 - are labelled by $R_{1}, R_{2}, \ldots, R_{n}$, and the other $2 n$ quadrilaterals are labelled by $Q_{1}^{\prime}, R_{1}^{\prime}, Q_{2}^{\prime}, R_{2}^{\prime}, \ldots, Q_{n}^{\prime}, R_{n}^{\prime}$, as indicated in Figure 1. To obtain M_{n}, we glue Q_{i} with Q_{i}^{\prime} (resp. R_{i} with R_{i}^{\prime}), for each $i=1,2, \ldots, n$, by an orientation reversing identification which matches N with A_{i} (resp. S with B_{i}). Via this glueing we get, for each $i=1,2, \ldots, n$, the following identifications on the edges: $N C_{i} \equiv A_{i} C_{i-1} \equiv A_{i-1} B_{i-2}$ (which we shall call x_{i}), $S A_{i+1} \equiv B_{i} A_{i+2} \equiv B_{i-1} D_{i} \equiv C_{i+1} D_{i+1}$ (which we shall call y_{i}), and $C_{1} D_{2} \equiv C_{2} D_{3} \equiv \cdots \equiv C_{n} D_{1}$ (which we shall call z). As a consequence the vertices match as follows: $N \equiv A_{i} \equiv D_{i}$ and $S \equiv B_{i} \equiv C_{i}$, for each $i=1,2, \ldots, n$. Observe that, here and in the following, subscripts are considered $\bmod n$. Thus, we obtain a 3-dimensional cellular complex K_{n}, having one 3 -cell, $2 n$ quadrilaterals, $2 n+1$ edges and two vertices. Since its Euler characteristic is

Figure 1
$\chi\left(K_{n}\right)=2-(2 n+1)+2 n-1=0$, the space $M_{n}=\left|K_{n}\right|$ is a genuine closed, connected, orientable 3-manifold according to the Seifert-Threlfall criterion (see [20, p. 216]).

3. M_{n} as branched cyclic covering of the 3 -sphere

Let θ_{n} be the clockwise rotation of $2 \pi / n$ radians around the polar axis of the 3 -ball P_{n}. It is easy to see that all the above defined identifications are invariant with respect to this rotation; therefore θ_{n} induces an orientation preserving homeomorphism g_{n} on M_{n}. The set Fix $\left(g_{n}\right)$ consists of the points of the polar diameter NS and the points of the edge z. Let G_{n} be the cyclic group of homeomorphisms of M_{n} generated by g_{n}. Of course, G_{n} has order n and $\operatorname{Fix}\left(g_{n}^{k}\right)=\operatorname{Fix}\left(g_{n}\right)$ for each $k=1,2, \ldots, n-1$. The quotient space M_{n} / G_{n} is homeomorphic to M_{1} and the canonical quotient map

$$
p_{n}: M_{n} / G_{n} \rightarrow M_{1}
$$

is an n-fold branched cyclic covering, whose branching set is the 1 -subcomplex of M_{1} composed of $N S$ and z (see Figure 2, where the branching set is shown by a thick line and each of the boundary quadrilaterals $Q, Q^{\prime}, R, R^{\prime}$ is subdivided into four triangles).

Figures 2-7 depict, in detail, the identifications performed on the 2-sphere of Figure 2 to obtain M_{1}, showing the development of the branching set. More precisely, we have successively performed the identifications between the following regions: q_{1} and q_{4} with q_{1}^{\prime} and q_{4}^{\prime} (Fig. $2 \rightarrow$ Fig. 3), q_{2} and q_{3} with q_{2}^{\prime} and q_{3}^{\prime} (Fig $3 \rightarrow$ Fig. 4), r_{1} with r_{1}^{\prime} (Fig. $4 \rightarrow$ Fig. 5), r_{2} with r_{2}^{\prime} (Fig. $5 \rightarrow$ Fig. 6). Notice that the complex is a three-ball at each of these stages. As a final step we identify r_{3} and r_{4} with r_{3}^{\prime} and r_{4}^{\prime} obtaining a threesphere, where the branching set is a knot embedded as in Figure 7.'

Hence, M_{1} is homeomorphic to a 3 -sphere and the branching set is the two-bridge knot $\mathbf{b}(7,3)$, according to Schubert's notation (see [1. p. 181]), which is the knot 5_{2} of the Alexander, Briggs, Reidemeister table ([1, p. 312]).

So we have proved the following:

Theorem 1. The manifold M_{n} is the n-fold cyclic covering of \mathbf{S}^{3}, branched over the two-bridge knot $\mathbf{b}(7,3)$.

As already known, the 2 -fold branched coverings of the two-bridge knot or link $\mathbf{b}(p, q)$ is the lens space $L(p, q)$ (see [19]). Therefore, we immediately have:

Corollary 2. The manifold M_{2} is the lens space $L(7,3)$.
Remark 1. From a result of [16], each M_{n} turns out to be an element of a certain class of manifolds $S(b, l, t, c)$, depending on four integer parameters, introduced in [13].

[^1]

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

In particular, M_{n} is homeomorphic to the Lins-Mandel space $S(n, 7,3, n-1)=$ $S(n, 7,4,1)$.

4. Geometric structure on M_{n}

The topological properties of M_{n} established by Theorem 1 easily allow us to derive its geometric structure:

Proposition 3. The manifold M_{n} has a spherical structure for $n=1,2$ and a hyperbolic structure for $n>2$.

Proof. As is well known, the n-fold cyclic covering of S^{3} branched over a knot K has the same geometric structure of the orbifold (K, n), which has \mathbf{S}^{3} as its underlying space and K as its singular set with a cyclic isotropy group of order n (for example, see [3, p. 69]). Since the orbifold (b(7,3),n) is hyperbolic for $n>2$ and spherical for $n=1,2([9$, Theorem 3.1]), the statement is proved.

Remark 2. Observe that M_{3} is the Fomenko-Matveev-Weeks manifold Q_{1}, which is the hyperbolic 3 -manifold with the smallest known volume (vol. $=0.9427 \ldots$.). For more details, see [11], [14], [21] and Chapter 2 of [12].

5. A geometric cyclic presentation for $\boldsymbol{\pi}_{1}\left(\boldsymbol{M}_{n}\right)$

From the 2 -skeleton of K_{n} it is easy to get a presentation of the fundamental group $\pi_{1}\left(M_{n}\right)$. Orienting the edges of K_{n} as in Figure 1 and squeezing z to a point, we get $2 n$ generators $x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}$ subject to n relations of type $x_{i+1} y_{i} x_{i}^{-1}=1$ (derived from Q_{i}) and n relations of type $y_{i} x_{i+2} y_{i} y_{i+1}^{-1}=1$ (derived from R_{i}). Since the

Figure 8
first relations give $y_{i}=x_{i+1}^{-1} x_{i}$, the second relations become $x_{i+1}^{-1} x_{i} x_{i+2} x_{i+1}^{-1} x_{i} x_{i+1}^{-1} x_{i+2}=1$. Hence, the fundamental group of M_{n} admits the following cyclic presentation with n generators:

$$
\begin{equation*}
\pi_{1}\left(M_{n}\right)=<\left\{x_{i}\right\}_{i \in \mathcal{Z}_{n}} \mid\left\{x_{i+1}^{-1} x_{i} x_{i+2} x_{i+1}^{-1} x_{i} x_{i+1}^{-1} x_{i+2}\right\}_{i \in \mathcal{Z}_{n}}>. \tag{1}
\end{equation*}
$$

A family of Heegaard diagrams $H_{n}, n \geq 1$, corresponding to such cyclic presentations is depicted in Figure 8 (where the circle C_{i} must be identified with the circle C_{i}^{\prime}, for each $i=0, \ldots, n-1$, according to the labelling of their vertices). Note that this family has cyclic symmetry and it is a particular case of the ones studied in [4]. More precisely, it is exactly the ($7,3,0,1,2,-2$) class of Table 1 of that paper.

It is easy to see that H_{1} is a Heegaard diagram of S^{3} and that it is the quotient of H_{n} via the cyclic action. Therefore, H_{n} is a Heegaard diagram of a 3-manifold, which is an n-fold cyclic covering of \mathbf{S}^{3} with branching set independent of n. A simple test ${ }^{2}$ shows that H_{2} is a Heegaard diagram of the lens space $L(7,3)$. Since $L(7,3)$ admits a unique representation as 2 -fold branched covering of \mathbf{S}^{3} (namely, over the two-bridge knot $\mathbf{b}(7,3)$), we have the following result:

Proposition 4. The manifold M_{n} admits a spine which corresponds to the cyclic presentation (1).

[^2]
6. Homology characters of M_{n}

The two-bridge $\operatorname{knot} \mathbf{b}(7,3)$ is a genus one knot (see [7, Satz 5.1]), and so the homology characters of M_{n} can be computed:

Proposition 5. The first homology group of M_{n} is

$$
H_{1}\left(M_{n}\right) \cong \begin{cases}\mathbf{Z}_{7\left|a_{n}\right|} \oplus \mathbf{Z}_{\left|a_{n}\right|} & \text { if } n \text { is even } \\ \mathbf{Z}_{\left|b_{n}\right|} \oplus \mathbf{Z}_{\left|b_{n}\right|} & \text { if } n \text { is odd }\end{cases}
$$

where, for each $n>0$:

$$
\begin{aligned}
& a_{1}=1, a_{2}=1, a_{n+2}=a_{n+1}-2 a_{n} \\
& b_{1}=1, b_{2}=-3, b_{n+2}=b_{n+1}-2 b_{n}
\end{aligned}
$$

Proof. A Seifert matrix of $\mathbf{b}(7,3)$ is $V=\left(\begin{array}{cc}2 & -2 \\ -1 & 2\end{array}\right)$ (see Table II of [1]). Thus, Theorem 1 of [6] applies with $\gamma=\operatorname{det}(V)=2$ and $\omega=$ g.c.d. $\left(v_{11}, v_{12}+v_{21}, v_{22}\right)=1$.

The following table exhibits the torsion coefficients of $H_{1}\left(M_{n}\right)$, for $n \leq 15 .^{3}$

n	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
τ_{1}	7	5	21	11	35	13	21	5	77	67	315	181	637	275	
τ_{2}	1	5	3	11	5	13	3	5	11	67	45	181	91	275	

Table 1

7. How many different "cyclic" identifications can be defined on P_{n} ?

Finally, we examined which 3-manifolds arise from different identification-systems on the boundary of P_{n}. Of course, the general problem is intractable; therefore, we investigated cases that were quite similar to the one studied in the previous sections.

In fact, we defined the identification-system t_{n} on P_{n} as being admissible when the following conditions are fulfilled:
(a) l_{n} is orientation reversing and invariant with respect to the action of G_{n};
(b) the space $\left|\bar{K}_{1}\right|=\left|P_{1} / l_{1}\right|$ is homeomorphic to S^{3};
(c) the space $\left|\bar{K}_{n}\right|=\left|P_{n} / l_{n}\right|$ is homeomorphic to a 3-manifold for each $n \geq 1$.

In this way, each element of the resulting (admissible) family is a cyclic covering of \mathbf{S}^{3}, branched over a suitable subcomplex of the 1 -skeleton of \bar{K}_{1} and over the polar diameter NS. Moreover, since a cyclic covering of a graph (with some vertices of

[^3]

Figure 9
degree >2) cannot be a 3 -manifold, the branching set of an admissible family must be a knot or a link.

We developed this part of our research in two steps: first we studied all the possible orientation reversing identification-systems ${ }^{4}$ on P_{1}, checking that only three produced the 3 -sphere: K_{1}, K_{1}^{\prime} and $K_{2}^{\prime \prime}$. Figure 9 shows the corresponding identification-systems on P_{1}, which glue Q with Q^{\prime} and R with R^{\prime}, matching up their starred reference points.

In each of these three cases, the cellular complex has two vertices (N and S) and three edges connecting them (x, y and z). Hence, each family arising from these cases (admissible or not) consists of branched cyclic coverings of a knot, or of a graph with two vertices of degree >2 (the points N and S). We then checked all 12 possible cases with $n=2$ arising from K_{1}, K_{1}^{\prime} or $K_{1}^{\prime \prime}$. In detail, starting from the complex $\partial\left(P_{2}\right)$ depicted in Figure 10, we tested - in the same way of Section 5 - all the spaces obtained by gluing Q_{1} with T_{i} and Q_{2} with T_{i+2}, for $i=1,3$ (note that the subscripts are $\bmod 4$), combined with all the identifications of R_{1} and R_{2}, either with T_{i-1} and T_{i+1} or with T_{i+1} and T_{i-1}. Among the resulting combinations, seven give S^{3}, two give the lens space $L(7,3)$ and the other three fail to produce 3 -manifolds. Because of the uniqueness of the representation of lens spaces (including the 3 -sphere) as 2 -fold coverings of knots or links [10], these different admissible identification-systems produce no non-trivial family of 3-manifolds, except the M_{n} 's already studied.

[^4]

Figure 10

REFERENCES

1. G. Burde and H. Zieschang, Knots (de Gruyter, Berlin-New York, 1985).
2. A. Cavicchioli, F. Hegenbarth and A. C. Kim, A geometric study of Sieradski groups, to appear.
3. W. D. Dunbar, Geometric orbifolds, Rev. Mat. Univ. Complut. Madrid 1 (1988), 67-99.
4. M. J. Dunwoody, Cyclic presentations and 3-manifolds (Proc. Inter. Conf., Groups-Korea '94, Walter de Gruyter, 1995), 47-55.
5. M. Ferri, C. Gagliardi and L. Grasselli, A graph-theoretical representation of PLmanifolds - A survey on crystallizations, Aequationes Math. 31 (1986), 121-141.
6. R. H. Fox, The homology characters of the cyclic coverings of the knots of genus one, Ann. of Math. 71 (1960), 187-196.
7. K. Funcke, Geschlecht von Knoten mit zwei Brücken und die Faserbarkeitihrer Außenräume, Math. Z. 159 (1978), 3-24.
8. H. Helling, A. C. Kim and J. Mennicke, A geometric study of Fibonacci groups (SFB343 Bielefeld, Preprint 1990).
9. H. M. Hilden, M. T. Lozano and J. M. Montesinos, On the arithmetic 2-bridge knots and link orbifolds and a new knot invariant, J. Knot Theory and its Ramifications 4 (1995), 81-114.
10. C. Hodgson and J. H. Rubinstein, Involutions and isotopies of lens spaces (Lecture Notes in Math. 1144, 1985), 60-96.
11. C. Hodgson and J. Weeks, Symmetries, isometries, and length spectra of closed hyperbolic three-manifolds, Experimental Math. 3 (1994), 101-114.
12. S. Lins, Gems, computers and attractors for 3-manifolds (World Scientific, 1995).
13. S. Lins and A. Mandel, Graph-encoded 3-manifolds, Discrete Math. 57 (1985), 261-284.
14. S. V. Matveev and A. T. Fomenko, Constant energy surfaces of Hamiltonian systems, enumeration of three-dimensional manifolds in increasing order of complexity, and computation of volumes of closed hyperbolic manifolds, Russian Math. Surveys 43 (1988), 3-24.
15. A. Mednykh and A. Vesnin, On the Fibonacci groups, the Turk's head links and hyperbolic 3-manifolds (Proc. Inter. Conf., Groups-Korea '94, Walter de Gruyter, 1995), 231-239.
16. M. Mulazzani, All Lins-Mandel spaces are branched cyclic coverings of \mathbf{S}^{3}, J. Knot Theory and its Ramifications 5 (1996), 239-263.
17. L. Neuwirth, An algorithm for the construction of 3-manifolds from 2-complexes, Proc. Cambridge Philos. Soc. 64 (1968), 603-613.
18. D. Rolfsen, Knots and Links (Publish or Perish Ins., Berkeley Ca., 1976).
19. H. Schubert, Knoten mit zwei Brücken, Math. Z. 90 (1953), 133-170.
20. H. Seifert and W. Threlfall, a textbook of topology (Academic Press, English reprint, 1980).
21. J. R. Weeks, Hyperbolic structures on three-manifolds (Ph.D. Thesis, Princeton University, 1985).

Paola Bandieri
Dipartimento di Matematica
Università di Modena
Via Campi 213/B
I-41100 Modena
Italy
E-mail address: bandieri@unimo.it
Michele Mulazzani
Dipartimento di Matematica
Università di Bologna
Piazza di Porta San Donato, 5
I-40127 Bologna
Italy
E-mail address: mulazza@dm.unibo.it

Ann Chi Kim
Department of Mathematics Pusan National University Pusan 609.735
Republic of Korea
E-mail address: ackim@arirang.math.pusan.ac.kr

[^0]: * Work partially supported by C.N.R. of Italy and by the Basic Science Research Institute Program, Korean Ministry of Education 1996, no. BSRI-96-1433. Lavoro eseguito con contributo C.N.R. \& K.O.S.E.F.

[^1]: 'For the reader's convenience, the starred reference points in the figures underline the above identifications.

[^2]: ${ }^{2}$ The test has been conducted with the aid of a computer program, written by the first author's research group, which checks topological and algebraic properties of (pseudo-) manifolds of relatively little "complexity" using combinatorial tools. See [5] for a survey of these techniques.

[^3]: ${ }^{3}$ Compare Appendix of [13].

[^4]: ${ }^{4}$ There are 32 of them, up to symmetry.

