A RELATION BETWEEN ULTRASPHERICAL
AND JACOBI POLYNOMIAL SETS

FRED BRAFMAN

L. Introduction. The Jacobi polynomials may be defined by

" P () = (L s QFI[— ml+at B+ _x:l'
v 1+a; 2

where (@), =a (@+1)...(a +n — 1). Putting 8 = « gives the ultraspherical
polynomials P (x) which have as a special case the Legendre polynomials
P,(x) = Pi*7(x).

Now the Jacobi polynomials can be expressed in terms of the simpler ultra-
spherical polynomials of course by a relation such as

PP (@) = 36 PE0(),

where the ¢, may be found by the orthogonality properties of the P& (x).
In general, the ¢; will be very complicated.

This paper will show that a Jacobi polynomial may also be formed by sum-
ming across a set of sets of ultraspherical polynomials.

Let
fro = PPN (), i=012...,
. (= D D)k plhtassrir.jatsrrn
(2) Jroae = 22kk!(%)k PJ (x)y k=1, 2, 3; ey

. — B\ (— 1)"(5;'&_1) a—ﬂ+1) g .
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k=0,1,2,....
Then consider the matrix

3) el 1

where j is the column index and & is the row index, and wherej, £ = 0,1,2, .. ..
Note that each row, given by fixed & with j =0, 1,2, ..., represents a true
ultraspherical polynomial set multiplied through by a common constant factor.

The result of this paper is that Jacobi polynomials may be formed from the
diagonals of array (3), viz.,

n n
4) P& (x) = Zoff-n—j = Zofn—k.k‘
= k=
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Note that for the special case, 8 = a, of the ultraspherical polynomials,
(5) fj.k=0 k=1,2,3...,

fro = P{(x).

The arrays corresponding to other special Jacobi polynomials have certain
simplifications. For example, in the array for P& (x) when 8 = a + 2m for
m a positive integer, it happens that f; o = 0 for m 4+ 1 < k, that is, all even-
numbered rows after a finite number vanish. Similar results hold for 8 = o — 2m,
B=ax 2m+1).

2. Proof of results (4). First note
(6) foo =1 = PP (x).
For n > 1, the result (4) will be proved in the form
@By _ platt). hats) ( ) =
(7) PP (x) = P (@) + > 2

Let the right side of (7) be denoted by g,(x). The remainder of this section will
be devoted to showing that g,(x) = PP (x), for n > 1. By splitting the summa-
tion in (7) into even and odd indices and using definition (2), the reader may
show easily that

a—B+2—k ) P(i (a+B+k, 4 (a+f+k)) ( x)

gulx) = i Sfin—sr
=0

Then (4) will be proven once it is demonstrated that g,(x) = P9 (x).
By using definition (1), it follows that

8) glx) = (2+a+ﬂ)" Z (=n) ;1 + o+ B+ n),(5)’

ye ( +a+ﬁ) ] 1
a——B n  n—k ( —ﬂ+2—k)k—1(2+a+ﬂ+")n_k(— n -+ k);(l + a + B + n)j(l—:);
+< 2 >1:=-ZI F.Z;' k! (n E)! (2+a+ﬁ+k) ;!

n _ 2tatf o i
=(—1)(1+a+ﬁ+n)n<1 x)+z[ ++),,(1+ + B+ n),(5)

n! - &), 4!

+ (a — B) 3 (CBEER), (e (14 o+ B+ n), (5 ]

7=0

R EEE R
Thus
_ (=00t at+ B+ n) (1 _x>,.
9) gn(x) = ] 5
+;(1+a+l3]'+n)j( 2] z.,
where 7
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2t+atB .
(10) Zp — ( 2 P'""])ﬂ

CEZEE P )y,
( )kz—:l Bl (p — B)! y p=123,....

The functions Z, will be simplified by means of a generating function. From
(10), form

o w (24atB . ?
an Y ze =3 ikl

=1 p=1 P!

= B) R & O, L ), t?
+(550) 5 5 SR,

=—1+4+ (1 _ t)—l—}(2+a+ﬂ)

a — 6 © ® (ﬂ—ﬁ+2-—k) _ (2+a+l3+k +J) ty+k
+(T>,;,,§ R —

or

(12) ij Z, P

_ 1 + (1 _ t)—j—%(2+a+ﬂ)
a— e PR — T
+ ( ) () 2 21 :

In (11), (12), and subsequently, it is intended that the branch of the power of
(1 — ?) is the one which approaches + 1 as ¢t approaches zero.
Next, by splitting into summations over even and odd indices, it follows

that
a—f+4-2—k
(13) Z (__k_')_k_—__
B o o o Ml Y (T w@%WTMA(uy
““Eﬁ @) &! ("4) ”; (D k! Yy

a—P+1 14p—a 2 a—f f—a 2
_ Ty u | 2 T,T;_u_]_ }
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where, for 8 = a, the indeterminate form vanishes. Substituting the results of
(13) into (12) gives

(14) 2 Z, = — 14 (1 -ty g,
p=1

[T fa. _ g ] a—B [a—g-H’ Mo g ]
0=:R| "V ylgaoplt T a-ph YAl
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Using the well-known relation
(15) 2Fi(a,b5¢;2) = (1 — 2)7°oF (a, c — by ¢;55),

it follows that

@— 0 e F###(_L_y]
(16) Q= [4(1——15)] 2 1 .\(©2 -1
—8) L [eo e T e ()]
+< 2 )(14)*[4(1—0] oy 5 i \2 —¢
or

B—c ( a—B lta—f, 2
("’Q‘Su”tW““{F[Q'E§(§?)]

a—§+1 24a—f, t 2
o) [ PTG
On expansion,

_ =0 | Qla= Bt "
(18) [4(1 = H]FE [;, (2n)! (2 — t)

T R e L |

n=0

ol

[SEX

Thus

(19) =0 mm~mh_L>”
¢= 41 - )TW“"[,.;O (2n)! (2—1

+ 5 0B (L)),

(2“2:£>Hi (a - B)x (2 ¢ )

(20) Q= [TELP

or

The series in (20) represents a binomial expansion, and (20) becomes

(21) Q= (1 -0},
The result of (15)—(21) changes (14) into

(22) S Z, = —14+ 1 -1t
p=1

Expanding the right side of (22) gives

(23) Zzptp_ Z(1+a+])p
p=1 p=1
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and thus

p!
Substitute this in (9) to find

@) g = S et st (1 — x)

n! 2
n—1 z—1\J .
I+a4+8+n), &) A+ a+ g
+ 2 O]
_ (=) A4a+ B+, (5
n!
(1+a),S A+a+B8+n); (B (—n);
o i T+ a);

= PP (),
as desired. This completes the proof of (7).

Wayne University
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