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Abstract. The class of 3if-automorphisms is not contained in a certain class of skew
products over a Bernoulli base. The non-identity fibre transformation in the skew is
allowed to have positive or even infinite entropy. A difficulty presented by positive
entropy is handled via an apparently new property of independent processes (lemma
7.24).

1. Introduction
(1.1) Statement of problem.
Definition. By a simple independent skew we shall mean the following: On the base
we have a Bernoulli transformation 98 acting on the space n a ; two subsets H , T c f l a

(Heads and Tails) whose disjoint union is £1^, such that the two set partition (H, T)
is independent and generates under 38. Also, we have an ergodic process 2t on the
space ilsi. For fibre transformations we have the identity over T and the transforma-
tion 2£ over H. Our skew product if acts on the product space h. = £l& xilx as
follows: Any point A = (fi, £) e A gets mapped by if to

/ 1(98)3, f> i f0eT.
A shorthand for this skew product will be 33 ® (3T/H, Id/T). Pictorially more sugges-
tive than (fi, £), we shall use (|) to denote a point in the space of the skew product.
We shall refer to £ and B as the Sf-component, respectively 98-component, of A,
where A = <|>.

The goal of this paper is to produce a JC-automorphism ST which is not isomorphic
to any simple independent skew having 0< AI(H) < 1.

(1.2) Raison d'etre. Suppose we have a transformation ST represented as a skew
product of a family of fibre transformations {2£p~. j8 e ft^} over a base transformation
9S. How much can we tell about the entropy of ST by knowing the entropy E(3&)
as well as all the entropies {£(3T^)}j8? Certainly E( ST) 2 £(98) because 98 is a factor
of ST. But how much entropy does the family {2£p}p add? It turns out there is no
particular connection between the set of numbers {E(2SP)}P and the number E(2T)-
£(98). For example, it is possible to have E(3£p) = oo for every /? and yet have
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E(0F) = £ ( 3 8 ) = 0. In the other direct ion, w e can have each E(2£p) = 0 for every /3 
a n d yet h a v e E(^) = ao a n d £ ( 9 8 ) = 0. 

T h e q u e s t i o n then arises: For an arbitrary X-automorphism H d o e s there exist a 
s k e w representat ion as a b o v e where 58 is a Bernoul l i factor o f m a x i m a l entropy 
and each 2tp has zero en tropy? In this general i ty the ques t ion m a y b e difficult 
(part icularly if true) . H o w e v e r , this p r o b l e m b e c o m e s tractable if w e p lace restrictive 
c o n d i t i o n s o n the type o f s k e w w e a l low. T h e m o s t bas ic non-trivial s k e w product 
w o u l d h a v e just t w o k inds o f fibre transformat ions , o f w h i c h o n e was the identity. 
T h e s i m p l e i n d e p e n d e n t s k e w s naturally sugges t t h e m s e l v e s . 

What are s o m e o f the propert ies that m a k e s i m p l e i n d e p e n d e n t skews easier to 
s tudy? O n e useful property is that if P is a generat ing partit ion for St, then the 
product part i t ion P' = ( H , T ) x P is a generat ing partit ion for Sf. W h y ? Let us take 
a l ook at the S^-P'-name o f a po in t A = ( | ) . T h e u p p e r c o m p o n e n t , £, is a d o u b l y 
infinite ST-P-name. T h e l o w e r c o m p o n e n t , p, is a 38-(H, T) -name. A's ith letter, A„ 
is a pair o f letters c&. A s an e x a m p l e , s u p p o s e /3 = • • • p_lp0plp2P3P4PsP6 • • • where 
w e p lace an arrow over a /3, to indicate that it is ' H \ T h e n the n a m e A will look 
like the s e q u e n c e o f letter-pairs in the b o t t o m row, s h o w n be low: 

• ' ' A_| A 0 Ai A 2 A 3 A 4 A 5 A 6 • • • 

• • • Co Co C\ C\ C\ C\ Ł2 Ł1 

••• p_t 0O p, /32 p3 04 05 06 ••• 

H e n c e , if w e h a v e t w o dist inct po ints ( | ) , ( | ' - ) eA then either or / 3 ^ / 3 ' and 

c o n s e q u e n t l y their P ' -names are different. W e see that the 'product letter' Af is the 

pair o f letters jj* where w = ( the n u m b e r o f H e a d s in p 0 , . . . , & _ , ) . A n o t h e r w a y to 

say this is that 

This mot iva te s the f o l l o w i n g . 

Definition. W e define the funct ion Weight(f ini te string o f H e a d s and Tai ls) to be 

the n u m b e r o f H e a d s in that finite string. Let p\\ d e n o t e the substring j 8 j 3 j + 1 • • • j3,_, 

o f p. By e x t e n s i o n , u se |̂  t o m e a n the 'half o p e n ' interval o f integers A l s o , j8|, 

abbreviates p\\+l. F inal ly , let d e n o t e the set o f finite n a m e s {p\b

a: p eClm}. 

V i e w e d as a set o f n a m e s , 381* is n o different from the set S8|* " - but s o m e t i m e s 

it is c o n v e n i e n t t o e m p h a s i z e where it is in 8ft-names that our at tent ion is focused . 

V i e w e d as a u n i o n o f cy l inder sets , " is the image o f $S\b

a under the trans

format ion 38 a . 

Here is h o w o n e can think o f the act ion o f if o n (p): T h e index i runs a long p at 

a constant rate. T h e s e q u e n c e o f H e a d s a n d Tai l s in p tells us h o w to 'read' £ ; the 

C- i ndex w m o v e s a l o n g £ in fits and starts, as 1 m o v e s , a lways keep ing w = 

Weight {p\'Q). A l t h o u g h w's smal l - sca le b e h a v i o u r is quite r a n d o m , the strong law 

o f large n u m b e r s assures us that w's average s p e e d is / * ( H ) ; w h e n i is large, w will 

b e wi th in a smal l percentage o f i- / A ( H ) . 
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The above considerations give rise to a second nice property of simple independent
skews, namely that we can calculate the entropy of the skew product explicitly from
those of the base and the fibres. The relation is

We will not use this fact so we give the proof modulo the details: Let E and E'
denote the respective entropies of 58 and St. So, for a given i and w, we expect to
see about 2E' many 58-i-names and 2E'W ST-w-names, respectively, of significant
measure. Now fix a large i" and let w = Weight (p\'o). For a typical (J) we know that
w = i • fi(H). And the number of significant Ŝ -Z-names is the product of the number
of significant 58-/-names with the number of significant Sf-w-names. This is about
2Ei • 2E V = 2(E+B><H)) i and our conclusion follows by an appeal to the Shannon-
MacMillan-Breiman Theorem.

Is there still content? Have we trivialized the problem by our restriction - is the class
of simple independent skews sufficiently rich to be interesting?

Yes. With a bit of argument, one can show (see [4]) that any simple independent
skew with an ergodic fibre transformation 3t is automatically a Kolmogorov
automorphism. Moreover, the class contains 'non-trivial' 3T-automorphisms, that is
to say, transformations not isomorphic to a Bernoulli. In fact, Jack Feldman used
a simple independent skew to construct a transformation which is not even Kakutani
equivalent to a Bernoulli (see [7]). Other interesting tranformations have been found
in this class (see [2] and [10]). So it is not unnatural to wonder whether all
^-automorphisms could be built with such a skew.

The second motivation comes from trying to resuscitate the Pinsker conjecture.
Pinsker conjectured that every transformation could be written as the direct product
of a Bernoulli cross a zero entropy transformation; Don Ornstein built a counter-
example of this in [5]. But.conceivably, a variant of Pinsker's conjecture could have
been rescued by generalizing the direct product (the case where jt(H) = 1) to simple
independent skew (the case when 0</t(H)< 1). Our result says no. In fact, by a
bit of serendipity, we were able to remove the restriction that E(2£) = 0. As a
consequence, our result bears some resemblance to, and could conceivably shed
some light on, the 'Weak Pinsker Conjecture' (which asserts that every transformation
can be written as a direct product of the form Bernoulli x 2t for transformations St
of arbitrarily small entropy).

(1.3) Notation and conventions. The measure on any of our spaces we denote by
/x(). Definitions and assertions are intended to hold 'almost everywhere'. As is
customary, the 'a.e.' will usually be tacit.

a = b means the expressions a and b are equal by definition. In contrast, I use
a=b or b=a to mean: the expression b defines the symbol a. This can conveniently
be extended so that a statement like (1 - a ) / 2 = 7 means 'define the symbol o so
that ( l - a ) / 2 = 7 holds'.

The expression Vlarge n means '3N such that V« > AT. I use a question mark to
mean some number for which I do not need or want a name. As an example, one
could say 'Consider a finite set of integers of the form {1,2,. . . , ?}'.
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A common type of argument, which we will just call 'Chebyshev', is the following:
If most pairs (x, y) have a certain property, then for most x, most y are such that
(x, y) has the property. Of course the first 'most' needs to be of the form 1 - S2 and
the next two 'most's are each 1 — 5.
This argument appears frequently and I will usually omit the details. In the same
spirit, statements of theorems will sometimes contain phrases like

V 'most', most x have the property that....

This convention simplifies and makes more intuitive the exposition of trivial implica-
tions such as "Most x have property 1 and most x have property 2 so most x have
properties 1 and 2', where the three 'most's are of the form 1-5, 1-5, and 1 -25,
but where this specific relationship is irrelevant because 5 may be made arbitrarily
small.

Some definitions later on start off with the words, 'for any fixed, implicit, n...'.
The n will indicate the nth stage of the construction that builds our counterexample.
Nearly every symbol appearing will depend on this n. It seems to me to be overly
'noisy' notation to have a subscript n attached to each term; by 'fixed, implicit' I
mean 'not explicitly appearing in the notation'.

The convention on the various appendages one can put on a name is: T, {}, £ are
doubly infinite names i.e. points, in their respective spaces X, (lm, and £1%. f, /? are
finite strings of length h(n) corresponding to n-blocks. f, /3 are short substrings of
n-blocks.

The expression 'e-percent' means, 'a fraction thereof, of size e', where e is some
number between zero and one. For example, it would be valid to say 'the set {2, 5,6}
is 5-percent of the set {1, 2 , . . . , 9}'.

The symbol D.ends a proof.

2. A brief overview
The overview presented here is imprecise and at times refers to terms not yet defined.
Nonetheless, the hope is that the reader will gain a rough idea of the structure of
the proof. Then, when proceeding through the details of later sections, one will be
able to refer back to this overview in order to see how these details fit into the
overall picture.

Our proof splits naturally into three phases: assembly, oracles, and contradiction
from random overlap.

(2.1) Assembly. First, we shall construct a transformation 3~ and generating partition
A on a probability space X via cutting and stacking. Any point x e X has a name,
T, of its orbit relative to A. We shall call this the base spelling of the point x But
this base spelling is too detailed to be useful; we miss the forest for the trees. Rather,
we shall extract from r a cruder spelling called its n-spelling.

Stage n of the cutting and stacking will specify how to section r into special
substrings each having the same length h(n). In fact, these 'special' strings will
simply be the columns of the n-gadget. We take this collection of special substrings
and split it into subcollections £i, &, ••••,£? which we call the (pseudo)letters, or
n-letters, of the (pseudo) alphabet nA. We denote the number of n-letters by |nA|.
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To obtain the n-spelling of r, we scan along T and replace each occurrence of a
special substring by the £? which names the subcollection of which the special
substring is a member. This gives a spelling like:

While we have thrown away information in passing from r to its n-spelling, we
have not lost all control. For it will be the case that members of distinct n-letters
look starkly different, even over small substrings. In fact, if f is any not-too-small
substring of a member f=T\l+h{n) of an n-letter £, then, even though we cannot
reconstruct the string f from its small substring f, we can determine the n-letter £
that f belongs to.

To start the next stage of the argument we postulate, for the sake of contradiction,
that we have an isomorphism <p from some simple independent skew S3®
(3T/H, Id/T) to our transformation ST. We use (p~x to lift the concept of n-spelling
to the skew product space and can now speak of the n-spelling of a point (J). We
denote the fcth letter of this n-spelling by (nA(p))\k.

(2.2) Oracles. It follows from the fact that members of different n-letters look starkly
different that the n-spelling of a point (|) is approximately independent of /3 and
can be determined, in a rough sense, by examining just the upper component £.
The tool we introduce is the concept of an oracle. An oracle is a substring of £,
quite short compared to the length h(n) of an n-letter, with predictive power. If
£\l " is an oracle, then we can make a pretty good guess as to which n-letter the
point (|) is in at time zero - ignorant though we are of /3. What we will not know
is which member of the n-letter it is in - that depends very much on /3.

In § 6 we show that oracles are a common occurrence. If we scan a typical 3f-name
£]<T= £o£i ' ' " Cw • • • as the index w runs from 0 towards oo, we shall find that for a
high density of values w, £w is the first letter of an oracle.

At this juncture one may be tempted to remark: even if £\™ hits oracles frequently,
that gives us but a nebulous view of the n-spelling of (|). Not knowing /$, we will
not know its pattern for reading £. We may see an oracle commencing at, say, £l7

which suggests strongly that a particular n-letter £ appears somewhere in the
n-spelling of (|) - but its exact location is unknown.

So, rather than fight it, we take advantage of the fact that the pattern in which
the n-letters of (|> sit on £ is, in the long run, random.

(2.3) Contradiction from random overlap. Oracles are very short creatures compared
with h(n), the length of an n-letter. Indeed, oracles have length e- h(n) for as
Lilliputian an e as we are willing to pay for by making n large. But as short as they
are, oracles force a certain long-distance regularity.

Suppose (|)|o<n> is a member of an n-letter £ As the index w runs along £ from
0 to the number Weight (p\o(n)), it is likely to find many £w which commence oracles.
It is not, then, too improbable to find an oracle near each end of, and in, the index
interval [0, Weight ()8|o(n))). These two oracles are quite far apart compared to their
lengths and yet they almost certainly make identical predictions.
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Now pick two typical points in the product space with the same ST-component - say 
( | ) and (f,). /3 and p are two randomly chosen Bernoulli names and consequently 
each is ignorant of how the other splits their common ST-component £ into n-letters. 
What typically happens, when we lay both sets of hashmarks down on £? For 
convenience, we simplify the notation by assuming that time zero of the point ( |) 
happens to be the first coordinate of an n-block. So the n-spelling of <|) puts 
hashmarks in /3 at locations 

i = 0, h(n),2h(n),..., kh(n),.... 

Where do these hashmarks fall in £? At w0, w , , . . . , wk,... where 
wk=Weight (P\oh(n)). Hence, an oracle commencing at l w where H>e|^ t + 1 ) , makes 
a prediction about the kth letter of the n-spelling of (J). 

The strong law of large numbers tells us that the {wk}k, which are the hashmarks 
that £ gets from /?, are typically about distance h(n) • n(H) apart, one from the 
next. Similarly, £ inherits hashmarks from p - denote them {W,}?10, also typically 
separated by roughly h(n)fi(H). However, neither set of hashmarks can have any 
knowledge of the other's spacing, in the long run. Consequently, as we scan along 

we often find indices 
wk<W,< wk+i < W,+ 1 < wk+2 

with each pair separated by a distance large against eh(n). Then ( „ A ( J ) ) | f c and 
( n A < £ » | , overlap on [ Wh wk+l) and ( „ A < | » | k + 1 and ( „ A < £ » | ( overlap on [wk+t, W, + 1 ) . 
If we have made the density of oracles high, by having chosen n large, then it is 
likely that we will find an oracle in each overlap which predicts correctly for each 
of the ( | ) and (£) n-letters that overlap there. Consequently, 

( » A < ! » | t = ( „ A < X = ( „ A < ! » | k + 1 . 

We are forced to conclude that two consecutive n-letters of ( | ) are equal. 
This is a typical event and must happen rather frequently along ( „ A ( | ) ) | * . But 

no; for at assemblytime we can insure that on any typical name, the n-letters are 
laid down in a fairly independent way. Since | „ A | goes to infinity as n-»°o ( we can 
have chosen n large enough that the probability of consecutive duplicate letters in 
(nMp))\7 is rather small. 

3. Assembly 
This section has three parts. The first describes a technique for building transforma
tions. In the second part, we use this technique to build an ergodic transformation 
9 having a certain property with respect to the J-metric. In the last part, we modify 
& and incorporate two additional properties. The resulting X- automorphism, ST, 
shall be our counterexample transformation. This transformation ?f is modelled on 
an unpublished example of Don Ornstein and Benjamin Weiss, which, in its turn, 
is based on the non-Loosely Bernoulli example of Jack Feldman. The Ornstein-Weiss 
example is a transformation which is not Kakutani equivalent to any direct product 
of a Bernoulli with a zero entropy transformation. 

(3.1) Cutting and stacking. For a detailed exposition of cutting and stacking see [3, 
p. 91]. We give a brief generic description of the kind of stacking we need. 
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The idea is to define, in stages, a transformation ?f and generating partition
(alphabet) A = {a, b , . . . ,?} on the half-open unit interval [0, 1). At stage n we will
have a number na, so that 0< na < n+1a < 1 and na -» 1. Our partition A and 2T (or
3~~l) will be defined on every point of [0, na) and be as yet undefined on [na, 1).
Specifically, [0, na) will have been cut up into some number, h{n), of equal length
half-open intervals / , , . . . , Ih(n) called levels. We view these levels as stacked one
above the other with J1+1 above /, and call this stack the n-stack. h(n) is the height
of the n- stack and /, is the base of the stack. 5" is taken to map each point of the
stack upward to the point above it in the next level. This defines 5" on / , , . . . , /»,(,,)-_!
and ST~l on I2,..., Ih(n). Moreover, the partition A will have been defined on
Ufi"' /, in such a way that 7] splits into a finite number of equal width half-open
intervals Su ..., S? where each S, is the set of all points in the base /, having some
particular ^-A-/i(n)-name. Each S, is the base of an n-column: the set Ufio* ' ST'Sj.
The n-stack, split into these columns by A, is called the n-gadget.

How do we build the (n + l)-gadget from the n-gadget? Pick integers L, L', and
M which, in general, will depend on n. Then subdivide all of the n-columns into
thinner columns each having the same width w and so that, in total, there are L • M
of these thin columns. List them in some order as C, , . . . , CL.M. In order to extend
the definition of ST and A to more of our unit interval, we now pick some n+1a,
na s n+ia < 1, and split the piece [na, n+la) of our space into little half-open intervals
Ji, • • •, JL-M each, like the {C,}, having width w. Extend A to [na, n+ta) by assigning
to each /, a letter of A. The (n + 1)-gadget will consist of M 'tall' columns manufac-
tured as follows: Choose L of the thin columns {CJ and L' of the little intervals
{/J. Treating the little intervals as columns of height 1, stack these L+L' many
columns one above the other, in some order, to form a tall column of height
L- h(n) + L' and of width w. Thus h(n + 1) = Lh(n) + L'.

The material UfM Jt is sometimes called 'filler' - the filler added at stage n.

(3.1.1) Cutting and stacking viewed as concatenation of words. The reader may verify
that, in the limit as n -» oo, we define a.e. on the space [0, 1) a bi-measure preserving
transformation 2T and partition A. Also, the cutting and stacking can be done to
insure that A is a generating partition and hence we can view the points in the space
as doubly infinite A-names. (There is the small technical point of insuring that if
the A-n(n)-name of a point x, in the space, is the name of some n-column, then x
is, in fact, in the base of the n-gadget. This can be done by insuring that there is
some filler added at the nth stage and labelling this filler in some way with the
number n. In this paper I have dispensed with the distraction of explicitly labelling
the bases of my n-gadgets.) Thus, we see that our cutting and stacking is described
by an alphabet A, a sequence of numbers n(l), h(2),..., h(n),..., and a rule which
specifies, given a collection of A-/i(n)-words (the n-columns), how to concatenate
copies of these words and copies of the letters of A (the filler added at stage n), to
form words of length n(n+ 1).

We would like to know the converse: When does a rule for concatenating
A-n(n)-words (usually called n-blocks) into A-n(n+l)-words (the (n +1)-blocks)
describe a valid cutting and stacking? Knowing this would allow us to build a
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stationary stochastic process without explicitly mentioning the measure, that is,
without having to specify explicitly the numbers w and na at each stage.

In order to know that a rule describes a valid cutting and stacking, it is sufficient
to check two conditions:

(i) Each n-block appears with equal frequency in the (n + l)-gadget.
This assures that the (n + l)-blocks are consistent with saying that all the n-columns
have equal width or, in other words, equal measure. This condition will be true
trivially for each of the transformations we construct in the next section.

The above condition assures that the limit 3~ will be a bi-measure preserving map
on some measure space - but this space may be infinite if we add too much filler
at each stage n. To make the space finite, we must assure that the fraction of the
(« + l)-gadget which is filler added at stage n, is a summable function of n:

00 Xr=i (# of levels of filler added at stage n)/h(n + l)<oo,
where the numerator means the number L' of the above. For the specific transforma-
tion ST constructed in the section to follow, this number L' will be made equal to
h(n). Thus it will be sufficient to check that £"=I h(n)/h(n + l)<°o.
(3.2) 77ie Feldman transformation. In order to exhibit clearly the main idea without
cluttering it up with secondary details, we first reiterate some of Jack Feldman's
construction of a (it turns out to be) zero entropy, ergodic transformation with a
rather curious property with regard to the d metric. We shall build this transformation
2F and generating partition 0A via the foredescribed cutting and stacking method.
It will require no filler.

We let nA denote the set of columns of this /i-gadget; so nA is a set of words of
length h(n). Agree to call nA the nth pseudo alphabet. Each string f e nA is a pseudo
letter. In general, by a pseudo alphabet A, we mean a set of equal length words
over some base alphabet. Let Len(A) denote their common length; |A| is the pseudo
alphabet's size, that is, the number of pseudo letters.

(3.2.1) Definition. Let <?(•, •) denote the usual Hamming metric on strings. 'Sub-
string' has the usual meaning of a subsequence of consecutive letters of a given
string. For any e e (0,1] define the function ds on pairs of equal length words &, f
as: de (a, f) is the infimum of d(cr, f) as <r and f range over all equal length substrings
of a and f, respectively, of relative length at least e-percent i.e. such that

Len (c?) = Len (f) > e • Len (f).

For any pseudo alphabet A, let de(A) denote the number

inf {dE(a; f): a, f e A; a ^ f}.

Our goal is now easy to state: Fixing some particular number ge(0, 1), we want
our n-gadgets to be such that

(3.2.2) Ve, V n, we have that dc(nA)> g.
large

(3.2.3) Feldman spelling. Given an alphabet B = {a, b , . . . ,z}, with |B| = /, and a
positive integer m, we can form m different sequences over B, each of length lm,
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which we call Feldman spellings. Denote the ith such by Bjm, as i ranges over
i=l,2,...,m.

B,,m^Cycle,Cycle, • -Cycle, (1)

lm~' times

where
Cycle,=aaaa • • • abbbb • • b • • zzzz • • • z.

v /'"' limes I'"'times ('"'times j \ *• )
V

Recall that there are / of these.

Evidently Len (Cycle,) = /' and hence Len (B,- m) = /m~' • /' = lm. More generally, if
we permit B to be a pseudo alphabet then Len (B, m) = lm • Len (B).

Given an alphabet or pseudo alphabet B, a desired alphabet size /', and a number
m with m > /', we can define a new pseudo alphabet, A, of Feldman spellings by

A=.{BiM:i=l,2,...,Z'}. (2)

Thus, we can define a transformation as follows:
(i) pick a size 0/ for the base alphabet 0A. (there is nothing else to specify since

we want all the letters to have equal measure);
(ii) for each n = l,2,... pick two numbers /' and m. Make nA from n_,A by

letting them play the respective roles of A and B in (2).
Our goal is to choose, at each stage n, the numbers /' and m so as to ensure that
(3.2.2) holds.

Let us first show that a cycle in a Feldman spelling is d far away from any equal
length substring of a different Feldman spelling. Fix an alphabet B and, for some
fixed i, let & denote the string Cycle;; so & is a substring of Bf m. Let f be an equal
length substring of any r=B^m where j>i. Then f can consist of at most two
different letters, say c and d, arranged as a long string of c followed by a long string
of d.

f : cc • • • cd • • • d

&: aaaa • • • abbbb • • • b, • • • zzzz • • • z . (3)

/ substrings

All the letters of B appear in a with equal frequency. On the other hand, since f
has no more than two different letters it follows that <7(<x, f )>( / -2) / / .

Life gets only a little more complicated if we allow B to be a pseudo alphabet
and let d denote de(B) for some e < j . So in this context, each of a, b, c, d, . . . , z
represents a pseudo letter, that is, a string of letters. What is the added complication?
The string f may or may not start at the beginning of a pseudo letter. If it does,
then the situation is still as in (3) and hence d{&, f)>[(/-2)//]d. On the other
hand, if f begins somewhere in the middle of a pseudo letter then the f row of (3)
is shifted horizontally by a fraction of a pseudo letter. Each pseudo letter p in cr
will see above it, in f, parts of two consecutive pseudo letters; call them q and r.
At least (/ —2)//-percent of the pseudo letters in & are equal to neither of the two
pseudo letters above them; so we examine the situation when p # q, r.

Write the pseudo letter p as a concatenation of two substrings p = pp where p and
p are the parts of p which lie beneath q and r, respectively. Let q and f denote the
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FIGURE 1

substrings of q and r lying above p and p, respectively. Denote by x the fraction
of p that q overlaps i.e. x=Len (p)/Len (p). Without loss of generality, 1 - x > e.
Thus d(p,r)>d. If, in addition, x s e then d(p,q)>d. Thus d(pp,qr) exceeds
x- d + (l -x) • d = d, unless x<e. In that case, the d distance exceeds x-0 +
(1 - e) • d. So in either instance we may conclude

/ _ 2 _
J(Cycle,-, equal length piece of f) >—— • (1 - e) • de(B).

(3.2.4) FELDMAN-SPELLING THEOREM. Given e, we can find a size 1= l{e) such that
for any new e' and /', if B is a pseudo alphabet with |B| a / then for any sufficiently
large m, the pseudo alphabet A={B; m: i = 1, 2 , . . . , / ' } satisfies

and, of course |A| = /'.

Proof. Let l(e) be some integer / so that (1-2)/1> 1 - e . Choose a positive integer
c obeying

c - 2 1-2 .

I
(4)

Pick m big enough that any Feldman spelling in A has at least c/e' cycles, in the
manner of (1). Take any two distinct <r, r e A. Without loss of generality, the cycles
in <T are shorter than those of f. Pick respective equal length substrings & and f of
relative length greater than e'-percent. Then & is at least c cycles in length. It may,
of course, start and/ or end somewhere in the middle of a cycle but at least
((c-2)/c)-percent of its length is made up of complete cycles. Consequently,

c-2 -
d(a, f)> d (a cycle of a, equal length piece of T)

c

C - 2 / - 2 , , , , _

as desired. •
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It will be convenient temporarily to denote the A manufactured by the foregoing
theorem as: A=Feld (B, e, e', /'). Note that there is a hidden parameter, m, which
we can freely make as large as we desire.

Remark. For future reference, observe that since m can be made arbitrarily large,
the ratio Len (B)/Len (A) can be made as close to zero as desired. In particular,
we can replace (4) by

e'-Len(A)-Len(B) c - 2 1-2 ,
e'-Len(A) c

and replay the subsequent reasoning to conclude:

/

e Len(A)
(5)

(3.2.5) Application. We apply the foregoing to get the transformation & as follows:
Pick any number g e (0, 1). Pick positive „£->() such that rC=o 0 ~ n e ) 2 > S-

(i) Let „/=/(„«), n =0,1,2, Let 0A be an alphabet with ol many letters.
(ii) Let nA^Feld (B_,A, „-,£, ne, „/), _ n = 1, 2,.

Since doE(oA) = l, we obtain the desired dne(nA)>\\"^ ( l - , e ) 2 >g .
(3.3) The counterexample transformation ST. The transformation SF endowed with
two additional properties will give us ?T. Take a typical f-name in the base of the
n-gadget and scan along it into the future in jumps of h(n) many base letters. Each
jump leaps over a pseudo letter of nA. Notice that, with high frequency, the pseudo
letter we are now scanning equals the one we have just finished scanning. This is
because we built our (n + 1)-gadget from Feldman spellings and such spellings have
lots of consecutive duplications, (see (1'))-

Our counterexample transformation ST, however, wants just the opposite: a low
frequency of consecutive duplications. A frequency, in fact, going to zero as n -» oo.
We can ensure that the frequency at stage n - 1 does not exceed, say, 1/ n, by grouping
the n_,A-letters together, n at a time, and building nA from Feldman spellings using
these groups as 'letters'.

The
pseudo letters

of._,A.

The
> 'pseudo letters'

of »_,G.

FIGURE 2. The 'pseudo letters' of n^G are groups with n pseudo letters of n_[A to a group. We will
form nA via Feldman spellings over n_]G rather than over n_,A.
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Each Feldman spelling over the collection of (n - 1 )-groups will determine lots of 
columns in the n-gadget in the following manner. Think of different (n - l)-groups 
as buckets painted different colours. Each colour bucket contains n different pseudo 
letters from „_iA; each pseudo letter appears in exactly one colour of bucket. A 
specific Feldman spelling is a particular sequence of colours - or rather, of coloured 
buckets. To fabricate a n-column, we simply concatenate together the sequence of 
„_iA-letters obtained in the following fashion: Walk along the sequence of buckets 
and pick, at random, an „_,A-letter from each. Evidently the probability of picking 
the exact same M_iA-letter from two adjacent buckets is zero, if their colours differ, 
and 1/n, if they happen to have the same colour; hence this probability is no more 
than 1/ n. 

This 'grouping' idea will necessitate a redefinition of the meaning of 'pseudo 
letter'. We proceed to the details. 

(3.3.1) Definition. A pseudo alphabet B is still a collection of pseudo letters but 
now a pseudo letter f € B is to be a set of equal length words over the base alphabet. 
Each word f e f is a member of £ and we ask that each pseudo letter of B = { £ , , . . . , £?} 
have the same number of members. We extend the definition of de(-,-) to mean: 

rf.(Łf)^inf{d.(*,f):*efefef}, 

whereas de( •) simply retains its meaning of J e ( B ) = i n f {de{£> £)'• £ f ' e B, £'}. 

We would like to still be able to take Feldman spellings over such a B. Formula 
(1) defined the pseudo letter B, m as a long concatenation of the pseudo letters of 
B. But now pseudo letters are sets of words - so B , m can still be defined by (1) once 
we say what we mean by the concatenation of two sets of words. We concatenate 
independently: the concatenation of the two pseudo letters {<r , , . . . , a,} with 
{ f , , . . . , fj} we define to be the pseudo letter 

{a,fj: i € [ l , / ] a n d / e [ l , J ] } . 

One may check that theorem (3.2.4) continues to hold. 
We can now elaborate on the grouping in figure 2. Each horizontal line represents 

a pseudo letter of „_iA, that is, a set of words. Writing n _ ,A as {£,, £> £?h we 
mean by grouping n at a time that the first pseudo letter of „_,G be Ui"=i 6» t n a t 

the second be U?= n + i £ and so on. 

(3.3.2) Application. We construct a transformation 3~ and pseudo alphabets {„A}„ 
with the old property Ve, V | a r g e n: <?«,(„ A) > g as well as the 'infrequency of consecu
tive duplications' property. This will be stated precisely after the construction of 3~, 
in (3.3.5c(i)). As before, we fix a g e ( 0 , 1) and „e->0 such that X[™=0{\-„e)2>g. 

(i) Set „ /=(« + 1 ) • /(„£), n = 0 , 1 , 2 , Pick some base alphabet 0 A = 
{a, b , . . . , z} with 0 / many letters. For the purposes of this induction, regard 0 A also 
as the pseudo alphabet {{a}, { b } , . . . , {z}}. 

(ii) Take the pseudo letters of „_!A and group them n at a time to form 
the pseudo letters of „_,G, as in figure 2. Thus |„_,G| = / ( „ _ i e ) and, of course, 
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<Je(n_,G)> Je(n_,A) for any e. Let

as n ranges over 1,2,
(iii) Finally, let nA^nI .

Notice that the transformation just constructed, 2T, is certainly not a JC-
automorphism; its powers are not even ergodic, since each level of the n-gadget is
invariant under ?fh(n). We now modify the above cutting and stacking procedure
in what has become a standard way to force JC- ness of a transformation. This method
was introduced by Ornstein and Shields in their classic paper [6].

(3.3.3) Springs. The idea is to put a small amount of randomness into the location
of the (n-l)-blocks within the n-blocks. We achieve this by adding in, at each
stage n, a little filler material at the ends of Feldman spellings in a random way.
This will involve retaining steps (i) and (ii) from above but replacing (iii) by (iii')
below.

Pick two new letters S and C not appearing in 0A. They will form the filler material
that we will concatenate independently to each end of the pseudo letters of nI to
form the pseudo letters of nA. Denote the pseudo letters of nI as nI =
{£,, . . . , £ , . . . , £ , } . Now replace (iii) by (iii'):

(iii') Let nA=S{<A,,..., tl>j,..., <M where

i/>;={SS • • • So-CC • • • C: where <re & ie[0, h(n- 1)) and i + k = h(n-l)}.
i k

The S's are the start of the spring and the C's are the spring complement. The
number of S's plus the number of C's we call the length of the n-spring. We only
need that this length should go to infinity as n-»oo. However, we chose Len(n-
spring) = h(n - 1) for convenience so as to have the ratio h(n)/h(n - 1) always an
integer.

To ensure that our cutting and stacking procedure (i)(ii)(iii') does indeed produce
a transformation SF which has not lost the properties of 3~, we need to check two
items: First, we need to show that the total amount of filler we have added is finite.
As noted in the remark following the Feldman-spelling theorem, the pseudo alphabet
created by that theorem can be made arbitrarily long. Hence, for each n we can

note

have made the ratio h(n - l)/h(n) = fi(n-spring)//A(n-gadget) as small as desired,

hence summable. Consequently

™ fj.(material added at stage (n - 1))
„ = , fi( n-gadget)

is finite, and hence we have indeed defined a transformation ST on a probability space.
Secondly, we also need check that we have preserved the de property. This too

follows from (5) because, essentially,

T . e'/»(n)-Len (n-spring) - e'h(n)-h(n- 1)
dA"A) * 7h{n) dA"l) = ^ 0 * ' ( " I )

^(l-£)2JE(n_,A)

where e' and e represent ne and n_,e, respectively.

https://doi.org/10.1017/S0143385700003023 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003023


392 /. King

(3.3.4) How general is the construction ? Our construction is flexible enough to build
3~ in the following general way: We first choose a number Gap e (0,5) where 3 • Gap
will play the role of g. Then freeze, once and for all, the numbers {ne} and then the
numbers {„/} as we chose them in (3.3.2). The {ne} and {„/}, as we saw in the
Feldman-spelling theorem, determine an a priori lower bound, but no upper bound,
on the value of the hidden parameter used at stage n - which is to say, on the ratio
h(n+l)/h(n). Thus, we could ask that these ratios also dominate any additional
sequence of lower bounds obtained in some fashion or other. In particular, given
a function M:N->N we can, at each stage n, make the (n + 1)-gadget tall enough,
that is, make h(n + l)/h(n) large enough, so that most points in the (n + l)-gadget
are in some n-letter and are at least M(h(n)) many n-letters away from the top of
the {n + l)-gadget. We will see a formal statement of this in (3.3.5c(ii)) below.

It will not be until § 7 that we define this function M( •) and so we must be
careful not to use implicitly any property of 9~ - such as how soon the ergodic
theorem kicks in on a particular set - in the definition of M( •).

Having laboriously constructed ST, we can now efface from our memories the
details of its construction and just retain the following properties:

(3.3.5) Relevant properties. Given any 'lower bound' function M:N^N we can build
a Kolmogorov automorphism ST (3T-ness to be verified in the next section) and a
sequence of numbers {nM}, where nM=M(h(n)), satisfying the collection of proper-
ties below.

At stage n the columns of the n-gadget all have equal measure. We collect them
into equal sized subsets to form the pseudo alphabet nA. Agree henceforth to refer
to nA as the n-alphabet and to its pseudo letters as M-letters or just letters. For any
r e M-gadget, we let nAr denote the n-letter that T is in; we let (nAT)|t mean the
fcth n-letter one sees when scanning into the future on r. Now 3" satisfies:

(a) W(M)-»OO, as n->oo.
(b) Ve, V]arge n: dF(^, £') > 3 • Gap, for any two distinct M-letters £ £,'e „A.
(c) Infrequency of duplications. V5, V|arge n there is a set U ̂  X with fi(Uc)<S

such that for each r e t / :
(i) (nAr)|s has less than 5-percent consecutive duplications. This means that

for at least (1 -5)-percent of fce I3 : (nAT)|fc#(nAT)|k+1.
(ii) Scanning T from time-zero forward, one sees (at least) nM many contiguous

^-letters. In other words, there is an i'e |*<n) for which g-r+kh^\T) is a point in the
base of the n-gadget for every ke[0, nM).

4. 3~ is a Kolmogorov automorphism
A=0Au {S, C} is a generating partition for ST. The exposition of our proof of 3C-ness
is as in [8] with a slight modification to handle the grouping. We verify the usual
property:
For all word lengths s and any s, V/arg(, g, and for any m:

V ST'A l4e V ^ ' A . (6)

https://doi.org/10.1017/S0143385700003023 Published online by Cambridge University Press

https://doi.org/10.1017/S0143385700003023


Counterexample to a generalization of the Pinsker conjecture 393

This says that the distribution of s-words is essentially independent, 4e-independent,
from the remote past - that is, when separated from the past by a sufficiently large
gap g. By 'the distribution of s-words' we mean the tuple of numbers /A{T: T\S

0 = &}
as <? ranges over all s-words in some fixed order. The distribution of s-words with
T restricted to some set SET will be indicated by distr (T€ SET).

Proof. Choose n sufficiently large that / ^ (X ' )> l - e 2 where the set X' is the
(n-l)-stack minus its last s levels. It will suffice to establish

A ] 5 1

V TA/X'l2* V (6')

and so we restrict our attention to those names r in X'.
Note that distr ( reX' ) = distr (Te X' & „AT = f) for any particular n-letter £

This follows since the Feidman spelling of f sees each (n~l)-group with equal
probability and, consequently, each column of the {n -1)-gadget with equal proba-
bility.

Pick N so that Len (JV-spring) = h{N~ 1)» h{n), then fix any g>h(N). Define
the measurable functions N(T) , l(r), n(r) as follows: N(r) is the first coordinate
of the TV-block containing T0; /(T) is the length of this n-block's forward spring;
n{r) is the distance between T0 and the beginning of the n-block containing time zero.

N-block

JV-spring
start, i

A particular
n-letter f

-g-m N(T) ~n(r)
Time

FIOURE 3. The quantities shown below the name, n(r) and /(T), are lengths. Indices 0, -M(T), N(T),
- g and -g - m, are written above the name T. Finally, a, b, and c are substrings.

For each m-word a, let the symbol a also denote the set freX': T|I*_m = a}. We
can spYvt 5 up into subsets {dk} so that reak means:
N(T) is some fixed number iVoe|_g;
H-g-m is some fixed string b;
T1N"+V(T> ' S some fixed string c; and

nAr is some fixed n-letter £
As T ranges over an dk, the function 1{T) varies uniformly and consequently n(r)
varies uniformly over that subset of ]0

 s consistent with the constraints

and, of course, l{r) e j 0
( . Agree to call an ak good if the constraints are vacuous
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and H(T) varies uniformly on |g(n)~s. As T ranges over this set dk, we always see £
at time zero. But which member of f we see is independent from everything in sight;
in particular from / (T) and hence from n(r). SO, for a good dk

distr ( r e dk) = distr ( r e A"& nAr = £) = distr ( r e X').

If all dk were good then we could conclude, by averaging over the {dk}, that
distr (red) = distr (re X'). This would be (6') with actual independence.

The union of all bad dk is contained in the complement, with respect to X', of
the set

{reX'\ h(n)<l(r) + n(rY<h(N-l)}.

We can have made N sufficiently large that this complement has measure less than
e2. Hence (6') follows. •

5. The code
We now assume, for the sake of contradiction, that we have an isomorphism <p: A -» X
from some simple independent skew if = S8®<2T/H, Id/T) to our & i.e. 9~<p = <pif
where, we recall, A = fla xils is the space on which if acts. Recall that the product
partition P'=(H, T) x 'a generating partition for 3£' lives on the product space A and
generates under if. Since if and SF are isomorphic, we can think of ̂ "'s generating
partition A as also living on A. Hence, given any small number S, we can find a k
such that Vi=-fc &"P' 3 « A. This allows us to define a finite code <# which well
approximates (p. More precisely, we can define a map c€: {P'-|_t -words}-* A and
a set B A D c A of measure less than 8, such that A e A ~ BAD implies ^(Al**1) =
(<pA)|0. By the ergodic theorem, the orbit of any point A hits BAD with frequency
Ix(BAD) < S and so our code %! makes d errors less than 5-percent of the time. By
this, one means that S exceeds the frequency of those ieN for which

(5.1) A convention. To make a 'guess' at the letter (<pA)|,, our code needs to look
a t ^l!-fc+ • ^ w e permit our code to see only some substring A|™ of the name A,
then our code can guess at (<p\)\^' . So we could certainly view our code as a
mapping from 5^-|™-words to ?T-\1 "fc-words, that is, from the set Zf\™ to 3~\k~

k. In
fact, although our code, when applied to A|", cannot guess at the first or last k
letters of (<p\)\™, we can think of ̂  as a mapping Sf\™ -* ZT\™ by just assigning the
first and last k letters in any fixed way. Moreover, if m » k - so much so that
(2k/m) +n(BAD)< 5, then we can view our code as mapping S^-m-words to
J"-m-words and still having a d error less than S. This is a standard convention.

In the above discussion, if could have been just any transformation. Since, in
our case, if is a skew product S8®(2f/H, Id/T) it will be convenient to view %
rather, as a mapping

We fix now for the duration of this paper a code % whose d error is less than the
number Gap from the construction of 3~. The above convention is in force. Hence,
whenever we speak of applying the code to some finite string, it is tacitly to be
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assumed that this string's length is much bigger than the code length k. Usually the
role of m above will be played by h(n) or e • h(n) where n is chosen 'sufficiently
large'.

(5.2) Definition. Agree to say that the substring A|* codes well if <i(<#(A|*), (<pA)la) <
Gap. For any positive e we say that A|a codes well on any e-percent if, in addition,
each substring \\'i

+e(b~a) codes well for each i: a < i < i + e ( b - a ) < b.

(5.3) STANDARD CODING LEMMA. VE, 8 > 0 , Vlarge m, there is a set U<=A with
fi{Uc)< S such that A|™ codes well on any e-percent, for each A € U.

Proof. Standard. •

(5.4) Definition. Given any point r e X we can scan forward from time-zero along
the name and find indices 0 < io< i'i< • • • so that ik is the smallest value i> ik-i for
which 5"Vebase of the n-gadget. Thus T|j.*+'l(n) is a single column in the n-gadget
and hence ik + h(n)< ik+]. Let (nAr)|fc denote the n-letter of nA of which T||*+'1<")

is a member. Thus (nAr) |^ denotes a half-infinite sequence of n-letters; we call this
the n-spelling of T.

If TE n-gadget, let nAr denote the n-letter that r is in. To make sure we have the
notation straight, note that nAr = (nAr)|0 if i0 happens to equal 0; otherwise nAr =
( . A T ) | _ , .

Now we can use the isomorphism tp to lift all these concepts to the space A. Thus
(|>e n-gadget means <p<|>€ n-gadget; ( n A ( | » | " means (nA<p(|»|~, etc.

6. Oracles
Our goal is to show, granted n large, that for most points (|) the n-letter at time
zero, nA(|), depends only on £ and not on /3.

(6.1) Definition. For any fixed, implicit n we say that £e£l# is oracular or is an
oracle if there exists a letter £ e „ A such that the set {/J e ilm: „ A(|) = £} has measure
exceeding 5.

We can now define a map A, an oracle function from O z to , A u {'undefined'},
by letting Af=£ whenever f as above exists.

Finally, we call a pair (|) oracular or an oracle-pair if nA(|) = A£.

(6.2) ORACLE-PAIR ABUNDANCE THEOREM. VS, Viarge n we can find a large oracular
set U c A with /j.( U) > 1 — 5, such that any (|) e U is an oracle-pair.

Proof. Fix any e<(S/100)1 0 0. It suffices to show that for all large n there exists a
good set Ga£ls with / A ( G ) > 1 - ( 5 / 2 ) , such that each £e G has a corresponding
set Bc <= Q,m with M ( ^ ) > 1 ~ (5/2), such that <|) is oracular whenever /? € Bf. Since,
without loss of generality, 1 —(5/2) exceeds the 5 in the definition of oracle, it
suffices to show that nA<|> = nA(/.) for all /3, j3'eB{.

If we pick n large, our standard coding lemma will give us a set V c A with
fi( Vc)< e, such that when A e V, both \\°_Fh(n) and A|^("' code well. We may ask
that ne < e. Now only a tiny percentage of A e A are such that <pA is not in the
n-gadget. Of the remaining A, exactly 2e-percent have (<p\ )|l''e,

<
ft"

)
n) crossing an n-block
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boundary. We discard both kinds of bad A from V and consequently have 
WLOG 

/ t ( V c ) < e + t i n y + 2e < 4e = S'. 
We have now guaranteed, whenever A e V, that (<pA)|l'l

E

<

h',

(

)

n) is a substring of some 
member of some n-letter. 

For each f let B't denote {B: (|>e V}. Via a Chebyshev argument, at most 
-percent of names £ are so unpopular that fi(B'() is less than 1 —V5'. We let G 

be the set of popular £ and have that 

, * (<3 )>1-> /£"> 1 - | 

by our upper bound on e. 
Fix some Łe G for the remainder of this proof. Suppose 8,8'&B\ have the same 

prefix i.e. 0 | ° „ f c ( I I ) = 0 ' | ° . f c ( ( I > . Then „ A < | > = „A<|) because < | ) | ! E M n ) and ( | ) | ! , M n ) are 
equal and they each code well i.e. code to (<p( |» | ° . s h ( n ) and (<p<|»|-£/, („), respectively, 
to within a d error of Gap. Since e > „e, we know that'distinct n-letters are at least 
3 Gap apart in dr; hence 

„A<!> = n A < | ) . (7)

Or, this would still hold if, instead, 8 and 8' had the same suffix i.e. B\°0

hln) = B'\lhin). 
Consequently, if 8, 8', B"e B'{ are such that B and B' have the same prefix, and 8' 
and B" have the same suffix, then „A(J) = „A(^-). 

The independence of the ^-process will now complete the proof. For each prefix 
pe 3 8 | _ e f c ( n ) , define a corresponding 'suffix set' 

F,HB\Tn):BeB'( and 8\0_ch(n) = p). 
We can view both as a union of cylinder sets and as a collection of strings. 
There must exist at least one prefix such that the measure of its suffix set is at least 
as large as the average value of / i (Fp) as p ranges over all possible prefixes. Thus, 
we can fix a p such that p.(Fp)> p,(B'c). Consequently, the measure of the set 

B^B'^niB-.BC'eF,} 

exceeds 1—(8/2) by our upper bound on e. Moreover, by the idea contained 
in the remark following (7), we know that the function /6>->„A(|) is constant 
on Bc. •

7. Contradiction from random overlap 
From § 3 on assembly we know that: 
For any small S, V i a r g e n and for any number m, we can find a set U <= X, with 
p.{Uc) < S, such that any point r e U satisfies: the frequency of consecutive duplicate 
n-letters in („At)|™ is less than S. 
Via our isomorphism <p we can view this as a statement about the space A; just 
replace X by A and t by (|>. By using a Chebyshev argument we can write the 
statement thus: 

Lemma. For all 'most\ V i a r g e n, for all m: Most £ are such that for most 8: Most 
n-letters in („A(|))|™ do not equal their successor. 
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In the overview of § 2 we proposed to achieve the negation of this by examining
how two randomly chosen Bernoulli names ;3 and p would read a common 3f-name;
how would the two parsings (see following definition) of £ induced by (nA(jj))|^
and (nA(^))|Jl interact? To be more precise:

Definition. Given any point A = (|) we can scan forward from time-zero along the
name and find indices 0 < i o < i ' i < - • • so that ik is the smallest value i>ik-i for
which y ( i ) e b a s e of n-gadget. Letting r=(p(A), we see that T||.*+ is a single
column in the n-gadget and that ik + « («)< ik+]. In fact, the (possible empty) word
Tl^+h(n) consists only of springs added at stage n and greater. Define the 'half open'
interval of integers

h = A(A)^[Weight Of t ) , Weight (^+l"n))).

The purpose of Ik is this: our finite code makes a guess at r\'i
k
k
+h(") by looking at

P\Vkik+h(n)) and at C\,k- Thus, if some index we Ik happens to be such that 2£w£ is
an oracle, then this oracle makes a prediction about (nA(J))|fc. So we think of the
{4}*°=o as parsing the name f into pieces; the fc'th piece associated with the fc'th
n-letter of <|>.

Our discussions will consider two points with the same ST-component, (J) and (c
p).

We shall use Ik and /, to denote, respectively, / f c « |» and / ,«£».
When n is large and, in consequence, springs are rare, it is often the case that

the n-letters along A near time-zero occur in a long contiguous piece i.e. that
h = 'o+ kh(n) for k = 1,2,... upto some large value. Thus, although the isomorphism <p
determines J'0= I'O(A), it is /3 that determines everything else about the {/k}'fc

a=8ie- It is
a useful viewpoint, then, to think of /3 as directing the parsing of £. Consequently,
if we randomly pick two Bernoulli names /3 and p, we might expect that their mutual
ignorance would force their respective parsings {Ik} and {/,} of £, to be oft out of
phase; that is, for a high density of indices fceN, that the intervals Ik and Jk+1 each
overlap some interval J, in a reasonably large percentage. If oracles are frequent,

FIGURE 4. The two Bernoulli names /3 and p, as well as the Sf-name f, are shown starting at time zero.
The 'hashmarks' {ijJjtLo marked on /3 determine a parsing of ( into pieces {Ik)lk=o whose length is, on
average, h(n)fi(H). Similarly the hashmarks {j,}5t0 produce a parsing {J[}T=o of f. Eventually these

parsings get somewhat out of phase, as shown on the right.
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they will often fall in such overlaps. This makes it probable that

(-A<|»|fc = (nAO)|f = (nA<|»|fc+1,

which would contradict the lemma stated informally at the beginning of this section.
But the overview glossed over one big headache: springs. After all, /3 and p might
start reading in phase. And it takes a long time to get out of phase, since most
38-/i(n)-words have weight within a few percent of h{n) • n(H). Inevitably, though,
they do get out of phase - unless some pesky spring comes along and syncs them
up again. For remember, springs are dropped down by the isomorphism <p. And
although P and p, being independent Bernoulli names, must each be uninformed
about the other, there is nothing to prevent <p from being maliciously intelligent - it
does not have to satisfy randomness requirements.

Since we cannot outsmart it, a plausible remedy is to handicap <p by giving it too
little spring, at stage n, to work with. But where we determine spring infrequency - the
numbers {p-(X~(n-gadget))}n as a function of n, is at assemblytime. It is at that
time we need to know how long (how many n-letters) it typically takes the n-spellings
of two points (|) and (£) to get out of phase. Unfortunately, there are two pieces
of information, unknown to us at assemblytime, which may influence this number:
the function Ai-»io(A) determined by the isomorphism <p; and the measure of H,
the skewing set. Somehow, we need to decouple these two factors from how long
it takes to get out of phase.

(7.1) Oracles revisited. We show that oracles which predict correctly simultaneously
for both <|) and (£), occur frequently along £. For any implicit n, any m, and any
A=(|)eA, let

[Freq. of oracles on |™](A) =—\{i e |™: &"k is an oracle-pair}|

[Freq. of seeing H on |™](A)=— |{i e |": T\ e H xils}\.
m

Stated differently, the righthand side of the second definition is

(7.1.1) LEMMA. VS', Viarge n, Vm the sets U', VcA each have measure greater than
1 -8' where

U'H^.iFreq. of oracles on |" "('1)](A)> 1 - 5 ' } ; (8)

V^{A: [Freq. of seeing H on ^"^^(A) > /* (H)/2}. (9)

Proof. Given 8', for each large n the oracle-pair abundance theorem provides us
with an oracular set t/<= A whose measure exceeds 1 - 8'2. For any fixed m

li(U)=\ [Freq. of oracles on ^ ' ' ^ ( A j
JA

Hence an application of Chebyshev allows us to conclude (8).
To verify (9), apply the ergodic theorem to 38. Pick n so large that most 38-orbits

of length h(n) or longer visit H with about the correct frequency. So this certainly
holds for orbits of length m • h(n). •
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(7.1.2) Definition. For any fixed implicit f we say a f-index w is oracular with respect
to p if there is an i e N such that Weight (p\'o) = w and „A^'(|) = A(2T£); in other
words, such that #"(|) equals (fj"|) and is an oracle-pair.

(7.1.3) LEMMA. VS, V 'high', Vlarge n, Vm there is a set 1/cA witfi /*(£/)> l-S,
such that for (|)e U:

A 'high' frequency of we [0, W) are oracular with respect to p, (10)

where W^Weight(/3|™'1<n)).

Proof. Fix 5 and force n large enough that the previous lemma gives us sets U' and
V sufficiently large that l / = t / ' n V has enough measure. Pick some (|)e U. The
frequency of «e[0, m/j(n)) such that 5̂ '<|> is an oracle-pair, exceeds 1 — S'; this 5',
of the previous lemma, may have been chosen as small as desired. Let G=
{/€ [0, mh(n)): /?, = 'H'}. The density of G in [0, mh(n)) exceeds the fixed positive
number fi(H)/2. Consequently, we can have chosen 5' so small that a high frequency
of ieG are such that #"(J) is an oracle-pair. This implies (10) in light of the
observation that i>-» Weight (p\'o) is a bijection from G to [0, W). D

It is convenient to restate this lemma by applying Chebyshev to U.

(7.1.3') COROLLARY. V 'most' and 'high', V,argc n, V m most £ are such that for most
P: a high frequency of we [0, W) are oracular with respect to P and are such that

Our eventual contradiction will arise from comparing the parsing intervals {Ik}k

and {//}, of two points (|>, (£) e A.

(7.1.4) SIMULTANEOUS ORACLE THEOREM. V 'most' and 'high', V)arge n, V m most £
are such that most couples (p, p) e ilm x ilm satisfy: a high frequency of values w in the
interval we [0, Weight (p\™ )) are 'simultaneously oracular' i.e. are such that

Proof. By the weak law of large numbers Weight (y3|™/l(">) is, up to a small percentage
difference, equal to Weight (p\oh{n)) for most couples (P, p). In light of this, the
theorem follows from (7.1.3') since a set of measure arbitrarily close to 1, inter-
sected with another such set, is itself such a set. Similarly, the intersection of
a high density sequence of integers with another such sequence, itself has high
density. •

(7.2) A Bernoulli randomness result. (The proof herein was substantially simplified
due to conversations with Benjamin Weiss and Steven Kalikow.) This subsection
is devoted to proving an intuitive idea about an independent process 58, about coin
flipping. So, for the duration of this subsection, we can repress any knowledge
connected with 2T, if, or 2£ - and so there should be no confusion if we write n »
as 11. The product measure on ft xfi will be denoted unimaginatively by /x2( •). All
the results below are stated in terms of blockings of length h. When we later use
these results to get a contradiction, the role of h will be played by h(n).
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We study sequences of integers {wk}k=o, called hashmarks, usually obtained from
some Bernoulli name fi via

For such a sequence, the expected length of wk+l - wk is h • /x(H); we henceforth
denote this quantity by "%.

We will compare sequences of hashmarks {wfc(/J)}£L0 and {wi(p)}T=o obtained
from two Bernoulli names /3, p e ft. Unless otherwise indicated, wk will abbreviate
wk(/3) and W, abbreviates w,(p). Our goal is to show that if we pick /3 and p at
random, the sequences {wfc}"=0 and {W,}%0 are frequently 'out of phase' in the
sense that when an interval of integers [wk, wk+l) intersects some [Wh Wt+I) then
the length of their intersection usually exceeds some reasonable percentage of %. I
chose, pretty much arbitrarily, (1/117)^ to be a 'reasonable percentage'.

Let a be some small number- say, a = l/2100. We use '—' as follows: a = b means
the number a is within a-percent of the number b.

(7.2.1) Preliminaries. Fix a specific independent process by fixing a value /x(H)e
(0, 1). The weak law of large numbers tells us that

/*J j3 :^ |Weight( /3 |S)-8f |<oUl , as/i^oo. (11)

Hence, we can fix an h sufficiently large that, by the ergodic theorem, (almost) every
point /Jeft satisfies:

w t + 1 - w k £ Weight (j8|£+ 1 ) l l )«S forallbut(a/100)-percentoffce|". (12)
In the sequel, we treat % - the expected number of Heads in an /i-word, as a large
integer; for we can have chosen h sufficiently large that % is an integer to within'a
small percentage error- say, to within a-percent.

(7.2.2) Definition. Given a non-decreasing sequence of integers {wfc}^=0
 w e say that

an index k is typical if wk+l — wk~%. For any j e l\l, say that an index k is j-typical
if the indices k-j, k-j+l,... ,k+j are each typical. In this terminology, (12)
implies that for all @: k is 3-typical of {wk(p)}1°=0for all but (a/3)-percent of ke |".

Given another non-decreasing sequence {VV/JJlo we can define a 'correspondence
function'' l:N-*N by l(k) is the smallest typical (of the second sequence) value / > 0
such that W,-wk2:0.

In order to be consistent with our |0 notation we shall, given any M in the set
{oo, 1,2, . . .}, interpret a symbol like {wfc}£L0 to mean {wk: ke\0 }. We say that a
finite or infinite sequence {wfc}£i0 is X% out of phase with respect to {W/}Jt0 if.
for at least X% of ke\™,

\Ik^Ji(.k)\, |A+in//(k)|>TT7^. (13)

Here, for general k and /, Ik abbreviates the interval of integers [wk, wk+l) and J,
denotes [W,, Wl+l).

(7.2.3) LEMMA. For any (fi, p)eftxft at least (1 -4a)-percent o/fce|^° are such
that k is 3 -typical,

l(k) is 1 -typical, and WHk)-wk<(\ +a)%. (14)
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Proof. Define l'(k) to be the smallest 3-typical />0 such that W, > wk. It suffices to
establish the lemma with (14) replaced by

W,w-wk<2%. (14')

Say that a 3-typical value, k, colours an index ieftl blue if wk< i< wk + (l - a ) g .
Since the righthand side is less than wk+u an index i can be coloured blue by at
most one k. Hence, by the strong law of large numbers, the set of blue i has (lower)

note

density exceeding (1 - (a /3) ) ( l - a ) > l - 2 a . Similarly, the set of yellow indices -
those i such that W , - ( l - a ) ? < i < W, for some 3-typical /, also has density greater
than 1 -2a . So the set - call it G - of i" which are both blue and yellow, has density
exceeding 1 -4a . Thus, the set of values k which colour blue some i e G, has density
dominated by (1 - 4 a ) / ( l - a ) and hence by 1 -4a . Such k satisfy (14'). •
(7.2.4) WEAK OUT-OF-PHASE LEMMA. 3M0 such that VM>M0 and for each 'shift
value' qe{0,\,...,h}, there is a set V,cf txf t with ix2{V,)>7/10, such that
whenever (/3, p)e Vq the sequence {q+wk}^=0 is 50% out of phase with respect to

Proof. Since there are but a fixed number of values q to consider, it suffices to prove
the result with Mo allowed to depend on q. As will be clear from the proof, we may
assume without essential loss of generality, that q = 0. So, it suffices to prove that
for each fixed p e ft the following holds. V,arge M and for at least measure 8/10 of
jSeflat least 50% of ke \™ are scattered. A k is scattered by /3 if: k and k+ 1 are
typical; l=l(k) is typical; the differences W/+1 —wfc+1 and wk+i—W, each exceed
(1/117)?. We proceed to the demonstration of the above, leaving M to be specified.

Define freq (/?) to be the density of ke \™ which are scattered by /3. Say that /?
is good if freq (/?)> 50%. We construct a bi-measure preserving map /,:ft-»ft.
Define fco(/3) to be the smallest fc>0 such that

P\kh ~ T j 1 T,.
h

Define fc,()3) to be the most positive fc<0 such that

h

We now let/, be the map which 'switches the /i-words at fco and fc,' i.e.

[-HTT...T iffc = &o(jS);

/ , ( j 8 ) | ( , r i ) h ^TIT . . .T if fc = *,(/*);

{p\k
k
h
+m otherwise.

Notice that Vfc> fco(/3): Weight (/i(j8)|^) = 1 + Weight (j8|f), which is to say that

For each i 6 { 1 , . . . , %} we can, in this fashion, define a bi-measure preserving
function/:ft->Q, and achieve that for each

V fcandVi6{l,...,»}:wt(/(j8)) = i+Wfc. (15)
large

At this juncture, fix some particular ji and let K = Kp be the set of k large
enough for (15), such that k.k+1, l(k), l(k) + l are typical, and for which
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Wlik)-wk<(l + a)%. By the preceding lemma, the (lower) density of K in P*J 
exceeds 1 - 4 a . For a fixed fee K, notice that for at least (1 - 1 0 0 « -n^-percent of 
subscripts i £ { 1 , . . . , £ } : 

{\-a-^)%>WlAk)-{i+wk)>{2a+^)% 

where ?,(fc) is to mean l(k), if W,(k)> i+ wk, and l(k)+ 1 otherwise. If ? were truly 
an integer the expression would be (1 -4a -nr)-percent; since & may be as far as 
a-percent from being an integer, we take (1 - 100a - m ) to be safe. Consequently 
the differences Wli(k)+l-(i + wk+1) and (i + wk+1) - W,.(k) each exceed (rb)^. This 
says that k is scattered by / ( / 3 ) . 

Now fix some M sufficiently large that, for most p, the set of indices Kp has 
density in exceeding 1 — 5 a ; in fact, no harm will come to us if we pretend this 
is true for all /3. Setting 1 - e 2 = ( l - 100a—-fff) and letting k range over \™, we get, 
by a Chebyshev argument, that for (1 - e)-percent of i e { 1 , . . . , *%} that the number 
freq (/¡(13)) exceeds (1 — e) times the density of the set Kp in |^. Hence this number 

note 

exceeds ( l - e ) ( l - 5 a ) > 50%. This tells us, for each /3e f t , that for at least 
(1 - e ) - p e r c e n t of i e { l , . . . , %}, the p o i n t / ( / 3 ) is good. Since e a c h / is measure 
preserving, the measure of the set of good /3 exceeds 1 — e. This certainly 
exceeds 8/10. • 
The preceding lemma is 'weak' since a set Vq may well depend on M. With the 
strong law of large numbers and a straightforward stopping time argument, we can 
convert it into the following a.e. statement. 

(7.2.5) B o o t s t r a p l emma. For any (/3, p ) e f t x f t , {wk}^=0 is at least 12% out of 

phase with respect to { Wi}fL0. 

Sketch of proof. This lemma makes an assertion about a pair of randomly chosen 
half-infinite sequences of Heads and Tails, /3 |^ and p|^. We shall pick such a pair 
of sequences, randomly, in stages s = 0, 1,2, Fix some M from (7.2.4). At stage 
s, we have defined jSlo*"" and p\o'h where ms will have been chosen so that the 
number 

^ W e i g h t (pi;*") -Weight 0 3 | r " ) (16) 

is in \q. To pass to stage s + l w e pick, independently of all previous choices, a point 

(y, g)eilxil. Set 
siisMh + Mh < 1 Mh j \mh + m'h < \m'h 
PlsMh =y\o a i l d P\msh =Q\0 

and set ms+l = ms + m', where m ' > 0 is chosen smallest such that qs+t, defined as in 
(16), is non-negative. 

Denote the couple (y, g) picked at stage s by ios. For any particular qe \*, the 
point w, has probability exceeding 7/10 of being in the set Vq of (7.2.4). Since 
o»!, «2, • • • a r e plucked from ft x f t independently of each other, the strong law of 
large numbers assures, with probability one, that frequency exceeding 7/10 of s e |™ 
are such that w s e Vv And (7/10) • 50% exceeds 12%. • 

(7.2.6) C o r o l l a r y . For all (/3, p ) e f t x f t : For each i,jeΉ, the sequence 
{Weight (p\i

0

+kh)}?=0 is 12% out of phase with respect to {Weight (p\i+'h)}V=0. 
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Proof. Set /'^Weight (p\'o),/=Weight (Ho), yS'=S8'(/3), and p'=®j(p). We need to
show

{«'+ »vk()8')}k)=o is 12% out of phase with respect to {/+ w,(p')}?=0.

For each pair i' and j ' , the proof of the lemma shows this true for a.e. point (/?', p')
in fi xfi. So, for fixed i and j , the corollary holds for a.e. (p, p) since 98'x& is
measure preserving on ftxfl. By discarding countably many sets of /i2-measure
zero, one for each pair i, j e N, we complete the proof. •

Up until now, all of the lemmas have concerned a specific independent process
determined by a number /A(H). The foregoing results hold for h sufficiently large
to satisfy the two requirements in the preliminaries of (7.2.1) - namely that

- ^ , (17)

and that % is within a-percent of being a large integer.
It turns out that, given any interval [a, fe]c (0,1), we can find an h0 such

that for any h> h0 and any process fj.(H)e[a, b], both requirements are
fulfilled. As one can see from the standard Chebyshev proof of the weak law of
large numbers (see [1, p. 5]), the measure of the set in (17) is dominated by
(l/a2)(l//i)M(H)[l-/x(H)] and hence by (l/a2)(l/h). As for the second
requirement, we need just choose h0 so large that a • h0 exceeds, say, 100/a.

These considerations allow us to write the above corollary as follows.

(7.2.7) LEMMA. For each interval [a, b]<= (0,1) there exists ho= ho([a, b]) such that
for any independent process p.(H) e [a, b], any h > h0, and any S'> 0, the following
holds: V|arge M' there is a set ( i c f l x f l , where U is a finite union of cylinder sets
andp}{ U) > 1 - 8', such that the following is fulfilled by all (P, p) e U. For each i,j e |*:

{Weight (/3|o+Wl)}£i'0 is 11% out-of-phase with respect to {Weight (p\'o
+"')}7=o-

Proof. Immediate. That U can be taken to be a union of |^"" cylinders follows from
the weak law of large numbers. It tells us that for most j3 and p, we can tell whether
()3, p) satisfies the above condition by looking at fi\™ and p\0 . •

(7.2.8) BERNOULLI OUT-OF-PHASE THEOREM. For each compact interval [a, b]<=
(0,1), Viarge h, V5, there is an Mo such that VM > Mo: If@> is an independent process
for which p.(H) € [a, b], then /x2( U) > 1 - S where U is the set of all </3, p) such that
for each i,je\h

0:

{Weight (/3|o+Wl)}fcio is 10% out-of-phase with respect to {Weight (p\J
o
+'h)}Zo- (18)

Remark. The improvement over lemma (7.2.7) is that M(H) is quantified after Mo.
Thus, we 'decouple' our choice of M from the value of /A(H).

In addition, we obtain out-of-phaseness without needing to know the exact values
of i and / We are able to decouple our choice of M from having to have prior
knowledge, at assemblytime, of the function A >-» io(A). This allows us to bypass the
difficulty discussed at the beginning of § 7.

Proof. Fix any h greater than the ho([a, b~\) of (7.2.7). Fix a 8. Just for the duration
of this proof, define a function M[ • ] as follows: for any number /I e [a, b], let M[/I]
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be the smallest value of M ' which works in the preceding lemma when p,(H)=/Z 
and S'=S. Our theorem is proved should we demonstrate that M [ ] is bounded 
above on [a, £>]. For if (7.2.7) works up to 11% when M' is set equal to some number 
M, then it works up to 10% for multiples of M and consequently for all M' bigger 
than, say, 2 1 0 0 M . This follows by an argument like that of the bootstrap lemma 
along with assuming 8' sufficiently small. 

By the compactness of [a, £>], it suffices to show that M [ ] is bounded on some 
neighbourhood of any given pZ0e[a, 6] . Let L be a value of M' which works in 
(7.2.7) when p,(H)=p,0 and 8'=8/2. That lemma hands us a finite union of cylinder 
sets [ / c f l x f l such that fi2{U)> 1 -8/2. On U, property (18) is fulfilled with 
M = L . Since U is a finite union of cylinders, its measure varies continuously as a 
function of the probability of Heads, p.(H). Consequently, if p.(H) = /1 for a /1 in 
a sufficiently small neighbourhood about pZ0, then 

p,\ U) > (1 - 8 /2 ) - 8/2 = 1 - 5. 
Thus, the number L bounds M[ • ] on this neighbourhood. •

Remark. So as to spare the reader the distraction of a really minor detail, we 
refrained from mentioning that the points (B, p) of U, in addition to fulfilling (18), 
can be asked to satisfy 

Ł > J ^ ^ W e i g h t (BC). (19)

For a specific value of p.(H), this follows from the weak law of large numbers. The 
compactness argument persists since %=h- p.(H) varies continuously as a function 
of fi(H). 

(7.3) Obtaining the contradiction. We have all the ingredients necessary to break 
any potential isomorphism. In order to avoid logical errors, we relist our ingredients 
in the order necessary for a formal proof. 

We use the above theorem to choose a sequence of positive 8h which decreases 
to zero as h -* oo, and a function M ( • ) , so that for each h the out-of-phase theorem 
works when 8 is set equal to 8h, M = M(h), and [a, b] = [8h, 1 -8h]. This function 
M ( • ) is defined solely in terms of coin flipping. Hence, we can hand this M ( •) to 
assembly, (3.3), as the 'lower bound' function. Assembly then churns out a transfor
mation 3~ and two sequences of integers {h(n)}™=i and {„M}™=1, each „M = 
M(h(n)), for which the relevant properties of (3.3.5) hold. 

Next, assume that there is an isomorphism ^ to J from a simple independent 
skew y = @t®{3H/H, Id/T). We now derive the simultaneous oracle theorem using 
the dB property of (3.3.5). Also, /*(H) is now some specific number in (0,1) and 
hence, V l a r g e n, /i.(H) e [8h, 1 — 8h] where we are letting h mean h(n). Consequently, 
the conclusion of the out-of-phase theorem holds for a set of (B, p) of measure 
exceeding 8h. Since the 8h decrease to zero as h, hence n, goes to infinity, we can 
restate the theorem thus: 

(7.3.1) Out-of-phase revisited. V 'most', V / a r g c n, most (B, p) satisfy: for each i,je |£<n), 

{Weight (B\i

0

+kh(n))}^0 is 10% out-of-phase with respect to {Weight (p|f" , <" ))}?f0-
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A/50,

HI -^7 Weight (/3|5Mh(n))< %.

As our next step, we can lift the infrequency of duplications property (3.3.5(c)) to
the space A via (p. An application of Chebyshev allows it thus:

(7.3.2) Infrequency-of-duplications revisited. V 'most\ V/arx(, n, for most f we find that
most fi are such that the parsing {Ik}t=o of t, induced by /?, satisfies the following:

(i) For most ke[0, nM): (nA(|))|k?£ (nA(|))|k+1.
(ii) The intervals {/^Jj are contiguous and the lefthand endpoint of Io is in |0 .

We now combine the infrequency of duplications, simultaneous oracle, and out-of-
phase theorems.

(7.3.3) CONTRADICTION THEOREM. Vmost\ V/argc n, most £ are such that most
couples (fi, p) satisfy the following: Let {/|J*°=o be the parsing of £ induced by /3. Let
{J,}7=0 be the parsing of £ by p. Let W be the number Weight (/3|sM M" ) ) . Then

(i) For most fce|S
M: ( n A ( | » | k ^ (nA<|»|fc+1.

(ii) The intervals {Ik}gM are contiguous and the lefthand endpoint of Io is in |g(n).
The same holds for {//}^0.

(iii) Most we[0, W) are simultaneously oracular i.e. are such that:

we IknJi => (nA(|))L = (nA(p))L
M(iv) Over 10% o/fc€|;;M are such that:

(v) For at least 8% ofke \f: (nA(|))|fc = ( n A( |» | , + 1.
(vi) Contradiction.

Proof. The first two properties come from (7.3.2) applied to both (|) and {%). The
next, (iii), is a restatement of the simultaneous oracle theorem (7.1.4).

We will justify (iv). First note that since the {h}"^1 are contiguous, their endpoints
form a sequence of hashmarks just as we defined them. Saying that these endpoints
are 'out-of-phase' (defined in (13)) is what the first inequality of (iv) asserts. The
second inequality follows because

Now to verify (v). We call any index k satisfying (iv), good. As k ranges over good
values, the intervals Ik n Juk) are all disjoint. Consequently the union of these
intervals is a fixed percentage of [0, W). Specifically,

J_
W u

fcgood

> 10%
J 1 1_
118~10* 118'

We can have chosen n large enough that the frequency of simultaneously oracular
we[0, W) is so high that at least 9% of ke\f are at once good and such
that /(cO/,(fc) contains a simultaneously oracular w; hence such that
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(nA<!»|fc = (nA<£»|,(k). Repeating this argument for Ik+1nJl(k) in place of IknJl(k)

allows us to conclude (v).
Finally, (v) and (i) add up to (vi). •

8. Results
Here is what we have shown:

There is a X-automorphism 2T not isomorphic to any simple independent skew.

For simplicity, in our proof we tacitly assumed that Sf's generating partition P was
finite, thus forcing 2£ to have finite entropy. Also, we assumed that <p was an
isomorphism:

if

But if we allow P to be countable, and cp to be just a homomorphism, then our
proof goes through without so much as a notational change. Hence we may conclude:
There exists a 3i-automorphism ST which is not a factor of any ergodic transformation
if of the form S&®{2£/\{, Id/T) where 2t is any transformation (of zero, positive, or
infinite entropy) and where 38 is Bernoulli with independent generator (H, T) such that
the skewing set obeys 0 < /u(H) < 1.

Proof. We have shown this for 0<ju(H)< 1. The /x(H) = 0 case follows by letting
2£ be the identity transformation on a one point space Q,x. •

Remark. In the case /i.(H) = 0, the skew product if is the Bernoulli base transforma-
tion 38. Hence our 3if-automorphism ?F is not Bernoulli.

With regard to the direct product case, where /u.(H) = 1, not only does the proof
break down, but so does the result. Recall that we built ST by concatenating /i-letters.
As a consequence of the independent way that our members are chosen from n-letters
(see the description of grouping following figure 2) the Thouvenot theory implies
that T satisfies the weak Pinsker conjecture [11]. We remark without proof that J" is a
counterexample to the Pinsker conjecture, that is, when 2E is constrained to have zero
entropy.

Remark. Observe that the only place we used that the partition (H, T) generated
under 38 was in § 6 to manufacture oracles. With notational changes we can make
the proof of § 6 go through with the partition (H, T), rather than generating, just
required to be refined by some independent generating (possibly countable) partition.
We obtain the following result.

THEOREM. There exists a %-automorphism 2T which is not a factor of any ergodic
transformation if of the form 38 ® (3?/H, Id/T) where 2E is any transformation [of
zero, positive, or infinite entropy), where 38 is any {finite or infinite entropy) Bernoulli
transformation with a countable independent generating partition that refines (H, T),
and where the skewing set obeys 0 s fi(H) < 1.
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Actually, the proof in this paper shows that, in the space of processes, there is a
small J-ball (a radius of (l/10)Gap will work) centred about the ^-process such
that no transformation in this ball is a factor of any simple independent skew.

This work was done for the author's Ph.D. dissertation written at Stanford University
under the direction of D. S. Ornstein.
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