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Abstract. For a commutative Noetherian ringAof ¢niteKrull dimension containing the ¢eld of
rational numbers, an Abelian group called the Euler class group is de¢ned. An element of this
group is attached to a projective A-module of rank � dimA and it is shown that the vanishing
of this element is necessary and suf¢cient for P to split off a free summand of rank 1: As
one of the applications of this result, it is shown that for any n-dimensional real af¢ne domain,
a projective module of rank n (with trivial determinant), all of whose generic sections have n
generated vanishing ideals, necessarily splits off a free direct summand of rank 1.
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1. Introduction

Let A be a commutative Noetherian ring of (Krull) dimension n:A classical theorem
of Serre ([Se]) asserts that if P is a projectiveA-module of rank> n; then P splits off a
free summand of rank 1 (i.e. P has a unimodular element). It is well known that this
result is not in general true if rank P � n: In ([Mu], Theorem 3.8), Murthy proved
that if P is a projective module of rank n over the coordinate ring of a smooth
n-dimensional af¢ne variety X over an algebraically closed ¢eld, then a necessary
and suf¢cient condition for P to split off a free summand of rank 1 is the vanishing
of its `top Chern class' Cn�P� in the Chow group CH0�X � of zero cycles modulo
rational equivalence (see also [MK-Mu] and [MK 2] for earlier results in this
direction). However, this result of Murthy is not true for smooth varieties over
non-algebraically closed ¢elds, as is evidenced by the example of the tangent bundle
of the real 2-sphere.

To tackle this question for smooth varieties over arbitrary base ¢elds, Nori de¢ned
the notion of the `Euler class group' of a smooth af¢ne variety X � Spec A; attached
to any projective A-module P of rank � dim A; an element in this group, called the
`Euler class' of P, and asked whether the vanishing of the Euler class of P would
ensure that P splits off a free summand of rank 1:

In ([B-RS 1]), we settled this question of Nori in the af¢rmative for projective
modules of trivial determinant. In fact, this paper also contained an explicit descrip-
tion of the Euler class group of a smooth af¢ne variety which was crucial for our
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solution. This approach appeared amenable for a plausible generalisation to arbi-
trary Noetherian rings (where there is no guarantee that smooth maximal ideals
exist). It is natural to ask whether such a general de¢nition of the Euler class group
does exist, and with this de¢nition whether one can prove results similar to those
in ([B-RS 1]) for arbitrary noetherian rings.

This programme is indeed accomplished in the present paper for noetherian rings
A which contain the ¢eld of rational numbers.

Let A be a Noetherian ring of dimension nX 2: The Euler class group E�A� (with
respect to the trivial line bundle over A) is de¢ned roughly as follows: (for details
see Section 4)

First, one takes the free Abelian group on pairs �J;oJ�; where J � A is an ideal of
height n and oJ a set of n generators of J=J2: The group E�A� is a quotient of this
group by the subgroup generated by �J;oJ�; where J � �a1; � � � ; an� and oJ is
the induced set of generators of J=J2:

The underlying reason why this group detects the obstruction for a projective
A-module P of rank n (with trivial determinant) to split off a free summand of rank

1 is the following:
By a result of Eisenbud and Evans ([E-E], Remark following Theorem A), most

linear maps a : P! A have the property that height �J � a�P�� � n. In such a
situation, a result of Mohan Kumar ([MK 2], Theorem 1, second implication),
asserts that a necessary condition for P to split off a free summand is that J is gen-
erated by n elements. In the other direction, the proof of ([RS 1], Theorem 5)
essentially shows that, if J is generated by n elements, which are lifts of a certain
set of generators of J=J2 (arising out of a and a generator of ^n�P�), then P splits
off a free direct summand of rank 1:

In our set up, we have, apart from the Euler class group E�A�, a certain canonical
quotient E0�A� of this group called the `weak Euler class group' which roughly cor-
responds to the Chow group in the geometric situation. If n � dim A is even, inter-
estingly, the kernel of the canonical map E�A� !! E0�A� is a homomorphic
image of the orbit space Umn�1�A�=SLn�1�A� with the group structure introduced
by Van der Kallen [VK 1]. If n � 2; in fact, Um3�A�=SL3�A� is precisely the
kernel (see (7.3) and (7.6)). This implies, in particular, that if �v� and
�w� 2 Umn�1�A�=SLn�1�A�; and if the projective modules corresponding to any two
of �v�; �w� and �v�:�w� split off free direct summands of rank 1; then so does the projective
module corresponding to the third (see (7.7)). An interesting consequence of (7.3) is
that if X � Spec A is a smooth af¢ne surface over the ¢eld R of real numbers such
that the canonical module KA is trivial, then Um3�A�=SL3�A� is a free Abelian group
of rank t;where t is the number of compact connected components of the topological
space X �R� consisting of the set of real points of X (see (7.8)).

If A is an af¢ne domain of dimension n over an algebraically closed ¢eld and P is a
projective A-module of rank n; then a result of Mohan Kumar ([MK 2], Theorem 1)
asserts that if P has a generic section ideal which is generated by n elements, then P
splits off a free summand of rank 1 and hence all its generic section ideals are gen-
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erated by n elements. But this is not necessarily true if the base ¢eld is not algebraic-
ally closed. For example, all the reduced generic section ideals (and there are plenty)
of the tangent bundle of the real 2-sphere are complete intersections (see [B-RS 2],
(5.6,(i))). There are however non-reduced generic section ideals of the tangent bundle
which are not complete intersections (see for example [B-RS 1], (5.2)). This phenom-
enon is explained by the result (5.9) of this paper, which asserts that for any
n-dimensional real af¢ne domain, a projective module of rank n (with trivial
determinant), all of whose generic section ideals are generated by n elements, necess-
arily splits off a free direct summand of rank 1.

The layout of this paper is as follows: In Section 4, we ¢rst de¢ne the notion of the
Euler class group E�A;L�with respect to a line bundle L overA:We attach to the pair
�P; w�; where P is a projective A-module of rank n with w : ^n�P� !� L an
isomorphism, an element of E�A;L� called the Euler class of �P; w�: Among other
results, we show that P splits off a free direct summand of rank 1 if and only if
the Euler class of �P; w� is zero (see (4.4)). The main result of Section 5 is (5.9),
mentioned earlier. In Section 6, we de¢ne the notion of the weak Euler class
group E0�A;L� as a certain quotient of E�A;L�: We show that, even though the
group E�A;L� may vary with the line bundle L, the group E0�A;L� is independent
of L (see (6.8)). In Section 7, we establish a connection between E�A�;E0�A� and
the group Umn�1�A�=SLn�1�A� de¢ned by Van der Kallen, if dim A � n is even (see
(7.3) and (7.6)). In Section 3, we prove some addition and subtraction principles
which are crucial for the proofs of the results of Section 4. In Section 2, we quote
some results which are used in the later sections.

2. Some Preliminary Results

In this section we prove some preliminary results which will be used later.
All rings considered in this paper are commutative and Noetherian. All modules

considered, are assumed to be ¢nitely generated.

LEMMA 2.1. Let A be a Noetherian ring. Let L be a projective A-module of rank 1:
Let y be an element of HomA�L;A� and l an element of L: Then, the composite
map L!y A!l L is scalar multiplication by y�l�:

LEMMA 2.2. Let A be a Noetherian ring with dim A � n and let P;P1 be projective
A-modules of rank n: Let J � A be an ideal of height n; let a : P!! J=J2 and
b : P1!! J=J2 be surjections. Let C : P! P1 be a homomorphism such that
bC � a: Then, C
 A=J : P=JP! P1=JP1 is an isomorphism.

Proof. Let K be the radical of J: It is enough to prove that
C
 A=K : P=KP! P1=KP1 is an isomorphism. Since height �J� � n � dim A
and J=J2 is a surjective image of P; it follows that J=KJ is a free A=K-module
of rank n: Hence, a
 A=K : P=KP! J=KJ and b
 A=K : P1=KP1! J=KJ are
isomorphisms. Now the the result follows from the fact that bC � a: &
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LEMMA 2.3. Let A be a Noetherian ring and L a projective A-module of rank 1:Let J
be a proper ideal of A and a; b be surjections from L� A to J: Let C0 be an
automorphism of L=JL� A=J such that bC0 � a, where b and a denote surjections
from L=JL� A=J to J=J2 induced by b and a, respectively. Suppose that
det�C0� � 1 Then, there exists an automorphism D of L� A such that (i) bD � a
and (ii) det �D� � 1:

Proof. First we show that there exists an endomorphismC of L� A such thatC is
a lift of C0 and bC � a:

Let eC be a lift of C0: Then �beCÿ a��L� A� � J2: Since b�J�L� A�� � J2, there
exists a homomorphism Z : L� A! J�L� A� such that beCÿ a � bZ. Since
Hom�P; JP� � JHom�P;P� for any ¢nitely generated projective A-module P, setting
C � eCÿ Z we see that C is a lift of C0 and bC � a:

Let b � �f; a� and a � �c; b� where f;c 2 Hom �L;A�: Then, we can write the
equality bC � a in the following matrix form:

c y
l d

� �
f
a

� �
� c

b

� �
;

where y 2 Hom�L;A�; l 2 L � Hom �A;L�:Moreover c; d denote homothety of the
modules L and A respectively.

By (2.1), det �C� � cd ÿ y�l�: Since C is a lift of C0 and det�C0� � 1; we see that
cd ÿ y�l� � 1ÿ f ; f 2 J: As a � �c; b� is a surjection, it follows that there exist
l 0 2 L and e 2 A such that f � ebÿ c�l0�: Since c � cf� ay and b � f�l� � ad, it
is easy to see by (2.1) and by computing determinants, that the endomorphism
D of L� A given by

c� ea yÿ ef
l � al 0 d ÿ f�l0�

� �
is an automorphism of determinant 1 with bD � a: &

The following lemma is proved in ([MK-2], Lemma 1) in the case where A is
reduced.

LEMMA 2.4. Let A be a Noetherian ring of dimension n and J � A be an ideal of
height n: Let P;P1 be two projective A-modules of rank n and let a : P!! J,
b : P1!! J be surjections. Then, there exists an injective homomorphism
C : P ,!P1 such that bC � a:

Proof. Since P is projective and b is surjective, there exists a homomorphism
F : P! P1 such that bF � a: Moreover, by (2.2), given any such homomorphism
F; we have F
 A=J : P=JP! P1=JP1 is an isomorphism. Hence, there exists
a 2 A which is a unit modulo J such that Fa is an isomorphism. If a is a non-zero
divisor, then F is injective and hence we are through.

If F is not injective, then we show below that there exists a homomorphism
Y : P! ker�b� such that C � F�Y is an injective homomorphism from P to
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P1: Note that by construction bC � a: Let K;N denote the kernels of a and b
respectively.

From the above discussion, it follows that if F is not injective, then there exists at
least one associated prime ideal of A which is comaximal with J: Let
qi; 1W iW t be the associated prime ideals which are comaximal with J: Let mi

be a maximal ideal containing qi and J 0 � \mi:

Let bar denote reduction modulo J 0: Since J � J 0 � A;we have the following com-
mutative diagram of split short exact sequences:

0 ! K ! P !a J=J 0J � A=J 0 ! 0
# F# k

0 ! N ! P1 !b J=J 0J � A=J 0 ! 0

Let b 2 J be such that 1ÿ b 2 J 0 and p 2 P be such that a�p� � b: Let F�p� � q:
Then, from the above diagram, it follows that P � K � Ap and P1 � N � Aq:
Therefore, as K;N are free A=J 0-modules of rank nÿ 1 and F�K� � N, it is easy
to see that there exists y 2 HomA=J 0 �P;N� such that F� y : P! P1 is an
isomorphism.

Let Y 2 HomA�P;N� be a lift of y and C � F�Y: Then C : P! P1 is an
isomorphism. Moreover, as bC � a, by (2.2), C
 A=J : P 
 A=J ! P1 
 A=J is
also an isomorphism. Now, since no associated prime ideal of A is comaximal with
J \ J 0; it follows that C is injective. &

LEMMA 2.5. Let A be aNoetherian ring of dimension 2 and J � Aan ideal of height 2
such that J � � f ; g� � J2:Let L be a projective A-module of rank 1: Then, there exists
a projective A-module P of rank 2 having determinant isomorphic to L and a surjection
from P to J:

Proof. LetQ � L� A and S � 1� J: Then, sinceQS is a free AS-module of rank 2
and JS � � f ; g�, JS is a surjective image of QS: Hence, there exists an element b 2 S
such that Jb is a surjective image of Qb: Let a 2 J be such that b � 1� a and
a : Qb!! Jb a surjection.

Since a 2 J, Ja � Aa . Hence, there exists a surjection b : Qa�� La � Aa� !! Ja
such that b�0; 1� � 1:

Thus, we obtain two surjections aa; bb from Qab to Jab � Aab such that
ker�aa� !� Lab!� ker�bb�: Therefore, we get an automorphism D of Qab such that
det�D� � 1 and bbD � aa:

Now, patching Qa and Qb via D, we get a projective A-module P of rank 2 and a
surjection from P to J: Since det�D� � 1, it follows that det�P� !� L: &

LEMMA 2.6. Let A be a ring and P a projective A-module of rank n: Let a be any
element of P�: Let p0; p1; � � � ; pn be n� 1 elements of P:

Let oi 2 ^n�P� be de¢ned as follows: o0 � a�p0��p1 ^ p2 ^ � � � ^ pn� and
oi � a�pi��p0 ^ � � � ^ piÿ1 ^ pi�1 ^ � � � ^ pn�; 1W iW n: Then

Pn
i�0 �ÿ1�ioi � 0:
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Proof. Let e denote the element �1; 0� 2 A� P: The map x! e ^ x is an
isomorphism from ^n�P� to ^n�1�A� P�:

Let o denote the element
Pn

i�0 �ÿ1�ioi: Now consider the map g : P! A� P
de¢ned by g�p� � �a�p�; p�:We obtain an induced map^n�1g : ^n�1P! ^n�1�A� P�:

The image of the element p0 ^ � � � ^ pn of ^n�1�P� under ^n�1g is e ^ o: The lemma
now follows from the fact that ^n�1�P� is zero (P being of rank n). &

LEMMA 2.7. Let A be a Noetherian ring and P a projective A-module of rank n:
Suppose that we are given the following short exact sequence

0! P1! A� P !�b;ÿa� A! 0:

Let �a0; p0� 2 A� P be such that a0bÿ a�p0� � 1: Let qi � �ai; pi� 2 P1; 1W iW n:
Then,

(i) The map d : ^n�P1� ! ^n�P� given by d�q1 ^ � � � ^ qn� � a0�p1 ^ p2 ^ � � � ^ pn��Pn
i�1�ÿ1�iai�p0 ^ � � � ^ piÿ1 ^ pi�1 ^ � � � ^ pn� is an isomorphism.

(ii) d�bq1 ^ � � � ^ qn� � p1 ^ � � � ^ pn:

Proof. Let e � �1; 0�; f � �a0; p0�: Then A� P � Af � P1 and f ^ q1 ^ � � � ^ qn �
e ^ o in ^n�1�A� P�; where o � a0�p1 ^ p2 ^ � � � ^ pn� �

Pn
i�1�ÿ1�iai�p0 ^ � � � ^

piÿ1 ^ pi�1 ^ � � � ^ pn�: Therefore (i) follows.
Since qi � �ai; pi� 2 P1; we have bai � a�pi�:Moreover ba0 � 1� a�p0�: Therefore

(ii) follows from (2.6). &

The proof of the following Lemma follows easily from (2.6) and (2.7).

LEMMA 2.8. Let A be a Noetherian ring and P a projective A-module of rank n:
Suppose that we are given the following short exact sequence

0! P1! A� P !�b;ÿa� A! 0:

Then,

(i) The map b : P1! A given by b�q� � c; where q � �c; p�; has the property that
b�P1� � a�P�:

(ii) The map F : P! P1 given by F�p� � �a�p�; bp� has the property that bF � a and
d ^n �F� (where d is as in (2.7)) is scalar multiplication by bnÿ1:

The following Lemma is easy to prove and hence we omit the proof.

LEMMA 2.9. Let A be a Noetherian ring and P a ¢nitely generated projective
A-module. Let P�T � denote the projective A�T �-module P 
A A�T �: Let
a�T � : P�T � !! A�T � and b�T � : P�T � !! A�T � be two surjections such that
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a�0� � b�0�: Suppose further that the projective A�T �-modules ker a�T � and ker b�T �
are extended from A: Then there exists an automorphism s�T � of P�T � with
s�0� � id such that b�T �s�T � � a�T �:

The following Lemma follows from the well known Quillen Splitting Lemma ([Q],
Lemma 1) and its proof is essentially contained in ([Q], Theorem 1).

LEMMA 2.10. Let A be a Noetherian ring and P a ¢nitely generated projective
A-module. Let a; b 2 A be such that Aa� Ab � A: Let s�T � be an
Aab�T �-automorphism of Pab�T � such that s�0� � id. Then s�T � � t�T �ay�T �b; where
t�T � is an Ab�T �-automorphism of Pb�T � such that t�T � � id modulo the ideal
�aT � and y�T � is an Aa�T �-automorphism of Pa�T � such that y�T � � id modulo the
ideal �bT �:

LEMMA 2.11. Let A be a Noetherian ring and let J be a proper ideal of A: Let J1 � J
and J2 � J2 be two ideals of A such that J1 � J2 � J:Then J � J1 � �e� for some e 2 J2
and J1 � J \ J 0; where J2 � J 0 � A:

Proof. Since J=J1 is an idempotent ideal of a Noetherian ring A=J1 and J2 maps
surjectively onto J=J1; there exists an element e 2 J2 such that J1 � �e� � J and
e�1ÿ e� 2 J1: Therefore the result follows by taking J 0 � J1 � �1ÿ e�: &

We conclude this section by quoting a theorem of Eisenbud and Evans ([E-E]) as
stated in ([P], p. 1420) and deducing some consequences which will be used later.

THEOREM 2.12. Let A be aNoetherian ring andM be a ¢nitely generated A-module.
Let S be a subset of Spec A and d : S! N be a generalized dimension function.
Assume that mQ�M�X 1� d�Q� for all Q 2 S:Let �m; a� 2M � Abe basic at all prime
ideals Q 2 S: Then there exists an element m0 2M such that m� am0 is basic at all
primes Q 2 S:

As a consequence of (2.12), we have the following result.

COROLLARY 2.13. Let A be a Notherian ring and P be a projective A-module of
rank n. Let �a; a� 2 �P� � A�. Then there exists an element b 2 P� such that
ht�Ia�X n; where I � �a� ab��P�. In particular if the ideal �a�P�; a� has height
X n then ht I X n: Further, if �a�P�; a� is an ideal of height X n and I is a proper
ideal of A, then ht I � n:

Proof. Let S denote the subset of Spec A consisting of all prime ideals Q of A with
the property: a 62 Q and height of QW nÿ 1: Then by ([P], Example 1), there exists a
generalized dimension function d : S! N such that d�Q�W nÿ 1 for all Q 2 S: As
a 62 Q for all Q 2 S, the element �a; a� of P� � A is unimodular and hence basic
at every member of S: Therefore by (2.12), there exists an element b 2 P� such that
a� ab is basic and hence (as P� is projective) is unimodular at all prime idealsQ 2 S:
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Let I � �a� ab��P�. As a� ab is unimodular at all prime ideals Q 2 S, we have
IQ � AQ for every Q 2 S: Hence ht�Ia�X n: Since I is a surjective image of P, I
is locally generated by n elements and hence if I is a proper ideal, then ht I W n:
Therefore the rest of the conclusions follow. &

As an application of (2.11) and (2.13) we have

COROLLARY 2.14. Let A be a Noetherian ring of dimension nX 2 and let P be a
projective A-module of rank n: Let J � A be an ideal of height n and let
a : P=JP!! J=J2 be a surjection. Then there exists an ideal J 0 � A and a surjection
b : P!! J \ J 0 such that:

(i) J � J 0 � A.
(ii) b
 A=J � a.
(iii) height �J 0�X n
(iv) Further, given ¢nitely many ideals J1; J2; � � � ; Jr of height X 1; J 0 can be chosen with

the additional property that J 0 is comaximal with J1; J2; � � � ; Jr:

Proof. Let K � J2 \ J1 � � � \ Jr Then, by the assumption, ht KX 1: Therefore
there exists an element a 2 K such that ht AaX 1 and hence dim A=AaW nÿ 1:

CLAIM: The surjection a can be lifted to a surjection from P=aP to J=Aa:
Proof of the claim. First note that a 2 J2 and hence �J=Aa�2 � J2=Aa: Let d be a lift

of a in HomA=Aa�P=aP; J=Aa�: Then d�P=aP� � J2=Aa � J=Aa and hence, by (2.11),
there exists c0 2 J2=Aa such that d�P=aP� � �c0� � J=Aa: Now applying (2.13) to
the element �d; c0� of �P=aP�� � A=Aa, we see that there exists g 2 �P=aP�� such that
height of the ideal Nc0 X n, where N � �d� c0g��P=aP�: Since dimA=AaW nÿ 1; this
implies that c0r 2 N for some positive integer r: Therefore, as N � �c0� � J=Aa
and c0 2 �J=Aa�2; we have N � J=Aa: Thus, as d� c0g is also a lift of a; the claim
is proved.

Let y 2 HomA�P; J� be a lift of d� c0g: Then, as J=Aa � �d� c0g��P=aP�; we have
y�P� � Aa � J: Again applying (2.13) to the element �y; a� of P� � A; we see that
there exists c 2 P� such that ht J1 � n where J1 � �y� ac��P�:

Since J1 � Aa � J and a 2 J2; by (2.11), J1 � J \ J 0 and Aa� J 0 � A: Now,
setting b � y� ac; the proof of the corollary is complete. &

3. Addition and Subtraction Principles

LEMMA 3.0. Let A be a Noetherian ring of dimension n and P a projective A-module
of rank n:Let l : P!! J0 and m : P!! J1 be surjections, where J0; J1 � A are ideals
of height n: Then, there exists an ideal I of A�T � of height n and a surjection
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a�T � : P�T � !! I such that I�0� � J0; a�0� � l and I�1� � J1; a�1� � m, where for
a 2 A, I�a� � fF �a� : F �T � 2 Ig:

Proof. Let l�T � � l
 A�T � and m�T � � m
 A�T �: Let a�T � � Tm�T ��
�1ÿ T �l�T �: Then a�0� � l; a�1� � m: Further a�T ��P�T �� � �T �1ÿ T �� �
�J0A�T �;T � \ �J1A�T �;T ÿ 1�: Therefore replacing a�T � by a�T � � T �1ÿ T �b�T �
for a suitable b�T � 2 P�T ��; we may assume, by (2.13), that a�P�T �� � I has height
n: This proves the lemma. &

PROPOSITION 3.1. Let A be a Noetherian ring of dimension nX 2 such that �nÿ 1�!
is invertible in A:Let P and L be projective A-modules of rank n and 1 respectively such
that the determinant of P is isomorphic to L: Let P0 � L� Anÿ1 and let
w : ^n�P0� !� ^n�P� be an isomorphism. Suppose that a�T � : P�T � !! I is a surjection,
where I � A�T � is an ideal of height n:Then, there exists a homomorphismf : P0 ! P;
an ideal K � A of height X n which is comaximal with I \ A and a surjection
r�T � : P0�T � !! I \ KA�T � such that:

(i) ^n�f� � uw where u � 1 modulo I \ A:
(ii) �a�0�f��P0� � I�0� \ K :
(iii) a�T �:f�T � 
 A�T �=I � r�T � 
 A�T �=I :
(iv) r�0� 
 A=K � r�1� 
 A=K :

Proof. We ¢rst show the existence of f satisfying (i) and (ii).
Let N � �I \ A�2: Since height �I� � n; height I \ AX nÿ 1 and hence

dim A=NW 1: Now since P;P0 have determinant L; there exists an isomorphism
P0=NP0 !� P=NP: Now, using the fact that P0=NP0 has a unimodular element, we
can alter the given isomorphism by an automorphism of P0=NP0 to obtain an
isomorphism d such that ^n�d� � w where bar denotes reduction modulo N: Let
d be a lift of d: Note that d1�N : P01�N ! P1�N is an isomorphism.

Let J � I�0�; where I�0� � fF �0�jF �T � 2 Ig and b � a�0� : P!! J: The equality
d�P0� �NP � P; shows that �bd��P0� �NJ � J: SinceNJ � J2 , by (2.11) there exists
c 2 NJ such that �bd��P0� � �c� � J: Therefore, applying (2.13) to �bd; c�, we see that
there exists g 2 P0� such that the ideal �bd� cg��P0� has height n: Since
�bd� cg��P0� � �c� � J and c 2 J2; by (2.11), �bd� cg��P0� � J \ K;where K is either
� A or an ideal of height n which is comaximal with �c�; hence with N and J:

Since c 2 NJ; c �P aidi; where ai 2 N and di 2 J: Any element of P0� of the form
dg (where d 2 J) has its image contained in J: Now, as P0 is projective, di 2 J and
b�P� � J, it follows that there exists ni : P0 ! P such that bni � dig: Let
n �P aini. Then, cg � bn where n � 0 modulo N: Let f � �d� n�: Then f is also
a lift of d and hence ^nf � uw, where u � 1 modulo N. Moreover f has the property
that bf�P0� � J \ K : This proves (i) and (ii).

Since K �N � A; we have I � KA�T � � A�T �: Let I 0 � I \ KA�T �: Then
I 0�0� � J \ K and I 0=I 02 � I=I2 � KA�T �=K2A�T �:
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Let B � A1�N : Note that f1�N : P0 
 B! P 
 B is an isomorphism and
I 01�N � I1�N : Therefore, the map �a�T �f�T ��1�N : P0�T � 
A�T � B�T � ! I 01�N is
surjective. We choose a 2 N such that 1� a 2 K and �a�T �f�T ��1�a�P01�a�T �� �
I 01�a: Since a 2 N � I , I 0a � KAa�T �: Therefore, we get a surjection
�bf� 
 Aa�T � : P0a�T � !! I 0a: The elements b�T �f�T �a�1�aA� and a�T �f�T �a�1�aA�
are unimodular elements of P0a�1�aA��T �� and as a�0� � b, they are equal modulo
�T �. Since dim Aa�1�aA� � nÿ 1; rank P0 � n and �nÿ 1�! is invertible in A; by ([Ra],
Corollary 2.5), the kernels of the surjections b�T �f�T �a�1�aA� and a�T �f�T �a�1�aA�
are locally free projective modules and hence by Quillen's local global principle ([Q],
Theorem 1) these kernels are projective modules which are extended from Aa�1�aA�:
Hence, by (2.9), there exists an automorphism s�T � of P0a�1�aA��T � such that
s�0� � id and �a�T �f�T ��a�1�aA�s�T � � �bf� 
 Aa�1�aA��T �: Therefore, there exists
an element b 2 A of the form 1� ca such that b is a multiple of 1� a and s�T �
is an automorphism of P0ab�T � with s�0� � id: Hence, by (2.10), we see that
s�T � � t�T �a:y�T �b; where t�T � is an Ab�T �-automorphism of P0b�T � such that
t�T � � id modulo the ideal �aT � and y�T � is an Aa�T �-automorphism of P0a�T � such
that y�T � � id modulo the ideal �bT �:

The surjections �a�T �f�T ��b:t�T � : �P0b�T �� !! I 0b and �bf� 
 Aa�T �:�y�T ��ÿ1 :

P0a�T � !! I 0a patch to yield a surjection r�T � : P0�T � !! I 0:
Since y�T � � id modulo the ideal �bT �; it follows from the construction of r�T �

that r�0� 
 A=K � r�1� 
 A=K : Further, using the fact that t�T � � id modulo
the ideal �aT �; we see that a�T �:f�T � 
 A�T �=I � r�T � 
 A�T �=I :

This proves (iii) and (iv) and hence the proposition. &

THEOREM 3.2. (Addition Principle) Let A be a Noetherian ring of dimension nX 2:
Let J1 and J2 be two comaximal ideals of height n and J3 � J1 \ J2: Let Q be a pro-
jective A-module of rank nÿ 1 and P � Q� A: Let y1 : P!! J1 and
y2 : P!! J2 be surjections. Then, there exists a surjection y : P!! J3 such that:
y
 A=J1 � y1 
 A=J1 and y
 A=J2 � y2 
 A=J2:

Proof. We regard yi as elements of P� � Q� � A and write yi � �bi; ai�; i � 1; 2:
Let bar denote reduction modulo J2: Since dimA=J2 � 0; the projective moduleQ�

has a unimodular element, say b0: Moreover the unimodular element �b1; a1� of
Q� � A can be taken to �b0; 0� by an elementary automorphism s0 of Q� � A: By
([B-R],Proposition 4.1), s0 can be lifted to an automorphism s of Q� � A which
has determinant 1: Hence, we may replace �b1; a1� by s�b1; a1� and assume that
a1 2 J2 and b1�Q� is comaximal with J2: Now, since y1�P� has height n; by (2.13),
there exists a1 2 Q� such that �b1 � a1a1��Q� has height nÿ 1: Note that, since
a1 2 J2 and b1�Q� is comaximal with J2, �b1 � a1a1��Q� � J2 � A: Since height
��b1 � a1a1��Q�� � nÿ 1; it follows that dim A=�b1 � a1a1��Q�W 1: Since the element
�b1; a1� can be taken to �b1 � a1a1; a1� by a transvection of Q� � A; we can replace
�b1; a1� by �b1 � a1a1; a1� and assume that (1) b1�Q� � J2 � A and (2)
dim A=b1�Q�W 1:
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Let K � b1�Q� and let S � 1� K : Then, since K � J2 � A; �b2; a2� is a unimodular
element of Q�S � AS: Moreover, since KS is in the Jacobson radical of AS and
dim A=K W 1; �b2; a2� can be taken to the element �0; 1� by an automorphism of
Q�S � AS of determinant 1: In fact if nX 3; then by ([Ba 1], Section 3, p. 178), this
automorphism can be chosen to be a product of transvections. Therefore, there exists
s 2 S and an automorphism G of Q�s � As of determinant 1 such that
G�b2; a2� � �0; 1�: Since S \ J2 6� ;; without loss of generality we may assume that
s 2 J2: Therefore �J3�s � �J1�s: Hence, we can regard �b1; a1�s as a surjection from
Qs � As�� Ps� to �J3�s:

Let s � 1� t; t 2 K : Then �J3�t � �J2�t: Hence, we can regard �b2; a2�t as a
surjection from Qt � At�� Pt� to �J3�t: Note that, as t 2 K � b1�Q�; b1 becomes a
unimodular element of Q�t and hence �b1; a1� can be taken to the element �0; 1�
by an automorphism D of Q�t � At which is a product of transvections.

Thus, we obtain two surjections

�bi; ai�st : Qst � Ast!! �J3�st � Ast; i � 1; 2:

Note that as elements of Q�st � Ast we have FGt
ÿ1�b1; a1� � �b2; a2�; where

F � �Gÿ1�tDsGt: Now since Ds is a product of transvections, so also is F: Hence
F is isotopic to the identity automorphism of Q�st � Ast: Hence, by ([Q]),
F � �F2�s�F1�t; where F2 is an automorphism of Q�t � At of determinant 1 and
F1 is an automorphism of Q�s � As of determinant 1:

LetF1Gÿ1�b1; a1� � c1 andF2
ÿ1�b2; a2� � c2:Then c1 and c2 are surjections from

Qs � As�� Ps� to �J3�s and Qt � At�� Pt� to �J3�t respectively, which patch up to give
a surjection c fromQ� A�� P� to J3: By construction, c
 A=Ji and yi 
 A=Ji differ
by an element of SL�P=JiP�; i � 1; 2: As SL�P=JiP� � E�P=JiP�, using
([B-R],Proposition 4.1), we alter c by an element of SL�P� to obtain a surjection
y : P!! J3 such that: y
 A=J1 � y1 
 A=J1 and y
 A=J2 � y2 
 A=J2: &

THEOREM 3.3. (Subtraction Principle) Let A be a Noetherian ring with
dim A � nX 2: Let P and Q be projective A-modules of rank n and nÿ 1, respectively
such that ^n�P� !� ^nÿ1�Q�: Let w : ^n�P� !� ^n�Q� A� be an isomorphism. Let
J � A be an ideal of height X n and J 0 be an ideal of height n which is comaximal
with J: Let a : P!! J \ J 0 and b : Q� A!! J 0 be surjections. Let bar denote
reduction modulo J 0 and a : P!! J 0=J 02; b : Q� A!! J 0=J 02 be surjections induced
from a and b respectively. Suppose that there exists an isomorphism d : P!� Q� A
such that (i) bd � a; (ii) ^n�d� � w: Then, there exists a surjection y : P!! J such
that y
 A=J � a
 A=J:

Proof.We note that to prove the result, we can always replace b by bswhere s is an
automorphism of Q� A of determinant 1:

Let n be the restriction of b to Q: Let b�0; 1� � a: Then, as an element of Q� � A;
�n; a� is unimodular modulo J2: Let tilde denote reduction modulo J2: Since
dim A=J2 � 0; the projective module fQ� has a unimodular element say n0:Moreover
the unimodular element �en;ea� of fQ� �eA can be taken to �n0; 0� by an elementary
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automorphism es of fQ� �eA: By ([B-R],Proposition 4.1), es can be lifted to an
automorphism s� of Q� � A which has determinant 1: The element s� induces
an automorphism s of Q� A of determinant 1: Hence, we may replace b by bs;
and assume that b � �n; a� has the property that a 2 J2 and n�Q� is comaximal with
J2: Now, by (2.13), there exists t 2 Q� such that the ideal �n� at��Q� has height
nÿ 1: Note that, since a 2 J2 and n�Q� is comaximal with J2,
�n� at��Q� � J2 � A: As the element �n; a� can be taken to �n� at; a� by a trans-
vection of Q� � A; (which has determinant 1), we can as before assume by altering
b that

(1) n�Q� � J2 � A.
(2) ht �n�Q�� � nÿ 1.

Further, using (1), we may replace a by n�q� � a for a suitable q 2 Q and assume
that a � 1 modulo J2. Note that by (2), dim A=�n�Q��W 1:

We set

R � A�Y �;K1 � �n�Q�A�Y �;Y � a�;K2 � JA�Y �;K3 � K1 \ K2:

We note that K1�0� � J 0;K3�0� � J \ J 0:
We claim that there exists a surjection

Z�Y � : P�Y � !! K3

such that Z�0� � a:
We ¢rst show that the theorem follows from the claim. Specialising Z atY � 1ÿ a,

we obtain a surjection

y : P!! J:

Since a � 1 modulo J2, we have

y
 A=J � Z�1ÿ a� 
 A=J � Z�0� 
 A=J � a
 A=J:

Hence the theorem follows.
We ¢rst prove the claim when nX 3:
Note that A�Y �=K1!� A=�n�Q��: Therefore dim A�Y �=K1 W 1: Since the projective

modules P and Q� A have the same determinant, it follows that there exists an
isomorphism k�Y � : P�Y �=K1P�Y � !� Q�Y �=K1Q�Y � � A�Y �=K1: We choose k�Y �
such that ^nk�Y � � w
 A�Y �=K1: We can choose an isomorphism with the above
property, by choosing any isomorphism and altering it by a suitable automorphism
of Q�Y �=K1Q�Y � � A�Y �=K1: Since ^n�d� � w
 A=J 0, it follows that k�0� and d differ
by an element of SL�Q=J 0Q� A=J 0�: Therefore, by ([B-R], Proposition 4.1), we may
alter k�Y � by an element of SL�Q�Y �=K1Q�Y � � A�Y �=K1� and assume that
k�0� � d: We have a surjection �n
 A�Y �;Y � a� : Q�Y � � A�Y � !! K1: Tensoring
this surjection with A�Y �=K1 we obtain a surjection e�Y � : Q�Y �=K1Q�Y ��
A�Y �=K1 !! K1=K2

1 : Thus, we obtain a surjection p�Y � � e�Y �k�Y � :
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P�Y �=K1P�Y � !! K1=K2
1 : Since bd � a; e�0� � b and k�0� � d; we have

p�0� � a
 A=J 0: Therefore, by ([B-RS 1], Prop 3.7, [M-RS], Theorem 2.3), we obtain

Z�Y � : P�Y � !! K3

such that Z�0� � a:
Now we consider the case when n � 2:
With the notation as above, we show that there is a surjection Z�Y � : P�Y � !! K3

Z�0� � a:
Let N � n�Q�: Let S � 1�N: We claim that there exists a surjection
W�Y � : P1�N �Y � !! �K3�1�N such that W�0� � a1�N :
Note that since N � J � A; �K3�1�N � �K1�1�N : We have seen above that

dim A=NW 1; where N � n�Q�: It follows that P1�N !� Q1�N � A1�N : We choose
an isomorphism x : P1�N !� Q1�N � A1�N such that ^n�x� � w
 A1�N : This induces
an isomorphism x�Y � : P1�N �Y � !� Q1�N �Y � � A1�N �Y �: We have a surjection
p�Y � � �n
 A1�N �Y �;Y � a� : Q1�N �Y � � A1�N �Y � !! �K3�1�N : Composing with
x�Y �; we obtain a surjection

W�Y � � p�Y �x�Y � : P1�N �Y � !! �K3�1�N � �K1�1�N :
Since K3�0� � J \ J 0 and J �N � A; we have surjections

W�0� : P1�N !! �J 0�1�N and a1�N : P1�N !! �J 0�1�N :
Since J 01�N=J 021�N � J 0=J 02 and W�0� � b1�Nx; the above surjections give rise to

surjections

bx � W�0� : P=J 0P!� Q=J 0Q� A=J 0 !! J 0=J 02:

and

bd � a : P=J 0P!� Q=J 0Q� A=J 0 !! J 0=J 02:

Since ^n�d� � w
 A=J 0 and ^n�x� � w
 A1�N ; it follows that W�0� 
 A=J 0 and
a1�N 
 A=J 0 differ by an element of SL�P=J 0P�: Since P1�N !� Q1�N � A1�N ; by
(2.3), W�0� and a1�N differ by an automorphism of P1�N of determinant 1: Since
Aut P1�N � Aut P1�N �Y �; we may alter W�Y � by an automorphism of P1�N and
assume that W�0� � a1�N : Since N � J � A, we can choose an element s 2 J of
the type 1� t; t 2 N such that there is a surjection W�Y � : Ps�Y � !! �K3�s and
W�0� � as:

We claim that W�Y � and a
 At�Y � can be modi¢ed suitably to yield a surjection

Z�Y � : P�Y � !! K3

such that Z�0� � a:
As s � 1� t 2 J and t 2 N, we have �K3�st � Ast�Y �: Therefore �W�Y ��t and

a
 Ast�Y � are surjections from Pst�Y � to Ast�Y �. Hence, as rank P � 2; the kernels
of W�Y �t and a
 Ast�Y � are isomorphic to the extended projective Ast�Y �-module
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^2�Pst��Y �: Hence, as W�0� � as; by (2.9), there exists an automorphism C�Y � of
Pst�Y � such that C�0� � id and W�Y �tC�Y � � a
 Ast�Y �:

Therefore, by (2.10), we see that C�Y � � Y�Y �t:F�Y �s; where F�Y � is an
At�Y �-automorphism of Pt�Y � such that F�Y � � id modulo Y and Y�Y � is an
As�Y �-automorphism of Ps�Y � such that Y�Y � � id modulo Y .

The surjections W�Y �Y�Y � and a
 At�Y �:F�Y �ÿ1 patch to yield a surjection

Z�Y � : P�Y � !! K3

such that Z�0� � a: Thus the claim is proved and hence the proof of the theorem is
complete. &

Taking J � A in the above theorem we obtain the following

COROLLARY 3.4. Let A be a Noetherian ring with dim A � nX 2: Let P and Q be
projective A-modules of rank n and nÿ 1 respectively such that ^n�P� !� ^nÿ1�Q�:
Let w : ^n�P� !� ^n�Q� A� be an isomorphism. Let J 0 � A be an ideal of height
n: Let a : P!! J 0 and b : Q� A!! J 0 be two surjections. Let bar denote reduction
modulo J 0 and a : P!! J 0=J 02; b : Q� A!! J 0=J 02 be surjections induced from a
and b respectively. Suppose that there exists an isomorphism d : P!� Q� A; such
that (i) bd � a; (ii) ^n�d� � w: Then P has a unimodular element.

4. The Euler Class Group of a Noetherian Ring

For the rest of this paper, we assume that all rings considered contain the ¢eld Q of
rational numbers. We make this assumption as we need to apply (3.1) to show that
the `Euler class' of a projective module is well de¢ned.

Let A be a Noetherian ring with dim A � nX 2: Let L be a rank 1 projective
A-module. We de¢ne the Euler Class group of A with respect to L (denoted by
E�A;L�) as follows:

Let J � A be an ideal of height n such that J=J2 is generated by n elements. Let a
and b be two surjections from L=JL� �A=J�nÿ1 to J=J2: We say that a and b
are related if there exists an automorphism s of L=JL� �A=J�nÿ1 of determinant
1 such that as � b: It is easily seen that this is an equivalence relation on the
set of surjections from L=JL� �A=J�nÿ1 to J=J2: Let �a� denote the equivalence class
of a. We call such an equivalence class �a� a local L-orientation of J.

Note that since dim A=J � 0; SLA=J�L=JL� �A=J�nÿ1� � EA=J �L=JL� �A=J�nÿ1�
and therefore, by ([B-R], Proposition 4.1), the canonical map from SLA�L� Anÿ1�
to SLA=J �L=JL� �A=J�nÿ1� is surjective. Hence if a surjection a from L=JL�
�A=J�nÿ1 to J=J2 can be lifted to a surjection y : L� Anÿ1!! J then so can any
b equivalent to a:

A local L-orientation �a� of J is called a global L-orientation of J if the surjection
a : L=JL� �A=J�nÿ1!! J=J2 can be lifted to a surjection y : L� Anÿ1!! J:
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Hence we shall also, from now on, identify a surjection awith the equivalence class
�a� to which a belongs.

LetM� A be a maximal ideal of height n andN be anM-primary ideal such that
N =N 2 is generated by n elements. Let oN be a local L-orientation ofN : Let G be the
free Abelian group on the set of pairs �N ;oN �;whereN is aM primary ideal andoN
is a local L-orientation of N :

Let J � \N i be the intersection of ¢nitely many ideals N i; where N i is
Mi-primary (Mi � A are distinct maximal ideals of height n). Assume that J=J2

is generated by n elements. Let oJ be a local L-orientation of J: Then, oJ gives
rise, in a natural way, to a local L-orientation oN i of N i: We associate to the pair
�J;oJ�, the element

P�N i;oN i
� of G. By abuse of notation, we denote the elementP�N i;oN i � by �J;oJ�:

LetH be the subgroup of G generated by set of pairs �J;oJ �, where J is an ideal of
height n and oJ is a global L-orientation of J:

We de¢ne E�A;L� � G=H: Thus E�A;L� can be thought of as the quotient of the
group of local L-orientations by the subgroup generated by global L-orientations.
If L � A; we denote the group E�A;L� by E�A�:

Now we discuss (3.1) in the context of the Euler class group E�A;L�: Let I � A�T �
be an ideal of height n which is a surjective image of a projective A�T �-module P�T �;
where P is a projective A-module of rank n having determinant L: Further assume
that I�0� and I�1� are ideals of height n: Now using the surjection from P�T � to
I and f we get a `local L�T �-orientation' o�T � of I ; which in its turn gives rise
to local L-orientations o�0� and o�1� of I�0� and I�1� respectively. The gist of (3.1)
is that there exists an ideal K � A of height n and a local orientation oK of K such
that

�I�0�;o�0�� � �K;oK � � 0 � �I�1�;o�1�� � �K;oK �
in E�A;L�: Therefore �I�0�;o�0�� � �I�1�;o�1�� in E�A;L�:

Let P be a projective A-module of rank n with determinant L. Let w be an
isomorphism from ^n�L� Anÿ1� to ^n�P�: We call w an L-orientation of P. To
the pair �P; w�; we associate an element e�P; w� of E�A;L� as follows:

Let l : P!! J0 be a surjection, where J0 � A is an ideal of height n:Let bar denote
reduction modulo J0: We obtain an induced surjection l : P=J0P!! J0=J02: We
choose an isomorphism g : L=J0L� �A=J0�nÿ1!� P=J0P; such that ^n�g� � w: Let
oJ0 be the local L-orientation of J0 given by lg : L=J0L� �A=J0�nÿ1!! J0=J02:
Let e�P; w� be the image in E�A;L� of the element �J0;oJ0 � of G: (We say that
�J0;oJ0 � is obtained from the pair �l; w��: We show that the assignment sending
the pair �P; w� to the element e�P; w� of E�A;L� is well de¢ned.

Let m : P!! J1 be another surjection, where J1 � A is an ideal of height n: Then,
by (3.0), there exists a surjection a�T � : P�T � !! I (where I � A�T � is an ideal of
height n) with a�0� � l and a�1� � m: It now follows from the above discussion, that
e�P; w� is a well de¢ned element of E�A;L�:

We de¢ne the Euler Class of �P; w� to be e�P; w�:
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Remark 4.0. If the ringA is Cohen^Macaulay and J is an ideal of height n such that
J=J2 is generated by n elements, then J=J2 is a freeA=J-module of rank n and hence a
local L-orientation oJ of J gives rise to a unique isomorphism L=JL!� ^n�J=J2�:
Conversely, an isomorphism L=JL!� ^n�J=J2� gives rise to a local L-orientation
of J:

PROPOSITION 4.1. Let A be a Noetherian ring with dim A � nX 2: Let
J; J1; J2 � A be ideals of height n such that J is comaximal with J1 and J2: Assume
further that there exist surjections

a : L� Anÿ1!! J \ J1; b : L� Anÿ1!! J \ J2
with a
 A=J � b
 A=J: Suppose that there exists an ideal J3 of height n such that:
(i) J3 is comaximal with J; J1 and J2; and (ii) there exists a surjection
g : L� Anÿ1!! J3 \ J1 with a
 A=J1 � g
 A=J1: Then, there exists a surjection
d : L� Anÿ1!! J3 \ J2 with d
 A=J3 � g
 A=J3 and d
 A=J2 � b
 A=J2:

Proof. By (2.14), there exists an ideal J4 of height X n such that J4 is comaximal
with J; J1; J2; J3; and Z : L� Anÿ1!! J \ J4 with a
 A=J � Z
 A=J: Thus, we
have the following equations:

a
 A=J � b
 A=J �1�
a
 A=J1 � g
 A=J1 �2�
a
 A=J � Z
 A=J �3�

Now, applying (3.2) with Q � L� Anÿ2; we obtain a surjection
m : L� Anÿ1!! �J3 \ J1� \ �J \ J4� such that

m
 A=J3 \ J1 � g
 A=J3 \ J1 �4�
m
 A=J \ J4 � Z
 A=J \ J4 �5�

Therefore, using equations (3,5) and (2,4), we see that m
 A=J \ J1 � a
 A=J \ J1:
Since there exists a surjection m : L� Anÿ1 !! �J3 \ J1� \ �J \ J4� � �J \ J1�\
�J3 \ J4�; applying (3.3) (with Q � L� Anÿ2 and P � L� Anÿ1�; we see that there
exists a surjection n : L� Anÿ1!! J3 \ J4 such that:

m
 A=J3 \ J4 � n
 A=J3 \ J4 �6�
Now, by (3.2), there exists a surjection l : L� Anÿ1!! �J \ J2� \ �J3 \ J4� such
that:

l
 A=J \ J2 � b
 A=J \ J2 �7�
l
 A=J3 \ J4 � n
 A=J3 \ J4 �8�

Therefore, using equations (1,3,7) and (5,6,8), we see that l
 A=J \ J4 �
Z
 A=J \ J4: Since there exist surjections l : L� Anÿ1!! �J \ J4� \ �J3 \ J2�
and Z : L� Anÿ1!! J \ J4; applying (3.3), we get a surjection d : L� Anÿ1 !!
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J3 \ J2 such that d
 A=J3 \ J2 � l
 A=J3 \ J2: Now applying (4,6,8) and (7), the
proposition follows. &

THEOREM 4.2. Let A be a Noetherian ring of dimension nX 2: Let L be a rank 1
projective A-module. Let J � A be an ideal of height n such that J=J2 is generated
by n elements, and let oJ : L=JL� �A=J�nÿ1!! J=J2 be a local L-orientation of
J: Suppose that the image of �J;oJ� is zero in the Euler Class group E�A;L� of
A: Then, oJ is a global L-orientation of J:

Proof. Since �J;oJ � is zero in E�A;L�; there exists a family of (not necessarily
distinct) pairs f�Jt;ot�j1W tW r� sg such that (1) Jt are ideals of height n (2) there
exist surjections at : L� Anÿ1!! Jt such that ot � at 
 A=Jt and (3) the following
equality

�J;oJ� �
Xr�s
l�r�1
�Jl;ol� �

Xr
t�1
�Jt;ot� ���

holds in the free Abelian group G:
We ¢rst consider the case when J1; J2; � � � ; Jr are pairwise comaximal. In this case

J; Jr�1; � � � ; Jr�s are also pairwise comaximal. Let J 00 � \rt�1Jt and J 0 � \r�sl�r�1Jl :
From the equality ��� in the group G and the addition principle (3.2), we have:

(i) J \ J 0 � J 00:
(ii) There exists a surjection a0 : L� Anÿ1!! J 0 such that if oJ 0 � a0 
 A=J 0 then
�J 0;oJ 0 � �

Pr�s
l�r�1�Jl;ol� in G.

(iii) There exists a surjection a00 : L� Anÿ1!! J 00 such that if oJ 00 � a00 
 A=J 00 then
�J 00;oJ 00 � �

Pr
t�1�Jt;ot� in G.

Thus, we may assume by ��� that a00 
 A=J 0 � a0 
 A=J 0: Therefore, applying (3.3),
we obtain a surjection a : L� Anÿ1!! J; such that a
 A=J � a00 
 A=J: It is easy
to see that oJ � a
 A=J: Therefore, the theorem is proved in this case.

We now consider the case when J1; J2; � � � ; Jr are not pairwise comaximal. Given
an equality of the type ���, we associate a non-negative integer n��� in the following
manner: For a maximal ideal M of A, we associate a number n�M� as follows:
n�M� � 1 is the cardinality of the set ftjM 2 V �Jt�; 1W tW rg: Let
n��� �P n�M�; where the summation is over all those maximal idealsM of A such
that n�M�X 0: We note that n��� � 0 if and only if J1; J2; � � � ; Jr are pairwise co-
maximal.

We now consider the case when J1; J2; � � � ; Jr are not pairwise comaximal (i.e. n���
is positive). LetM be a maximal ideal such that n�M� is positive. This implies that
there exists an M-primary ideal N ; a surjection oN : L=NL� A=N nÿ1!!
N =N 2 and integers l; t such that

(i) r� 1W lW r� s; 1W tW r.
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(ii) N is a primary component of Jl and Jt:
(iii) The surjections al : L� Anÿ1!! Jl; at : L� Anÿ1!! Jt have the property that

al 
 A=N � oN and at 
 A=N � oN :

We can assume, without loss of generality, that l � r� 1 and t � 1: Let
N \ K1 � J1;N \ K2 � Jr�1 where N � K1 � A � N � K2:

By (2.14), we can ¢nd an ideal K3 of height X n, such that:

(1) K3 is comaximal with J; Jj; 1W jW r� s:
(2) There exists a surjection b1 : L� Anÿ1!! K3 \ K1

(3) a1 
 A=K1 � b1 
 A=K1

Therefore, applying (4.1), we see that there exists a surjection
br�1 : L� Anÿ1!! K3 \ K2 such that ar�1 
 A=K2 � br�1 
 A=K2; and
b1 
 A=K3 � br�1 
 A=K3: Hence, the following equality

�J;oJ� � �gJr�1;ofJr�1 � � Xr�s
l�r�2
�Jl;ol� � �eJ1;oeJ1 � �Xr

t�2
�Jt;ot� ����

holds in the free Abelian group G; where gJr�1 � K3 \ K2;ofJr�1 � br�1 
 A=K3 \ K2

and eJ1 � K3 \ K1;oeJ1 � b1 
 A=K3 \ K1: It is easy to see that n����W �n��� ÿ 1�:
Therefore, by induction, the proof is complete. &

COROLLARY 4.3. Let A be a Noetherian ring of dimension nX 2: Let P be a pro-
jective A-module of rank n with determinant L and w be an L-orientation of P:
Let J � A be an ideal of height n such that J=J2 is generated by n elements. Let
oJ be be a local L-orientation of J: Suppose that e�P; w� � �J;oJ� in E�A;L�: Then,
there exists a surjection a : P!! J such that �J;oJ � is obtained from �a; w�:

Proof.We can regard oJ as a surjection L=JL� �A=J�nÿ1!! J=J2:We choose an
isomorphism l : P=JP!� L=JL� �A=J�nÿ1 such that ^n�l� � w (where bar denotes
reduction modulo J). We consider the surjection a � oJl : P=JP!! J=J2: By
(2.14), there exists an ideal J 0 � A and a surjection b : P!! J \ J 0 such that:

(i) J � J 0 � A.
(ii) b
 A=J � a.
(iii) height �J 0�X n.

If J 0 � A; the surjection b satis¢es the required property. Otherwise, we have
e�P; w� � �J;oJ� � �J 0;oJ 0 � in E�A;L�: Hence, by the assumption of the theorem,
�J 0;oJ 0 � � 0 in E�A;L�: Therefore, by (4.2), there exists a surjection
g : L� Anÿ1!! J 0 such that oJ 0 � g
 A=J 0: Now applying (3.3), with
Q � L� Anÿ2; we get a surjection a : P!! J such that �J;oJ� is obtained from
the pair �a; w�: &
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COROLLARY 4.4. Let A be a Noetherian ring of dimension nX 2: Let P be a pro-
jective A-module of rank n with determinant L and w be an L-orientation of P: Then
e�P; w� � 0 if and only if P has a unimodular element. In particular if the determinant
of P is trivial and P has a unimodular element then P maps onto any ideal of height
n generated by n elements.

Proof. Let a : P!! J 0 be a surjection where J 0 is an ideal of height n: Let
e�P; w� � �J 0;oJ 0 � in E�A;L�; where �J 0;oJ 0 � is obtained from the pair �a; w�:

First assume that e�P; w� � 0: Then, by (4.2), there exists a surjection
b : L� Anÿ1!! J 0 such that and oJ 0 � b
 A=J 0:

Now applying (3.4) with Q � L� Anÿ2; we see that P has a unimodular element.
Now we assume that P � Q� A:Then a � �y; a� as an element of P� � Q� � A:By

performing an elementary automorphism of P;we may assume by (2.13), that height
�y�Q�� � nÿ 1: Let K � y�Q�:

Note that the since determinant ofQ is isomorphic to L; without loss of generality
we may assume that w is induced by an isomorphism w0 : ^nÿ1�L� Anÿ2� !� ^nÿ1�Q�:

Let Q1 � L� Anÿ2: Then, since dim A=KW 1; there exists an isomorphism
g0 : Q1=KQ1!� Q=KQ such that ^nÿ1g0 � w0 modulo K : The surjection
�y
 A=K�g0 : Q1=KQ1!! K=K2 can be lifted to a map d : Q1! K such that
d�Q1� � K2 � K : Let d�Q1� � K 0: Then, since K 0 � K2 � K , by (2.11) we have
K 0 � �e� � K with e 2 K2 and e2 ÿ e 2 K 0: Therefore, by ([MK 1], Lemma 1),
J 0 � K 0 � �b�; where b � e� �1ÿ e�a:

Now consider the surjection �d; b� : L� Anÿ1!! J 0: As e 2 K2, it is easy to see
that oJ 0 is obtained by tensoring the surjection �d; b� with A=J 0:Hence, by de¢nition,
e�P; w� � 0 in E�A;L�.

The last assertion of the corollary follows from (4.3). &

Remark 4.5. Let A and P be as in (4.4). Further assume that P � Q� A: One can
also show that e�P; w� � 0 in the following manner. We only give an indication
and leave the details to the reader. Let b : Q� A!! J be any surjection, where
J has height n and g : Q� A!! A be the projection map. As in (3.0), we can obtain
a surjection a�T � : P�T � !! I with a�0� � b and a�1� � g; where I � A�T � is an ideal
of height n:Now using (3.1), and the discussion in Section 4 preceding the de¢nition
of e�P; w�; it is easy to show that e�P; w� � 0: We have however preferred the
approach of (4.4) as it is more elementary.

Let A be a Noetherian ring of dimension nX 2 and L a projective A-module of
rank 1: Let N denote the nil radical of A and let A � A=N;L � L=NL: Let
J � A be an ideal of height n with primary decomposition J � \N i: Then,
J � �J �N�=N � A is an ideal of height n with primary decomposition J � \N i:

Moreover, any surjection oJ : L=JL� �A=J�nÿ1!! J=J2 induces a surjection oJ
from L=JL� �A=J�nÿ1 to J �N=J2 �N: From this discussion, it follows that the
assignment sending �J;oJ� to �J;oJ � gives rise to a group homomorphism
F : E�A;L� ! E�A;L�.

As a consequence of (4.2), we have the following:
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COROLLARY 4.6. The homomorphism F : E�A;L� ! E�A;L� is an isomorphism.
Proof. We only give the salient points of the proof.
Let J � N be an ideal of height n and a : L� Anÿ1! A be a linear map such that

K � J2 �N � J; where K � a�L� Anÿ1�: Then, there exists e 2 J2 such that
(1) K �N � Ae � J and (2) e2 ÿ e 2 K �N: Since N is nilpotent and idempotent

elements can be lifted modulo a nilpotent ideal, it follows that there exists f 2 A
such that f ÿ e 2 K �N and f 2 ÿ f 2 K : Let J1 � K � Af : Then K � J12 � J1
and J1 �N � K �N � Ae � J: This shows that F is surjective.

Now suppose that J is an ideal of height n and oJ is a local orientation of J such
that the image of �J;oJ� � 0 in E�A;L�:

This means that we are given surjections a : L� Anÿ1!! J=J2 (corresponding to
oJ) and b : L� Anÿ1!! J �N=N � J=J \N such that they induce the same
surjective map from L� Anÿ1 to J=�J2 � J \N�: Since J=J2 \N is the ¢bre product
of J=J2 and J=J \N over J=�J2 � J \N�, a; b patch to yield a map
d : L� Anÿ1! J=J2 \N: Let y : L� Anÿ1 ! J be a lift of d: Then y is a lift of
a and b: Hence we have (1) y�L� Anÿ1� � J2 � J; (2) y�L� Anÿ1� � �J \N� � J:
Since N is nilpotent, we see, by (2), that y�L� Anÿ1� and J have the same radical.
Therefore, by (1), y�L� Anÿ1� � J: Since y is a lift of a, we see that �J;oJ� � 0
in E�A;L�: Hence F is injective. &

Remark 4.7. Let A be a smooth af¢ne domain of dimension nX 2 over a ¢eld of
characteristic zero and let L be a projective A-module of rank 1: Let J � A be
an ideal of height n such that J=J2 is generated by n elements. Then, (see (4.0)),
a local L-orientation oJ of J induces in a canonical way an isomorphism from
L=JL to ^n�J=J2� and conversely. By abuse of notation, let oJ also denote the cor-
responding isomorphism from L=JL to ^n�J=J2�: Therefore, in this case, we can
give the following description of E�A;L�:

Let S be the set of pairs �m;om�; where m is a maximal ideal of A and om is a local
L-orientation of m. Let G be the free Abelian group generated by S: Let J � \mi be
the intersection of ¢nitely many maximal ideals and oJ be a local L-orientation
of J: Then oJ gives rise, in a natural way, to local L-orientations omi of mi:

We associate to the pair �J;oJ �; the element
P�mi;omi � of G: By abuse of

notation, we denote the element
P�mi;omi � by �J;oJ�:

Let H be the subgroup of G generated by the set of pairs �J;oJ�; where J is the
intersection of ¢nitely many maximal ideals and oJ is a global L-orientation of J:

Now suppose that J � A is an ideal height n such that J=J2 is generated by n
elements and oJ is a surjection from L=JL� �A=J�nÿ1 to J=J2: Then, by Swan's
Bertini theorem ([Sw],(1.3) and (1.4)), there exists an ideal J 0 � A and a surjection
a : L� Anÿ1!! J \ J 0 such that (1) J � J 0 � A; (2) J 0 is a ¢nite intersection of
maximal ideals or J 0 � A and (3) a
 A=J � oJ :

In view of this, using (4.2), it follows easily that the canonical map from G=H to
E�A;L� is an isomorphism.
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We conclude this section by giving an example to show that the groups E�A;L�
may vary with L:

EXAMPLE 4.8. Let X � Spec A be an af¢ne open subvariety of the projective
2-space P2�R� which is the complement of V �X 2 � Y 2 � Z2�: Then E�A� � Z=2 (see
([B-RS 2], Corollary 6.3) for the proof). However, if L is the canonical module
of A over R; then E�A;L� � Z: This can be shown using the methods of
([B-RS 2], (4.12) and (4.13)). But we do not go into the details since the proofs
are rather involved.

5. Some Results on E�A;L�
Let A be a Noetherian ring with dimA � nX 2. Let J � A be an ideal of height n and
oJ : L=JL� �A=J�nÿ1!! J=J2 be a local L-orientation of J: Let b 2 A=J be a unit.
Composing oJ with an automorphism of L=JL� �A=J�nÿ1 with determinant b;
we obtain another local L-orientation of J which we denote by boJ :

Remark 5.0. Let A and J as above and let oJ ;eoJ be two local L-orientations of J.
Then, it is easy to see from (2.2), that eoJ � boJ for some unit b 2 A=J:

The following lemma can be deduced from (2.7) and (2.8). The statement is a little
complicated. Brie£y it says that if there is an L-oriented projective module P of rank
n whose Euler class is � �J;oJ � and a is a unit modulo J; then there exists an
L-oriented projective module P1 of rank n such that P1 is stably isomorphic to
P and its Euler class � �J; anÿ1oJ�.

LEMMA 5.1. Let A be a Noetherian ring with dim A � nX 2. Let P be a projective
A-module of rank n with determinant L: Let w be an L-orientation of P: Let
a : P!! J be a surjection, where J � A is an ideal of height n and let �J;oJ� be
obtained from �a; w�:Let a; b 2 A be such that ab � 1modulo J and let P1 be the kernel
of the surjection A� P

�b;ÿa�
!! A: Let b : P1!! J be as in (2.8) and w1 be the

L-orientation of P1 given by dÿ1w : ^n�L� Anÿ1� !� ^n�P1� (where d is as in (2.7)).
Then �J; anÿ1oJ� is obtained from �b; w1�.

LEMMA 5.2. Let A be a ring and J � Abe an ideal which is generated by two elements
a1; a2: Let a 2 A be a unit modulo J and b 2 A be such that ab � 1modulo J: Suppose
that the unimodular row �b; a2;ÿa1� is completable to a matrix in SL3�A�: Then, there
exists a matrix t 2M2�A� with det �t� � a modulo J such that �a1; a2�tt � �b1; b2�;
where b1; b2 generate J:

Proof. We choose a completion s 2 SL3�A� of the unimodular row �b; a2;ÿ a1�:
Suppose that the second and the third rows of s are �d; l11; l12� and �e; l21; l22�:
Let g : A3!! J be de¢ned by setting g�1; 0; 0� � 0; g�0; 1; 0� � a1 and
g�0; 0; 1� � a2:The vectors �b; a2;ÿ a1�; �d; l11; l12� and �e; l21; l22� generateA3; since
they are the rows of an invertible matrix. Hence their images under g generate J:
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Hence J � �l11a1 � l12a2; l21a1 � l22a2�: Let t be the 2� 2 matrix whose entries are
lij: Then, since s 2 SL3�A� and a1; a2 2 J; it follows that det t � a modulo J: It
follows that the elements b1 � l11a1 � l12a2 and b2 � l21a1 � l22a2 satisfy the
required properties. This proves the lemma. &

LEMMA 5.3. Let A be a Noetherian ring of dimension nX 2; J � A an ideal of
height n and oJ : L=JL� �A=J�nÿ1!! J=J2 a surjection. Suppose that oJ can be
lifted to a surjection a : L� Anÿ1!! J: Let a 2 A be a unit modulo J: Let y be
an automorphism of L=JL� �A=J�nÿ1 with determinant a2: Then, the surjection
oJy : L=JL� �A=J�nÿ1!! J=J2 can be lifted to a surjection g : L� Anÿ1 !! J:

Proof. We ¢rst prove lemma for nX 3: Let P2 � L� Anÿ3: Then, we can regard a
as a surjection from P2 � A2 to J: Let J2 � a�P2� and tilde denote reduction modulo
J2: Let ea�0; 1; 0� � ea1 and ea�0; 0; 1� � ea2: By (5.2), there exists a matrix et in
M2�eA� such that �ea1; ea2�et � �eb1; eb2�; where eJ � �eb1; eb2� and det �et� �ea2 modulo J:
We de¢ne a surjection g0 : P2 � A2 !! J by setting g0jP2 � a; g0��0; 1; 0�� � b1
and g0��0; 0; 1�� � b2: From the construction of g0; it is easy to see that there exists
an automorphism y0 of L=JL� �A=J�nÿ1 with determinant a2 such that the surjection
oJy

0 � g0 
 A=J: Since the map SL�L� Anÿ1� ! SL�L=JL� �A=J�nÿ1� is surjective
([B-R]), Proposition 4.1) and det �y0� � det �y� � a2; it follows that the surjection
oJy : L=JL� �A=J�nÿ1!! J=J2 can be lifted to a surjection g : L� Anÿ1 !! J:

We now consider the case if n � 2: Let w � id : ^2�L� A� !� ^2�L� A�: Let b 2 A
be such that ba � 1 modulo J: We consider the exact sequence

0! P1! A� L� A !�b
2;ÿa�

A! 0:

By ([Mu-Sw],Theorem 4), P1!� L� A:
Further, by (5.1), we see that there exists a surjection b : P1�� L� A� !! J and

w1 : ^2�L� A� !� ^2�L� A� such that �J; a2oJ� is obtained from �b; w1�: Note that
w � uw1; for u 2 A�: Now, using the fact that the map det: Aut�L� A� ! A� is
surjective, it follows that there exists a surjection Z : L� A!! J; such that
�J; a2oJ � is obtained from �Z; w� (where w � id as above). Now, using the fact that
the map SL�L� A� ! SL�L=JL� A=J� is surjective ([B-R], Proposition 4.1), it
follows that there exists a surjection g : L� A!! J such that g
 A=J � oJy: This
proves the lemma. &

We deduce from the above lemma the following result (see also ([B-RS 2], Lemma
3.4)).

LEMMA 5.4. Let A be a Noetherian ring of dimension nX 2; J � A an ideal of height
n and oJ be a local L-orientation of J: Let a 2 A=J be a unit. Then �J;oJ� � �J; a2oJ �
in E�A;L�:

Proof. If �J;oJ� � 0 in E�A;L�; then the result follows from (5.3). We assume
therefore that �J;oJ� 6� 0 in E�A;L�:Then, by (2.14), there exists an ideal J1 of height
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n which is comaximal with J and a surjection a : L� Anÿ1!! J \ J1 such that
a
 A=J � oJ : Let a
 A=J1 � oJ1 : Let b 2 A be such that b � a2 modulo J and
b � 1 modulo J1: Applying (5.3), we see that there exists a surjection
g : L� Anÿ1!! J \ J1 such that g
 A=J � a2oJ and g
 A=J1 � oJ1 : From the
surjection a we get �J;oJ � � �J1;oJ1 � � 0 in E�A;L�: From the surjection g we
get �J; a2oJ� � �J1;oJ1� � 0 in E�A;L�: Thus, �J;oJ� � �J; a2oJ� in E�A;L�: This
completes the proof of the proposition. &

LEMMA 5.5. Let A be aNoetherian domain of dimension nX 2:Let J � Abe an ideal
of height n such that J=J2 is generated by n elements. Let oJ be a local orientation
of J: Suppose that �J;oJ� 6� 0 in E�A�:Then, there exists an ideal J1 of height n which
is comaximal with J and a local orientation oJ1 of J1 such that �J;oJ� � �J1;oJ1� � 0
in E�A�: Further, given any non-zero element f 2 A; J1 can be chosen with the
additional property that it is comaximal with �f �:

Proof. Let a : �A=J�n!! J=J2 be a surjection corresponding to oJ : Then, by
(2.14), there exists an ideal J1 of height X n which is comaximal with fJ and a
surjection b : An !! J \ J1 such that b
 A=J � a: Since �J;oJ � 6� 0 in E�A�; J1
is a proper ideal of height n: Let oJ1 be the local orientation of J1 induced by b:
Then �J;oJ� � �J1;oJ1� � 0 in E�A�: &

LEMMA 5.6. Let A be an af¢ne domain over a ¢eld k of dimension nX 2 and f be a
non-zero element of A: Let J � A be an ideal of height n such that J=J2 is generated
by n elements. Suppose that �J;oJ� 6� 0 in E�A�; but the image of �J;oJ� � 0 in
E�Af �: Then, there exists an ideal J2 of height n such that �J2�f � Af and
�J;oJ� � �J2;oJ2 � in E�A�:

Proof. Since �J;oJ� 6� 0 in E�A� and �J;oJ� � 0 in E�Af �; we see that the element
f 2 A is not a unit. By (5.5), we can choose an ideal J1 of height nwhich is comaximal
with J and � f � such that �J;oJ� � �J1;oJ1 � � 0 in E�A�: Since the image of
�J;oJ� � 0 in E�Af �; it follows that the image of �J1;oJ1� � 0 in E�Af �:

Since the image of �J1;oJ1� � 0 in E�Af �; by (4.2), we have, �J1�f � �b1; � � � ; bn� and
oJ1 
 Af is induced by the set of generators b1; � � � ; bn of �J1�f modulo �J1�2f : Let f k
be so chosen such that f 2kbi 2 J1; 1W iW n: Since f is a unit modulo J1; by (5.4),
we have �J1;oJ1 � � �J1; f 2knoJ1 � in E�A�: Therefore, without loss of generality,
we can assume that bi 2 J1:Moreover, adapting the proof of ([B], Proposition 3.1),
it is easy to see that there exists an element s 2 En�Af � such that if
�b1; � � � ; bn�s � �c1; � � � ; cn�; then ci 2 J1 and c1; � � � ; cn generates an ideal of height
n in A: Thus, �c1; � � � ; cn� � J1 \ J2; where J2 is an ideal of height n such that
�J2�f � Af : Since �f � � J1 � A and �J2�f � Af ; it follows that J1 � J2 � A: Further,
by the construction of c1; � � � ; cn; it follows that oJ1 is given by the set of generators
c1; � � � ; cn of J1 modulo J12: Therefore �J1;oJ1 � � �J2;oJ2� � 0 in E�A�; (where
oJ2 is given by the set of generators c1; � � � ; cn of J2 modulo J22�: Since
�J;oJ� � �J1;oJ1 � � 0 � �J2;oJ2 � � �J1;oJ1� in E�A�; it follows that
�J;oJ� � �J2;oJ2� in E�A�: This proves the lemma &
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The following lemma is an immediate consequence of (4.3), (4.4) and (5.6).

LEMMA 5.7. Let A be an af¢ne domain over a ¢eld k of dimension nX 2 and P a
projective A-module of rank n having trivial determinant. Let f 2 A be a non-zero
element. Suppose that the projective Af -module Pf has a unimodular element. Then
there exists a surjection a : P!! J where J � A is an ideal of height n such that
Jf � Af .

LetA be a Noetherian ring of dimension n and P a projective module of rank n:Let
a : P!! J; be a surjection. We say that a is a generic surjection, if J has height n:

LEMMA 5.8. Let A be an af¢ne domain over a ¢eld k of dimension nX 2 and P a
projective A-module of rank n with trivial determinant. Let f 2 A be a non-zero
element. Assume that every generic surjection ideal of P is generated by n elements.
Then, every generic surjection ideal of Pf is generated by n elements.

Proof. Let b : Pf !!eJ be a generic surjection and J 0 �eJ \ A: Then, J 0 � A is an
ideal of height n which is comaximal with �f � such that J 0f �eJ: Let w be a generator
of ^n�P� and let �J 0f ;oJ 0f � be obtained from �b; wf �: Using (5.4), we may replace
oJ 0 f by f moJ 0 f for some large suitably chosen even integer m and assume that
oJ 0 f is given by a set of generators of J 0=J 02 which induce oJ 0 : The element
e�P; w� ÿ �J 0;oJ 0 � of E�A� is zero in E�Af �: It is easy to see that
e�P; w� ÿ �J 0;oJ 0 � � �J2;oJ2 � in E�A�;where J2 � A is an ideal of height n:Moreover,
by (5.6), we can assume that �J2�f � Af : Since �J2�f � Af and J 0 is comaximal with
� f �; it follows that J 0 � J2 � A: Since e�P; w� � �J 0;oJ 0 � � �J2;oJ2� in E�A�; it follows
from (4.3), that there is a surjection g : P!! J 0 \ J2: By the hypothesis of the
lemma, J 0 \ J2 is generated by n elements. Hence J 0f � �J 0 \ J2�f is generated by
n elements. This proves the lemma. &

THEOREM 5.9. Let A be an af¢ne domain over R of dimension nX 2 and P a pro-
jective A-module of rank n and trivial determinant. Assume that for every generic
surjection a : P!! J; J is generated by n elements. Then P has a unimodular element.

Proof. To any generic surjection a : P!! J; we associate an integer N�P; a�;
which is equal to the number of real maximal ideals containing J: Let t�P� �
min N�P; a�; where a varies over all generic surjections of P:

Case 1. Suppose that t�P� � 0: Let a : P!! J be a generic surjection with
N�P; a� � 0: This means that J is contained only in complex maximal ideals. By
assumption, J is generated by n elements. These n elements give rise to eoJ such that
the element �J;eoJ� � 0 in E�A�: Let w be a generator of ^n�P� and
e�P; w� � �J;oJ� in E�A�: Then, by (2.2), �J;oJ� � �J; ueoJ � in E�A�; where
u 2 A=J is a unit. Since J is contained only in complex maximal ideals, u is a square.
It follows now from (5.4), that e�P; w� � �J;oJ� � �J; ueoJ � � �J;eoJ � � 0 in E�A�:
Therefore, by (4.4), P has a unimodular element.
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Case 2. Suppose that t�P� � 1: Let a : P!! J be a generic surjection with
N�P; a� � 1: This means that J is contained only in one real maximal ideal. By
assumption J is generated by n elements. Hence, there existseoJ such that the element
�J;eoJ� � 0 � �J;ÿeoJ� in E�A�: Let w be a generator of ^n�P� and e�P; w� � �J;oJ � in
E�A�: Let �J;oJ� � �J; ueoJ� in E�A�: Then, since J is contained only in one real
maximal ideal, it follows as in Case 1 that either u 2 A=J is a square or ÿu is a
square. Therefore, it follows that either �J;oJ� � �J;eoJ� or �J;oJ� � �J;ÿeoJ� in
E�A�. In any case, �J;oJ� � 0 in E�A� and hence, by (4.4), P has a unimodular
element.

Now we complete the proof by showing that under the assumption of the theorem
t�P�W 1: Let a : P!! J be a generic surjection. If N�P; a�W 1 there is nothing to
prove. Now suppose N�P; a� � rX 2: Let m1; � � � ;mr be the real maximal ideals con-
taining J: Let f 2 A be chosen so that f belongs to only the real maximal ideals
m2; � � � ;mr: Then N�Pf ; af � � 1 and hence t�Pf �W 1: Since for every generic
surjection a : P!! J; J is generated by n elements, it follows from (5.8), that
for every generic surjection b : Pf !! J 0f ; J 0f is generated by n elements. Hence,
by Cases 1 and 2, Pf has a unimodular element. Therefore, by (5.7), there exists
a surjection g : P!! J1; where J1 � A is an ideal of height n such that
�J1�f � Af : Since m2; � � � ;mr are the only real maximal ideals containing f ; it follows
that N�P; g� � rÿ 1: Repeating this process we see that t�P�W 1: This proves the
theorem. &

6. The Weak Euler Class Group of a Noetherian Ring

Let A be a Noetherian ring with dim A � nX 2: Let L be a projective module of rank
1: We de¢ne now the weak Euler class group E0�A;L� of A (with respect to L) as
follows:

Let S be the set of ideals of N � A which have the property that N =N 2 is gen-
erated by n elements, where N is M-primary ideal for some maximal ideal M
of height n. Let G be the free Abelian group on the set S:

Let J � \N i be the intersection of ¢nitely many ideals N i; where N i is
Mi-primary (Mi being distinct maximal ideals of height n). Assume that J=J2 is
generated by n elements.

We associate to J, the element
PN i of G. By abuse of notation, we denote this

element by �J�:
Let H be the subgroup of G generated by elements of the type �J�, where J � A is

an ideal of height n such that there exists a surjection a from L� Anÿ1 to J:
We set E0�A;L� � G=H:
Let P be a projective A-module of rank n with determinant L and l : P!! J0 be a

surjection, where J0 � A is an ideal of height n:We de¢ne e�P� � �J0� in E0�A;L�:We
show that this assignment is well de¢ned.
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Let m : P!! J1 be another surjection, where J1 is an ideal of height n: Then, by
(3.0), there exists a surjection a�T � : P�T � !! I (where I � A�T � is an ideal of height
n�with a�0� � l and a�1� � m:Now, as before, using (3.1), we see that that �J0� � �J1�
in E0�A;L�.

We note that there is a canonical surjective homomorphism from E�A;L� to
E0�A;L� obtained by forgetting the orientations. If L � A; we denote the group
E0�A;A� by E0�A�: Thus, there is a canonical surjection E�A� !! E0�A�:

The following four propositions can be proved by using (5.1),(5.4),(5.5) of this
paper and adapting the proofs of ([B-RS 2],(3.8),(3.9),(3.10),(3.11)).

PROPOSITION 6.1. Let A be a Noetherian ring of even dimension n: Let J1; J2 � A
be comaximal ideals of height n and J3 � J1 \ J2: If any two of J1; J2 and J3 are
surjective images of projective A-modules of rank n; which are stably isomorphic
to L� Anÿ1; then so is the third.

PROPOSITION 6.2. Let A be a Noetherian ring of even dimension n:Let J � A be an
ideal of height n: Then �J� � 0 in E0�A;L� if and only if J is a surjective image of a
projective A-module of rank n which is stably isomorphic to L� Anÿ1: &

PROPOSITION 6.3. Let A be a Noetherian ring of even dimension n: Let P be a
projective A-module of rank n with determinant L. Then e�P� � 0 in E0�A;L� if
and only if �P� � �Q� A� in K0�A� for some projective A-module Q of rank nÿ 1:

PROPOSITION 6.4. Let A be a Noetherian ring of even dimension n: Let P be a
projective A-module of rank n with determinant L: Suppose that e�P� � �J�; in
E0�A;L�; where J � A is a ideal of height n: Then, there exists a projective A-module
Q of rank n; such that �Q� � �P� in K0�A� and J is a surjective image of Q:

We record, for use in the next section, the following

PROPOSITION 6.5. Let A be a Noetherian ring of even dimension n and let J � A be
an ideal of height n such that J=J2 is generated by n elements. LeteoJ : �A=J�n!! J=J2 be a surjection. Suppose that the element �J;eoJ � of E�A� belongs
to the kernel of the canonical homomorphism E�A� !! E0�A�: Then, there exists a
stably free A module P1 of rank n and a generator w1 of ^n�P1� such that
e�P1; w1� � �J;eoJ� in E�A�:

Proof. Since �J;eoJ � of E�A� belongs to the kernel of the canonical homomorphism
from E�A� to E0�A�; it follows that �J� � 0 in E0�A�: Hence, by (6.2), there exists a
surjection a : P!! J where P is a stably free A-module of rank n: Let w be a gen-
erator of ^n�P�: Suppose that �J;oJ� is obtained from �a; w�: By (2.2), there exists
a 2 A such that a 2 A=J is a unit and eoJ � aoJ : By (5.1), there exists a projective
A-module P1 of rank n with �P1� � �P� in K0�A� and a generator w1 of ^nP1; such
that e�P1; w1� � �J; anÿ1oJ� in E�A�: Since n is even, by (5.4) we have
�J; anÿ1oJ� � �J; aoJ� in E�A�: Hence, e�P1; w1� � �J;eoJ� in E�A�: &
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Following the method of ([MK 2], Theorem 1), we prove

PROPOSITION 6.6. Let A be a Noetherian ring of dimension 2 and J � A an ideal of
height 2:Let L be a projective module of rank 1:Let P;P1 be two projective A-modules
of rank 2 and let a : P!! J, b : P1!! J be surjections. Then we have

(i) If P has determinant L and P1 is free, then �P� � �L� A� in K0�A�:
(ii) If P has trivial determinant and P1!� L� A; then �P� � �A2� in K0�A�:

Proof. We only prove (i), the proof of (ii) being similar.
By (2.4), there exists an injective homomorphism C : P! P1 such that bC � a:

By (2.2), the map C
 A=J is an isomorphism. Therefore, it follows that
C�P� � JP1 � P1: Hence, using Nakayama's lemma, it follows that there exists
x 2 A with x � 1 modulo J such that xP1 � C�P�: Let K � cokerC: There exists
an exact sequence

0! P!C P1!! K ! 0:

From the above exact sequence, it follows that hdAK � 1: Further, since
xP1 � C�P�; it follows that xK � 0: Let bar denote reduction modulo x: There exists
an exact sequence

P!C P1!! K ! 0:

Since x � 1 modulo J; it follows that J=xJ � A=x:We choose an element p 2 P such
that a�p� � 1: Since bC � a; it follows that the element C�p� 2 P1 is unimodular.
Since P1 is free of rank 2; it follows that P1=�C�p�� is a free A module of rank
1: Thus, the A module K � P1=C�P� is generated by a single element. Hence, there
exists an exact sequence

0! Q! A!! K ! 0:

Since hdAK � 1; it follows that Q is projective. Further, using Schanuel's lemma, it
follows that P � A!� Q� P1: Since P1 is free, comparing determinants we see that
Q!� L and hence �P� � �L� A� in K0�A�: This proves the proposition. &

Even though, as shown in (4.8), the groups E�A;L�may vary with L; the following
theorem shows that the groups E0�A;L� are independent of L: In order to prove this
we need

PROPOSITION 6.7. Let A be a Noetherian ring of dimension n and P; P1 projective
A-modules of rank n such that �P� � �P1� in K0�A�: Then, there exists an ideal
J � A of height X n such that J is a surjective image of both P and P1:
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Proof. Since dim A � n and �P� � �P1� in K0�A�; it follows that P � A!� P1 � A:
Therefore, there exists a short exact sequence

0! P1! A� P !�b;ÿa� A! 0:

Further, without loss of generality, we may replace a by a� bg (since this will not
change the isomorphism class of ker��b;ÿa�� � P1�: Therefore, using (2.13), we
may assume that the ideal a�P� � J is such that height �J�X n: By (2.8 (i)), J is also
a surjective image of P1: &

THEOREM 6.8. The groups E0�A;L� and E0�A� are canonically isomorphic.
Proof.We show that we have a well de¢ned map a : E0�A� ! E0�A;L� sending the

class of �J� in E0�A� to the class of �J� in E0�A;L� and b : E0�A;L� ! E0�A� which
sending the class of �J� in E0�A;L� to the class of �J� in E0�A�: It is then immediate
that a and b are isomorphisms and are inverses of each other. We show that the
map a is well de¢ned, the proof that the map b is well de¢ned being similar.

Let J � A be an ideal of height n generated by n elements. We show that �J� � 0 in
E0�A;L�: Let J � �a1; � � � ; an�: By performing elementary transformations, we may
assume that the ideal J1 � �a3; � � � ; an� has height nÿ 2: Let bar denote reduction
modulo J1:

The ring A � A=J1 has dimension 2: Since J is generated by two elements a1; a2; it
follows, from (2.5), that there exists a projective A-module eP of rank 2 with deter-
minant L and a surjection from eP to J: Since J is generated by two elements,
by (6.6), �eP� � �L� A� in K0�A�:Now by (6.7), there exists an ideal J 0 of A containing
J1 such that (1) J 0 has height X 2 and (2) J 0 is the surjective image of the projective
A-moduleseP and L� A: If J 0 � A; theneP!� L� A and since J is a surjective image
of eP; it follows that J is a surjective image of L� Anÿ1 and hence �J� is trivial in
E0�A;L�:We may therefore assume, that height J 0 � 2: Since there exist surjections
from eP to J and J 0; it follows from (3.0), that there exists an ideal I of A�T � con-
taining J1A�T � and a surjection from eP�T � to I; where (1) height I � 2 and (2)
I�0� � J; I�1� � J 0: Now by (3.1), there exists an ideal K of A containing J1 and
a surjection from L�T � � A�T � to I \ KA�T � where:

(1) K � A is an ideal of height X 2 with K=K2 generated by 2 elements and
(2) I � KA�T � � A�T �: Thus, I \ KA�T � is a surjective image of L�T � � A�T �nÿ1:

Specialising at T � 0; 1; it follows that the ideals J \ K and J 0 \ K are surjective
images of L� Anÿ1: Hence �J� � �J 0� in E0�A;L�: Since J 0 is a surjective image
of L� A; it follows that J 0 is a surjective image of L� Anÿ1: Therefore
�J� � �J 0� � 0 in E0�A;L�: This concludes the proof of the theorem. &

Let A be Noetherian ring of dimension n: Let P be a projective A-module of rank n
with determinant L and l : P!! J be a surjection, where J � A is an ideal of height
n:We de¢ne e0�P� � �J� in E0�A�:As we have seen above, if we de¢ne e�P� to be �J� in
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E0�A;L�; then e�P� is well de¢ned. Now since the isomorphism from E0�A;L� to
E0�A� sends the class of J in E0�A;L� to the class of J in E0�A� it follows that
e0�P� is a well de¢ned element of E0�A�:We therefore can drop the superscript prime
and de¢ne e�P� � �J� in E0�A�: It follows, that the results in Propositions ((6.2), (6.3),
(6.4)) are valid if the group E0�A;L� is replaced by the group E0�A�:

For example we have

COROLLARY 6.9. Let A be a Noetherian ring of even dimension n: Let P be a pro-
jective A-module of rank n with determinant L. Let a : P!! J be a surjection where
J � A is an ideal of height n: Then J is a surjective image of a stably free A-module
of rank n if and only if �P� � �Q� A� in K0�A� for some projective A-module Q of
rank nÿ 1:

7. Relations Between E�A� and Umd�1�A�=SLd�1�A�
Let A be a Noetherian ring of dimension 2. LetfK0Sp�A� be the set of isometry classes
of �P; s�; where P is a projective A module of rank 2 and s : P � P! A a
non-degenerate skew-symmetric bilinear form. We note that there is (upto isometry)
a unique non-degenerate alternating form on A2; which we denote by h:

We de¢ne a binary operation � on fK0Sp�A� as follows. Let �P1; s1� and �P2; s2� be
two elements of fK0Sp�A� (where P1;P2 have rank 2 and trivial determinant). Since
dim A � 2 and P1 � P2 has rank 4; �P1; s1�?�P2; s2� is isometric to
�P3; s3�?�A2; h�; where P3 is a projective A-module of rank 2 and, by a theorem
of Bass ([Ba 2],4.16)), �P3; s3� is determined uniquely upto isometry. We de¢ne
�P1; s1� � �P2; s2� � �P3; s3�: ThenfK0Sp�A� is a group under � with the isometry class
of �A2; h� as the identity element. Since dim A � 2; this coincides with the usual
notion of fK0Sp�A�:

Remark 7.1. Let P be a projective A module of rank 2: Then, having a
non-degenerate alternating form on P is equivalent to giving an isomorphism
l : ^2�P� !� A: Thus, we can identify the pair �P; s� with �P; w�; where w is the gen-
erator of ^2�P� given by lÿ1�1�: It is easy to see that the isometry classes of
�P; s� coincide with the isomorphism classes of �P; w�:

The proof of the following theorem is motivated by ([Bg-O],Theorem (6.2)).

THEOREM 7.2. Let A be a Noetherian ring of dimension 2:The map fromfK0Sp�A� to
E�A� sending �P; w� to e�P; w� is an isomorphism.

Proof. We ¢rst show that the map is a homomorphism.

Step 1. Let P1;P2 be projective A-modules of rank 2 with trivial determinant and
w1; w2 be generators of ^2�P1� and ^2�P2� respectively. Let a1 : P1!! J1 and
a2 : P2!! J2 be surjections, where J1 and J2 are ideals of height 2 which are com-
aximal. Let �Ji;oJi �; i � 1; 2 be obtained from the pair �ai; wi� respectively. Let
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g1 : ^2�P1� ! P1 be de¢ned as follows: g1�p ^ q� � a1�q�pÿ a1�p�q: Then
im�g1� � ker�a1�: One can similarly de¢ne g2 : ^2�P2� ! P2 with im�g2� � ker�a2�:
Let gi�wi� � pi; i � 1; 2: An easy local checking, shows that O�pi� � Ji (where
O�p� � ff �p�jf 2 P�g�:
Step 2. It follows from an easy local computation, that if q 2 P1; then

p1 ^ q � a1�q�w1: ���

A similar equation holds for P2:

The element wi induces a non-degenerate alternating form si : Pi � Pi ! A: Using
��� we have s1�p1; q� � a1�q�: We choose a1 2 J1 and a2 2 J2 such that
a1 � a2 � 1: Let q1 2 P1; q2 2 P2 be such that a1�q1� � a1; a2�q2� � a2: Let
P4 � P1 � P2: Then s � s1?s2 de¢nes a non-degenerate alternating form on P4:

Let e1 � �p1; p2� and e2 � �q1; q2�: We have s�e1; e2� � s1�p1; q1� � s2�p2; q2� �
a1�q1� � a2�q2� � 1: It follows, that the restriction of s � s1?s2 to the submodule
Ae1 � Ae2 is hyperbolic.

Step 3. Let a1 � a2 : P1 � P2!! J1 � J2 � A be the map de¢ned by
�a1 � a2��q; q0� � a1�q� � a2�q0�: Let Q � ker�a1 � a2� and e � �q; q0�: Since
s�e1; e� � a1�q� � a2�q0�, it follows that Q is the submodule of P4; consisting of those
elements which are perpendicular under s to e1: Let P3 be the submodule of Q; con-
sisting of those elements which are perpendicular under s to e2: Then
P4 � P3 � �Ae1 � Ae2� and �P1; s1�?�P2; s2� is isometric to �P3; s3�?�A2; h� (where
A2 � Ae1 � Ae2 and s3 is the restriction of the form s1?s2 to P3�:

Let b : P4�� P1 � P2� ! A be the map given by b�q; q0� � a1�q�: Then, it is easy to
see that the restriction of b to P3 gives a surjection a3 : P3!! J3 � J1 \ J2

The form s3 corresponds to a generator w3 of ^2�P3�: Let �J3;oJ3 � be obtained from
�a3; w3�:We show that �J1;oJ1 � � �J2;oJ2 � � �J3;oJ3 � in E�A�:This will prove that the
map fK0Sp�A� to E�A� is a homomorphism.

Step 4. Let l1 : P3! P1 be the ¢rst projection. Consider the following commutative
diagram:

P3 !a3 J3 ! 0
l1# #
P1 !a1 J1 ! 0

CLAIM. ^2l1�w3� � uw1; where uÿ 1 2 J1:
Let �Pi�p1i; p2i� ^ �q1i; q2i�� � w3 (where �p1i; p2i� and �q1i; q2i� 2 P3 � P1 � P2).

Then, since w3 corresponds to the alternating form s3 (which is the restriction of
the form s1?s2 to P3�; it follows that

P
i s1�p1i; q1i� � s2�p2i; q2i� � 1: Let

s1�p1i; q1i� � di and s2�p2i; q2i� � mi: Then p1i ^ q1i � diw1; p2i ^ q2i � miw2 andP
i�di � mi� � 1: Therefore, since l1�p1i; p2i� � p1i and l1�q1i; q2i� � q1i; to prove

the claim, it is enough to show that mi 2 J1:
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We have

g2�p2i ^ q2i� � a2�q2i�p2i ÿ a2�p2i�q2i � mig2�w2� � mip2: ����
Since �p1i; p2i� and �q1i; q2i� 2 P3, it follows that a2�q2i�; a2�p2i� 2 J3 � J1 \ J2 and
hence mip2 2 J3P2: Therefore O�mip2� � J3: But O�p2� � J2 (Step 1) and
J1 � J2 � A: Hence mi 2 J1 and the claim is proved.

By a similar argument, we can prove that ^2l2�w3� � vw2 where vÿ 1 2 J2:
Therefore, �J1;oJ1� � �J2;oJ2 � � �J3;oJ3� in E�A�: Thus, the map from fK0Sp�A�
to E�A� is a homomorphism.

Step 5. Now we show that the map is surjective. Let J � A be an ideal such that J=J2

is generated by two elements and oJ a surjection �A=J�2!! J=J2: By (2.5), there
exists a projective module P of rank 2 with trivial determinant mapping onto J:
Let w be a generator of ^2�P�: Then e�P; w� � �J;eoJ�: Since �J;oJ� � �J; aeoJ�; where
a is a unit inA=J, by (5.1), there exists a projectiveA-module P1 and a generator w1 of
^2�P1� such that e�P1; w1� � �J;oJ�: Thus, the map is surjective.

If e�P; w� � 0; then by (4.4), P is free. It follows, that the map from fK0Sp�A� to
E�A� is injective and hence an isomorphism. This proves the theorem. &

Let G be the set of isometry classes of non-degenerate alternating forms on A4: Let
H�A2� � �A2; h�?�A2; h�: As before, we can de¢ne a group structure on G as follows:
We set �A4; s1� � �A4; s2� � �A4; s3�;where s3 is the unique (upto isometry) alternating
form on A4 satisfying the property that �A4; s1�?�A4; s2� is isometric to
�A4; s3�?H�A2�: Then G is a group with H�A2� as the identity element. Let s be
a non-degenerate alternating form on A4: Then, since dim
A � 2; �A4; s� !� �P; s0�?�A2; h�: The assignment sending �A4; s� to �P; s0� gives rise
to an injective homomorphism from G to fK0Sp�A�: In view of the above theorem,
we have the following

THEOREM 7.3. Let A be a Noetherian ring of dimension 2: Then, we have the
following exact sequence

0! G!fK0Sp�A��!� E�A�� ! E0�A� ! 0:

Proof. Let s be a non-degenerate alternating form on A4 and let
�A4; s� !� �P; s0�?�A2; h�: Then P is a stably free A-module of rank 2 and hence,
by (6.7), there exists a surjection c : P!! J; where J � A is an ideal of height
2 generated by 2 elements. Therefore, the image of �P; s0� � �J� � 0 in E0�A�:

Now let P1 be a projective A-module of rank 2 and let s1 be a non-degenerate
alternating form on P1: Let w1 be a generator of ^2�P1� corresponding to s1: Let
c : P1!! J1 be a surjection, where J1 � A is an ideal of height 2: Then
e�P1; w1� � �J1;oJ1�; where �J1;oJ1� is obtained from �c; w1�: Suppose that the image
of �P1; s1� � 0 in E0�A�: Then �J1;oJ1� is an element of the kernel of the canonical
map from E�A� to E0�A�: By (6.5), �J1;oJ1 � � e�P2; w2�; where P2 is a stably free
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projective A-module of rank 2: Let s2 be the non-degenerate form on P2 correspond-
ing to w2: Since e�P1; w1� � e�P2; w2�; the images of �P1; s1� and �P2; s2� in E�A� are the
same. Hence, by (7.2), �P2; s2� is isometric to �P1; s1�: Since P2 is stably free, it follows
that �P2; s2�?�A2; h� � �A4; s�; for some non-degenerate alternating form s on A4:

This proves the theorem. &

Let A be a Noetherian ring of dimension nX 2 and let �a0; a1; � � � ; an� 2 Umn�1�A�:
Let y : An�1!! A be the surjection given by y�ei� � ai; where �e0; e1; � � � ; en� is the
standard basis of An�1 and let P � ker y: Let b0; b1; � � � ; bn 2 A be such thatPn

i�0 aibi � 1: Let pi � aif ÿ ei; where f �Pn
i�0 biei: Then P is generated by pi

and we have
Pn

i�0 bipi � 0
Let oi 2 ^n�P� be de¢ned by

oi � p0 ^ p1 ^ � � � ^ piÿ1 ^ pi�1 ^ � � � ^ pn; 0W iW n:

Then, since
Pn

i�0 bipi � 0; it is easy to see that bio0 � �ÿ1�ib0oi; 0W iW n:
Therefore, if w �Pn

i�0 �ÿ1�iaioi, then w is a generator of ^n�P� and b0w � o0:

Moreover, it can be seen easily that w is independent of the choice of bi:
To �a0; a1; � � � ; an�; we associate the element e�P; w� of the Euler class group E�A�;

where w is as above.
Note that this association induces a set theoretic map C : Umn�1�A�=SLn�1�A� !

E�A�: Hence, it also induces a set theoretic map from Umn�1�A�=En�1�A� to E�A�
which we continue to denote by C:

We give an explicit description of C:
Let �a0; a1; � � � ; an� 2 Umn�1�A�=SLn�1�A� or Umn�1�A�=En�1�A�. Assume, by

performing elementary transformations, that that height �a1; � � � ; an� � n: Now con-
sider the element �P; w� associated to �a0; a1; � � � ; an� as above.

Let b : P!! �a1; � � � ; an� be the surjection de¢ned as follows:

(1) b�p0� � b0a0 ÿ 1;
(2) b�pi� � b0ai if i > 0:

Let J � �a1; � � � ; an� and oJ : �A=J�n!! J=J2 be de¢ned by sending the ith
coordinate function to ai: Then, if we compute e�P; w� using b; we see that we
see that e�P; w� � �J; b0nÿ1oJ�: Therefore, if n is even, by (5.4),
e�P; w� � �J; b0oJ� � �J; a02b0oJ� � �J; a0oJ� in E�A�:

Thus C��a0; a1; � � � ; an�� � �J; a0oJ �: This explicit description of C will be used in
what follows.

We make the following remark before stating the next result.

Remark 7.4. Let A be a Noetherian ring with dim A � nX 2 and �a3; � � � ; an� an
ideal such that height �a3; � � � ; an� � nÿ 2 and dimA=�a3; � � � ; an� � 2: Let bar denote
reduction modulo �a3; � � � ; an�: Let J � A be an ideal of of height 2 such that J=J2 is
generated by two elements, f and g: Then J � A is an ideal of height n and
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J=J2 is generated by the n elements f ; g; a3; � � � ; an: In view of this, there exists a
canonical homomorphism E�A� ! E�A�:

PROPOSITION 7.5. Let A be a Noetherian ring of dimension nX 2: The map
C : Umn�1�A�=SLn�1�A� ! E�A� is a group homomorphism.

Proof. First assume that n is odd. Let �a0; a1; � � � ; an� 2 Umn�1�A� and P be the
projective A-module associated with �a0; a1; � � � ; an� as above. Then P has a
unimodular element and hence, by (4.4), e�P; w� � 0 in E�A�: Therefore C is the zero
group homomorphism.

Now let n be even.

Case (1) n � 2:
In this case, ¢rst note that, by a theorem of Vaserstein ([Su-V], Corollary 7.4),

there exists a bijection from Um3�A�=SL3�A� with the group G (de¢ned above)
and in fact the group structure on Um3�A�=SL3�A� is the one induced by this
bijection. By (7.3), there is a (injective) group homomorphism from G to
E�A� �fK0Sp�A�: It is easy to check that C is just the composite of these two maps.
Therefore C is a homomorphism. It also follows, that the map
C : Um3�A�=E3�A� ! E�A� is also a group homomorphism.

Case (2) n > 2: We ¢rst show that the set theoretic map C : Umn�1�A�=En�1�A� !
E�A� is a homomorphism. Let �v1� � �a0; a1; � � � ; an� and �v2� � �d0; d1; � � � ; dn� be
two elements of Umn�1�A�=En�1�A�: Let �v3� � �v1� � �v2� where � is the group oper-
ation on Umn�1�A�=En�1�A� de¢ned in ([VK 1]). By performing elementary trans-
formations, we may assume by ([VK 1],3.4), that ai � di; iX 3 and a3; � � � ; ad are
in general position i.e. ai is not contained in any prime ideal that is minimal over
ai�1; � � � ; an for iX 3: Suppose that C��v1�� � e�P1; w1�; C��v2�� � e�P2; w2�; and
C��v3��� � e�P3; w3�: In order to prove the proposition, it is suf¢cient to prove that
e�P1; w1� � e�P2; w2� � e�P3; w3� in E�A�: Since a3; � � � ; ad are in general position, it
follows that dim A=�a3; � � � ; ad�W 2: If dim A=�a3; � � � ; ad�W 1; then �v1� and �v2�
are completable to elementary matrices and hence, so is �v3�: Hence P1;P2;P3

are all free and there is nothing to prove.
Assume therefore that dim A=�a3; � � � ; ad� � 2: Let bar denote reduction modulo
�a3; � � � ; ad�: Using the explicit description of the map C : Umn�1�A�=
En�1�A� ! E�A� for n even, one veri¢es that the following diagram is commu-
tative.

Um3�A�=E3�A� !C E�A�
# #

Umn�1�A�=En�1�A� !C E�A�

The vertical maps are canonical. By ([VK 1], (3.6)), the canonical map
Um3�A�=E3�A� ! Umn�1�A�=En�1�A� is a group homomorphism. Since the map
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Um3�A�=E3�A� ! E�A� is a homomorphism and the canonical map E�A� ! E�A� is
a homomorphism (see (7.4)), it follows by a diagram chase, that the map
Umn�1�A�=En�1�A� ! E�A� is a homomorphism when restricted to the image of
Um3�A�=E3�A� ! Umn�1�A�=En�1�A�: Since �v1� and �v2� belong to this image, it
follows that e�P1; w1� � e�P2; w2� � e�P3; w3� in E�A�: Therefore, the map
C : Umn�1�A�=En�1�A� ! E�A� (and hence the map C : Umn�1�A�=SLn�1�A� !
E�A�� is a homomorphism. This proves the proposition. &

THEOREM 7.6. Let A be a Noetherian ring of even dimension nX 2: Then, there
exists an exact sequence of groups

Umn�1�A�=SLn�1�A� !C E�A� ! E0�A� ! 0:

Proof. If n � 2; this is proved in (7.3). As in the proof of (7.3), it follows, by (6.7),
that the sequence is a complex.

Let �J;oJ � 2 E�A� belong to the kernel of the canonical surjection E�A� ! E0�A�:
By (6.5), there exists a stable free module P of rank n and a generator w of ^n�P� such
that e�P; w� � �J;oJ �: Since P is stably free, by (6.7), there exists a surjection from P
to J1 where J1 � A is an ideal of height n such that J1 is generated by n elements
a1; � � � ; an: Let e�P; w� � �J1;oJ1 �: Let eoJ1 : �A=J1�n!! J1=J12 be the surjection
which sends the ith coordinate function to ai: Then, by (5.0),
�J1;oJ1 � � �J1; a0eoJ1� where a0 2 A=J is a unit. But C��a0; a1; � � � ; an�� �
�J1; a0eoJ1� and �J1;oJ1 � � e�P; w� � �J;oJ�: Therefore, the sequence is exact. &

COROLLARY 7.7. Let A be a Noetherian ring of even dimension nX 2: Let H be a
subset of Umn�1�A�=SLn�1�A� consisting of elements �v� � �a0; a1; � � � ; an� such that
the projective A-module corresponding to �v� has a unimodular element. Then H is
a subgroup of Umn�1�A�=SLn�1�A�:

Proof. This follows from the fact that C : Umn�1�A�=SLn�1�A� ! E�A� is a group
homomorphism and ker C � H: &

COROLLARY 7.8. Let X � Spec A be a smooth af¢ne variety of even dimension n
over the ¢eldR of real numbers such that the canonical module KA � ^nOA=R is trivial.
Let X �R� denote the topological space consisting of the set of real points of X and t
denote the number of compact connected components of X �R�. Then
Umn�1�A�=SLn�1�A� � H � F where F is a free Abelian group of rank t and H is
as in (7.7).

Proof. In view of (7.6) and (7.7), it is enough to show that the kernel of the canoni-
cal map E�A� ! E0�A� is a free Abelian group of rank t:

Let S denote the multiplicatively closed subset of A; consisting of all elements
which do not have any real zeroes and let R�X � � AS: Then we have canonical
surjective homomorphisms G from E�A� to E�R�X �� and b from E0�A� to
E0�R�X �� respectively, such that the following diagram commutes (see ([B-RS 2],
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Section 4).

E�A� !G! E�R�X ��
# #

E0�A� !
b! E0�R�X ��

By ([B-RS 2], (5.4)), the induced map from kernel�G� to kernel�b� is an
isomorphism. Moreover, by ([B-RS 2], (4.10) and (4.12)), E0�R�X �� � �Z=2�t and
E�R�X �� is a free Abelian group of rank t: Hence, the kernel of the canonical
map E�A� ! E0�A� is a free Abelian group of rank t: &

We now state some further consequences of (7.5).

COROLLARY 7.9. Let A be a Noetherian ring of dimension nX 2 and �J;oJ� an
element of E�A� such that its image (which is independent of oJ) in E0�A� is zero.
Then, the element �J;oJ� � �J;ÿoJ� � 0 in E�A�:

Proof. We ¢rst settle the case where J is generated by n elements �a1; � � � ; an�:We
may assume by performing elementary transformations, that a3; � � � ; an are such that
dim A=�a3; � � � ; an� � 2: Let bar denote reduction modulo �a3; � � � ; an�: In view of the
canonical homomorphism of E�A� to E�A�; it follows that, in this case, it suf¢ces
to prove the proposition for A: Thus, one may assume that dim A � 2 and that
J is generated by 2 elements a1; a2: Let eoJ : �A=J�2 !! J=J2 be the surjection which
sends the coordinate functions to a1 and a2: By (5.0), �J;oJ� � �J; a0eoJ� where
a0 2 A=J is a unit. Let b0 be chosen such that a0b0 � 1 modulo J: Using ([VK
1],(3.6)), it follows that �a0; a1; a2� � �ÿb0; a1; a2� � 0 in Um3�A�=SL3�A�: Therefore,
using ([VK 1], (3.16, (iii))), it follows that �a0; a1; a2� � �ÿa0; a1; a2� � 0 in
Um3�A�=SL3�A�: Taking images in E�A� under C (see (7.5)), it follows that
�J; a0eoJ � � �J;ÿa0eoJ� � 0 in E�A�: Thus �J;oJ� � �J;ÿoJ� � 0 in E�A�:

We prove the general case as follows: To avoid repetition, we shall assume that any
ideal K considered in the proof has height n and satis¢es the property that K=K2 is
generated by n elements.

We consider the set of all ideals I of A of which satisfy the following property (p):
For any choice of oI ;

�I ;oI � � �I;ÿoI � � 0:

First note that addition and subtraction principles hold for property (p), i.e. given
any two comaximal ideals J1; J2 � A of height n; if any two of the ideals J1; J2
and J1 \ J2 satisfy property (p), then so does the third.

Note that the kernel of the homomorphism E�A� to E0�A� is generated by elements
of the type �J1;oJ1 �;where J1 � �a1; � � � ; an� (see ([B-RS 2], (3.3)) for details). Thus, if
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�J;oJ� belongs to the kernel of E�A� to E0�A�; then

�J;oJ� �
Xr�s
l�r�1
�Jl;ol� �

Xr
t�1
�Jt;ot�;

where Jl; Jt are generated by n elements. Now, adapting the proof of (4.2), using the
addition and subtraction principles for property (p) and the fact that property
(p) holds for ideals generated by n elements, it follows that J satis¢es property
(p) i.e. �J;oJ� � �J;ÿoJ� � 0 in E�A�: This proves the corollary. &

COROLLARY 7.10. Let A be a Noetherian ring of odd dimension n: Let P be a pro-
jective A-module of rank n with trivial determinant. Assume that the kernel of the
canonical surjection E�A� !! E0�A� has no non trivial 2-torsion. Suppose that
e�P� � 0 in E0�A�: Then P has a unimodular element.

Proof. Let a : P!! J be a surjection, where J � A is an ideal of height n: Let w be
a generator of ^n�P�: Suppose that e�P; w� � �J;oJ � in E�A� (where �J;oJ� is
obtained from the pair �a; w��: Since n is odd, scalar multiplication by ÿ1 is an
automorphism y of P of determinant ÿ1: Now, computing e�P; w� using the
surjection ay; we see that e�P; w� � �J;ÿoJ �. Hence 2�e�P; w�� � �J;oJ��
�J;ÿoJ� in E�A�: Since e�P� � 0 in E0�A�; it follows from (7.9), that
2�e�P; w�� � 0 in E�A�: Since the kernel of the surjection E�A� !! E0�A� has no
non trivial 2-torsion, e�P; w� � 0 in E�A�: Hence, by (4.4), P has a unimodular
element. &

In ([B-RS 2], (6.3)), an example is given to show that E�A� can have nontrivial
2-torsion. However, in this example, the kernel of the canonical homomorphism
E�A� !! E0�A� is zero. Therefore, in view of (7.10), one can ask:

QUESTION 7.11. Let A be a Noetherian ring of dimension nX 2: Can the kernel of
the canonical homomorphism E�A� !! E0�A� have non trivial 2-torsion ?

QUESTION 7.12. Let A be a Noetherian ring of odd dimension n and P a projective
module of rank n having determinant L: Suppose that e�P� � 0 in
E0�A;L��� E0�A��: Does P have a unimodular element?

Let A be a Noetherian ring of dimension n and P a projective A-module of rank n
with determinant L: Suppose that there exists a projective A module Q of rank
nÿ 1 such that �P� � �Q� A� in K0�A�: Then, it is easy to show using (6.7) and (4.4),
that e�P� � 0 in E0�A;L�: In this case we can answer (7.12). In fact, we prove
the following theorem (see also ([RS 2], Theorem 4.2)).

THEOREM 7.13. Let A be a Noetherian ring of odd dimension n: Let P1 be a pro-
jective A-module of rank n with determinant L: Suppose that there exists a projective
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Amodule Q of rank nÿ 1 such that �P1� � �Q� A� in K0�A�. Then P1 has a unimodular
element.

Proof. Let P � Q� A. Since �P1� � �P� inK0�A�, we have P1 � A!� P � A:Hence,
there exists an exact sequence

0! P1! A� P !�b;ÿa� A! 0:

By (2.13), we may assume that height �J � a�P��X n: By (2.8), the map b : P1 ! A
given by b�q� � c where q � �c; p�; is such that b�P1� � a�P� � J: Hence, if
J � A; P1 has a unimodular element and there is nothing to prove. Therefore,
we may assume that height �J� � n:

Let w : ^n�L� Anÿ1� !� ^n�P� be an isomorphism. Let e�P; w� � �J;oJ� in E�A;L�
(where �J;oJ � is obtained from �a; w��: Since P � Q� A; by (4.4), �J;oJ � � 0 in
E�A;L�: By (5.1), there exists an isomorphism w1 : ^n�L� Anÿ1� !� ^n�P1� such that
e�P1; w1� � �J; anÿ1oJ� in E�A;L� (where �J; anÿ1oJ� is obtained from �b; w1� and a
satis¢es the property that ab � 1 modulo J�: Since n is odd, by (5.4),
�J; anÿ1oJ� � �J;oJ� in E�A;L�: Therefore e�P1; w1� � 0 in E�A;L�: Hence, by (4.4),
P1 has a unimodular element. &

We conclude this section by exhibiting some relations between the
Grothendieck^Witt group of quadratic forms of the residue ¢elds of the maximal
ideals of A and E�A�:

PROPOSITION 7.14. Let A be a smooth af¢ne domain of dimension nX 2 over a ¢eld
of charactereristic zero. Let m be a maximal ideal of A and om a generator of
^n�m=m2�. Then, the following relations hold

(1) If a 2 �A=m�� then �m;om� � �m; a2om� in E�A�.
(2) If a; b 2 �A=m�� such that a� b is not zero, then �m; aom� � �m; bom� �
�m; �a� b�om� � �m; ab�a� b�om�:

Proof. By (5.4), (1) holds. We prove (2). Let om correspond to the generator
a1 ^ � � � ^ an of ^n�m=m2�: Using ([Sw], (1.3) and (1.4)), we may assume that
�a1; � � � ; an� � m \ J 0; where J 0 is a reduced ideal of height n: By performing elemen-
tary transformations on �a1; � � � ; an�; we may assume that �a3; � � � ; an� generates a
prime ideal such that A=�a3; � � � ; an� is a smooth af¢ne domain of dimension 2:
Let bar denote reduction modulo �a3; � � � ; an�: Let om be the generator of
^2�m=m2� obtained from a1; a2: Since, under the canonical homomorphism
E�A� ! E�A�, �m;om� is mapped to �m;om�; it follows that in order to prove (2),
we may replace A by A and om by om: Thus, we may assume that dim A � 2:

Calling aom as om and using (1), we see that it is enough to show that
�m;om� � �m; lom� � �m; �1� l�om� � �m; l�1� l�om� in E�A� (where l 2 �A=m��
is such that �1� l� 6� 0�: As before, using ([Sw], (1.3.) and (1.4)), we see that
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�b1; b2� � m \ J where J � A is a reduced ideal of height 2 and om is obtained from
b1; b2: Let m \ J � J1: Let oJ be the generator of ^2�J=J2� obtained from b1; b2
and oJ1 be the generator b1 ^ b2 of ^2�J1=J12�: Let m 2 A=J be chosen with the prop-
erty that m; 1� m 2 �A=J�� and both are squares. Let d 2 �A=J1�� be chosen such that
d � l modulo m and d � m modulo J:

Suppose that we show that

�J1;oJ1 � � �J1; doJ1� � �J1; �1� d�oJ1� � �J1; d�1� d�oJ1 �
in E�A�; then it would follow that �m;om� � �m; lom� � �J;oJ� � �J; moJ� �
�m; �1� l�om� � �m; l�1� l�om� � �J; �1� m�oJ � � �J; m�1� m�oJ� in E�A�: Since
both m and 1� m are squares in �A=J��; it would follow that
�m;om� � �m; lom� � �m; �1� l�om� � �m; l�1� l�om� in E�A�:Therefore, it suf¢ces
to show that �J1;oJ1� � �J1; doJ1 � � �J1; �1� d�oJ1 � � �J1; d�1� d�oJ1 �:

From the de¢nition of oJ1 ; it follows that �J1;oJ1� � 0 in E�A�: Thus, it suf¢ces to
prove that the following relation holds in E�A� :

�J1; doJ1 � � �J1; �1� d�oJ1 � � �J1; d�1� d�oJ1 �: ����
Now from ([VK 2], relation 2 on p. 293) and ([VK 1], (3.16,(iii))), it follows that the
following equation holds in the group Um3�A�=SL3�A� (where b0 is a preimage
of d in A� :

�b0; b1; b2� � �1� b0; b1; b2� � �b0�1� b0�; b1; b2�:
Taking images under C : Um3�A�=SL3�A� ! E�A�; we see that ���� holds and the
proposition is proved. &

The following theorem answers a question of Nori and follows from the previous
proposition.

THEOREM 7.15. Let A be a smooth af¢ne domain of dimension n over a ¢eld of
characteristic 0: Let m be a maximal ideal of A and GW �k�m�� denote the
Grothendieck^Witt group of quadratic forms of the ¢eld k�m� � A=m: For each
maximal ideal m of A; ¢x a generator om of ^n�m=m2�: Then, there exists a surjective
homomorphismM

m

GW �k�m�� !! E�A�;

which sends the class of the one dimensional form < a >2 GW �k�m�� to the element
�m; aom� of E�A�:
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References

[B] Bhatwadekar, S. M.: Some results on a question of Quillen, Proc. Internat.
Bombay colloquium on Vector Bundles on Algebraic Varieties, Oxford University
Press, 1987, pp. 107^125.

[B-R] Bhatwadekar, S. M. and Roy, A.: Some theorems about projective modules over
polynomial rings, J. Algebra (1984), 150^158.

[B-RS 1] Bhatwadekar, S. M. and Sridharan, R.: Projective generation of curves in poly-
nomial extensions of an af¢ne domain and a question of Nori, Invent. Math.
133 (1998), 161^192.

[B-RS 2] Bhatwadekar, S. M. and Sridharan, R.: Zero cycles and the Euler class groups of
smooth real af¢ne varieties, Invent. Math. 136 (1999), 287^322.

[Ba 1] Bass, H.: Algebraic K-Theory, Benjamin, New York, 1968.
[Ba 2] Bass, H.: Unitary Algebraic K-Theory III, Lecture Notes in Math. 343, Springer,

New York, 1973.
[Bg-O] Barge, J. and Ojanguren, M.: Fibres algëbriques sur une surface rëelle, Comment.
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