BASIC OBJECTS FOR AN ALGEBRAIC HOMOTOPY THEORY

PAUL CHERENACK

The purposes of this paper are:
(A) To show ($\S \S 1,3,5$) that some of the usual notions of homotopy theory (sums, quotients, suspensions, loop functors) exist in the category k / \mathscr{G} of affine k-schemes where the affine rings are countably generated.
(B) By example to demonstrate some of the more geometric relations between two objects of k / \mathscr{G} and their quotient or to study the algebraic suspension of one of them. See $\S \S 2.1,2.2,2.3,3$.
(C) To prove (§4) that the algebraic suspension (in \mathbf{R} / \mathscr{G}) of the n-sphere is homeomorphic to the $n+1$ sphere for the usual topologies.
(D) To show that the algebraic loop functor is right adjoint to the algebraic suspension functor (§5).

These results can be viewed as a precursor of definitions for an algebraic homotopy theory from a "geometric" point of view (rather than a more algebraic standpoint employing Galois theory [5]).

1. Basic categorical properties of k-schemes corresponding to countably generated k-algebras. Let \mathscr{C} be the category of countably generated k-algebras, where k is a field and 0 is not an object of \mathscr{C}. The comma category \mathscr{C} / k can be formed. This is the category whose objects are $e: A \rightarrow k$ (evaluation maps in C) and morphisms.

$$
(A \xrightarrow{e} k) \xrightarrow{f}\left(B \xrightarrow{e^{\prime}} k\right)
$$

are maps $f: A \rightarrow B$ such that $e^{\prime} \circ f=e$.
(A) \mathscr{C} / k has a zero object

$$
k \xrightarrow{i d} k,
$$

as every k-algebra map $k \rightarrow k$ is the identity.
Lemma 1. Every sub-k-algebra of a countably generated k-algebra is countably generated.

Proof. If A is a countably generated k-algebra, it has a countable base and so does any subalgebra. This subalgebra must, then, be countably generated.

Received July 26, 1971.
(B) \mathscr{C} / k has equalizers. If

$$
(A \xrightarrow{a} k) \underset{g}{\stackrel{f}{\rightarrow}}(B \xrightarrow{b} k)
$$

are two maps in \mathscr{C} / k, one checks that

$$
\text { Equalizer }(f, g)=A^{\prime} \rightarrow k,
$$

where $A^{\prime}=\{x \in A \mid f(x)=g(x)\}$ and

$$
A^{\prime} \rightarrow k=A^{\prime} \rightarrow A \xrightarrow{a} k .
$$

A^{\prime} is a countably generated k-algebra, by Lemma 1 .
(C) \mathscr{C} / k has coequalizers. If

$$
(A \xrightarrow{a} k) \underset{g}{\stackrel{f}{\rightrightarrows}}(B \xrightarrow{b} K)
$$

are two maps,

$$
\text { Coequalizer }(f, g)=B^{\prime} \rightarrow k
$$

where $B^{\prime}=B /(f(x)-g(x))((f(x)-g(x))$ is the ideal in B generated by all $f(x)-g(x), x \in A)$ and $B^{\prime} \rightarrow k$ is induced from

$$
B \xrightarrow{b} k
$$

as $b \circ f=\mathrm{a}=b \circ g . B^{\prime}$ is countably generated as the image of a countably generated k-algebra.
(D) \mathscr{C} / k has products. Let

$$
A \xrightarrow{a} k, B \xrightarrow{b} k
$$

be in \mathscr{C} / k. One sees that

$$
A \times B \xrightarrow{a \times b} k \times k
$$

is in $\mathscr{C}(A \times B$ is generated by $A \times 0$ and $0 \times B)$. Let

$$
A \pi B=\text { Equalizer }\left(a \times b, s_{1} \circ p_{1} \circ(a \times b)\right),
$$

where $p_{1}: k \times k \rightarrow k, s_{1}: k \rightarrow k \times k$ are defined by $p_{1}(x, y)=x, s_{1}(x)=$ (x, x). Then,

$$
A \pi B \subset A \times \stackrel{s}{B} \xrightarrow{a \times b} k \times k \xrightarrow{p_{1}} k
$$

is the product of a and b in \mathscr{C} / k.
(E) \mathscr{C} / k has sums. Let

$$
A \xrightarrow{a} k, B \xrightarrow{b} k
$$

be in \mathscr{C} / k. These induce a map $A \otimes_{k} B \rightarrow k$ which is the sum of a and b.

Let Spec: $\mathscr{C} / k \rightarrow \operatorname{Spec} k / \mathscr{G}$ be the anti-equivalence of categories which associates to each k-algebra A and evaluation $e: A \rightarrow k$ a scheme Spec A and base point $P=\operatorname{Spec} k \subset \operatorname{Spec} A$.

We write $\operatorname{Spec} k / \mathscr{G}=k / \mathscr{G}$. From the above relations we obtain:
Proposition 1. k / \mathscr{G}, the category of "countable" affine k-schemes, has
(a) a zero object,
(b) equalizers and coequalizers,
(c) products and sums,
(d) kernels and cokernels,
(e) pullbacks and pushouts.
(d) and (e) follow from (a), (b) and (c).

Proposition 2. k / \mathscr{G} is normal for closed immersions but not conormal.
Proof. \mathscr{C} is surjectively conormal. If $A \xrightarrow{f} B$ is a surjection, f is coequalizer of maps $e, i: k+\operatorname{ker} f \rightarrow A$, where i is the inclusion and $e(\operatorname{ker} f)=0 . \mathscr{C} / k$ is not normal. Otherwise, \mathscr{C} / k is abelian and, hence, sums equal products, which is impossible. A more illuminating proof is as follows. Let

$$
(A \xrightarrow{a} k) \xrightarrow{f}(B \xrightarrow{b} k)
$$

be a monomorphism in \mathscr{C} / k. If \mathscr{C} / k were normal (and, hence, \mathscr{C} / k abelian), then $f=\operatorname{ker}(\operatorname{cok} f)$. In terms of $\mathscr{C}, \operatorname{cok} f=B /(f(x)-a(x))$.

$$
\operatorname{ker}(\operatorname{cok} f)=\operatorname{ker}(B \rightarrow B /(f(x)-a(x)))
$$

which is not necessarily A.
Corollary. If f is a closed immerison in $k / \mathscr{G}, \operatorname{ker}(\operatorname{cok} f)=f$.
2.1. Examples of categorical constructions in k / \mathscr{G}. Quotients of the line by 2 points. Let X be the X-axis, and $1,0 \in X$. The rings of $X, 0,1$ are $k[X]$, and k, k, respectively. Suppose that 0 is the basepoint of X and basepoint of the reducible algebraic variety $\{0,1\}$. Obviously, $X /\{0\} \cong X$. To determine $X /\{0,1\}$, we find the coequalizer of

$$
\{0,1\} \underset{\nrightarrow}{\stackrel{i}{\rightrightarrows}} X,
$$

where one map is an inclusion and the other assigns the basepoint of $X . i$ and $*$ correspond to $i^{*}, *^{*}$ in

If $\mathrm{s}_{1}{ }^{*}: k \rightarrow k \times k$ is defined by $s_{1}{ }^{*}(x)=(x, x), *^{*}=s_{1}{ }^{*} \circ u^{*}$.

$$
k[X] \xrightarrow{i^{*}} k \times k=k[X] \rightarrow k[X] /(X(X-1)) \cong k \times k .
$$

The last relation follows by the Chinese remainder theorem.
Suppose that $i^{*}(f)=*^{*}(f)$. Then $f(0) \times f(1)=f(0) \times f(0)$.
Thus, $\mathrm{Eq}\left(i^{*}, *^{*}\right)=k+(X(X-1)$) (suppressing the evaluation map). To obtain the ideal of $\mathrm{Eq}\left(i^{*}, *^{*}\right)$, we define a map

$$
k\left[X_{1}, \ldots, X_{m}, \ldots\right] \rightarrow k+(X(X-1))
$$

via

$$
\begin{aligned}
X_{1} & \rightarrow X(X-1), \\
X_{2} & \rightarrow X^{2}(X-1), \\
X_{3} & \rightarrow X(X-1)^{2}, \\
X_{4} & \rightarrow X^{3}(X-1), \text { etc. }
\end{aligned}
$$

One obtains equations $X_{3} X_{2}=X_{1}{ }^{3}, X_{4}=X_{2}+X_{1}{ }^{2}, X_{5}=X_{3}+X_{1}{ }^{2}, X_{1}=$ ($X_{2}-X_{3}$), etc. If the cardinality of k is bigger than the cardinality of the integers \mathbf{Z}, then the zeroes of these equations, which we denote $V_{k}\left(\mathrm{Eq}\left(i^{*}, *^{*}\right)\right)$, correspond to the closed points (maximal ideals) of $\operatorname{Spec}(k+(X(X-1)))$, when k is algebraically closed. See [3].

Proposition 1. (a) $\mathrm{Eq}\left(i^{*}, *^{*}\right)$ has a function field K.
(b) A model for K is $Y^{2}=X^{2}(X+1)$. This is the cubic with one node (k algebraically closed).
(c) The node is the basepoint.

Proof. (a) $\mathrm{Eq}\left(i^{*}, *^{*}\right) \subset k(X)$, which is a field.
(b) One projects onto X_{1}, X_{3} coordinates which satisfy:

$$
\begin{gathered}
X_{2} X_{3}=X_{1}{ }^{3}, \\
X_{2}=X_{3}+X_{1}, \\
X_{3}^{2}+X_{1} X_{3}=X_{1}{ }^{3} .
\end{gathered}
$$

The tangents at the singular point $(0,0)$ are $X_{3}=0, X_{3}+X_{1}=0$. Therefore, $X_{3}{ }^{2}+X_{1} X_{3}=X_{1}{ }^{3}$ is the singular cubic with one node, and is projectively equivalent with $Y^{2}=X^{2}(X+1)$. See [6].
(c) The basepoint of $\mathrm{Eq}\left(i^{*}, *^{*}\right)$ corresponds to $X=0$; i.e., $X_{1}=0, X_{2}=0$, $X_{3}=0, \ldots$ But $\left(X_{1}, X_{3}\right)=(0,0)$ is the node of $X_{3}{ }^{2}+X_{1} X_{3}=X_{1}{ }^{3}$.

One can easily see that if $k=\mathbf{R}$, the equation $X_{3}{ }^{2}+X_{1} X_{3}=X_{1}{ }^{3}$ defines the usual picture of a singular cubic with one node.

It is possible to show that the quotients of a non-singular irreducible algebraic curve by finite collections of a finite number of points is again
algebraic. Serre [7] contains this result, and also a local statement of the above result. The advantage of the above construction is that it is more explicit.
2.2. Quotients in k / \mathscr{G}. Let k be algebraically closed and let card $k>$ card Z. Suppose that

$$
(V, P) \xrightarrow{f}(W, Q)
$$

are two based maps in k / \mathscr{G} where $P \in V, Q \in W$ and $*(V)=Q$. Then,

$$
\begin{gathered}
\operatorname{cok} f=\operatorname{Coeq}(f, *)=\operatorname{Spec}\left(\operatorname{Eq}\left(f^{*}, *^{*}\right)\right), \\
f^{*}:\left(k[W] \xrightarrow{w^{*}} k\right) \rightarrow\left(k[V] \xrightarrow{v^{*}} k\right), \\
^{}:\left(k[W] \xrightarrow{w^{*}} k\right) \rightarrow\left(k[V] \xrightarrow{v^{*}} k\right) .
\end{gathered}
$$

Here, $k[W], k[V]$ are the elements of \mathscr{C} corresponding to W and V, and $*^{*}=i^{*} \circ w^{*}$, where i^{*} includes k in $k[V]$. Thus,

$$
\operatorname{Eq}\left(f^{*}, *^{*}\right)=\left\{x \in k[W] \mid f^{*}(x)=w^{*}(x)\right\} .
$$

Lemma 1. $\operatorname{Eq}\left(f^{*}, *^{*}\right)=k+\operatorname{ker} f^{*}$.
Proof. Let $x \in k+\operatorname{ker} f^{*}$. Then $x=a+b$, where $a \in k, b \in \operatorname{ker} f^{*}$. We have $f^{*}(x)=a$ and $w^{*}(x)=v^{*} f^{*}(x)=v^{*}(a)=a$. So, $x \in \operatorname{Eq}\left(f^{*}, *^{*}\right)$. Let $x \in \operatorname{Eq}\left(f^{*}, *^{*}\right)$. Then $x=a+b$, where $a \in k, b \in \operatorname{ker}\left(w^{*}\right)$. We have $f^{*}(x)=f^{*}(a)+f^{*}(b)=a+f^{*}(b)$ and $w^{*}(x)=a$. As x equalizes f^{*}, w^{*}, $f^{*}(b)=0, b \in \operatorname{ker} f^{*}$.

Proposition 1. (a) Let $(V, P) \xrightarrow{f}(W, Q)$ be a map in $k / \mathscr{G} \cdot \operatorname{Cok}(f)=$ $\left(\operatorname{Spec}\left(k+\operatorname{ker} f^{*}\right), \operatorname{ker} f^{*}\right)$
(b) If f is an inclusion, $(W / V, V)=\operatorname{Cok} f=\left(\operatorname{Spec}\left(k+I_{v}\right), I_{v}\right)$, where I_{v} is the ideal of V.

Proof. (a) follows from Lemma 1 and remarks on equalizers in \mathscr{C} in $\S 1$. (b) One has a ring map

$$
k[W] \xrightarrow{f^{*}} k[W] / I_{v} .
$$

2.3. Example of categorical constructions in k / G. The quotient of the line by the divisor 20.0 the basepoint of the line, etc.

$$
\text { Map } \begin{aligned}
k / 20 \cong & \operatorname{Spec}\left(k+\left(X^{2}\right)\right) . \\
& X_{1} \rightarrow X^{2}, \\
& X_{2} \rightarrow X^{3}, \\
& X_{3} \rightarrow X^{4}, \text { etc. }
\end{aligned}
$$

A model of the function field of $k+\left(X^{2}\right)$ is given by $X_{1}{ }^{3}=X_{2}{ }^{2}$. This is the non-singular cubic with one cusp.

Similarly,

$$
k / 20+P \cong \operatorname{Spec}\left(k+(X+1)\left(X^{2}\right)\right)
$$

has a model with equation $X_{1}{ }^{4}=X_{2}{ }^{2} X_{3}, X_{3}-X_{2}=X_{1}$.
Often the quotient of algebraic varieties is not an algebraic variety.
Definition 1 . Let K be the function field of an irreducible reduced k-scheme in \mathscr{G}. Then K is a countably generated k-algebra, and each subalgebra is a countably generated k-algebra. Let $V(k)$ denote the k-points of a closed affine k-scheme corresponding to such a subalgebra and let $\{V(k)\}_{K}$, or simply $\{V\}_{K}$, denote the collection of all $V(k)$. We write $V>V^{\prime}$ if there is a birational projection $V \rightarrow V^{\prime}$. Minimal models are elements of $\{V\}_{K}$ not bigger than any other element of $\{V\}_{K}$ by $>$.

Corollary. The examples of §§ 2.1, 2.3 are minimal models.
As a consequence of these heuristics, one can propose:
Proposition 1. Let k be an algebraically closed field and F an algebraic curve in k / \mathscr{G}.
(a) F appears at the end of a string of algebraic curves

$$
H_{1} \xrightarrow{\alpha_{1}} H_{2} \xrightarrow{p_{1}} H_{2} \xrightarrow{\alpha_{2}} H_{3} \rightarrow \ldots \rightarrow H_{n} \xrightarrow{\alpha_{n}} F,
$$

where the α_{i} are quotients, the p_{i} are constant maps, and H_{1} is non-singular, the normalization of F.
(b) If F has one singular point, $n=1$.
(c) F is the coequalizer of maps

$$
\left\{P_{1}\right\}, \ldots \ldots,\left\{P_{n}\right\} \rightarrow H_{1} .
$$

(d) If F is of genus zero, and a plane curve,

$$
(\operatorname{deg} F-1)(\operatorname{deg} F-2)=\sum_{i} r_{i}\left(r_{i}-1\right),
$$

where the r_{i} are the multiplicities of the singularities of F.
The proofs of (a), (b), (c) are to be essentially found in [7]; (d) is a formula in [8].

2.4. Examples of categorical constructions in k / \mathscr{G}. Higher dimensional quotients.

Proposition 1. Let 0 be the basepoint of the plane P and the X-axis in the plane. Then the quotient of $(P, 0)$ by $(X$-axis, 0$)$ has minimal model with equation $X Z=Y^{2}$.

Proof. The ring of the quotient is $k+(X)$. One defines a map

$$
k\left[X_{1}, \ldots, X_{n}, \ldots\right] \rightarrow k+(X)
$$

by

$$
\begin{aligned}
& X_{1} \rightarrow X \\
& X_{2} \rightarrow X Y \\
& X_{3} \rightarrow X Y^{2} \\
& X_{4} \rightarrow X Y^{3}, \text { etc. }
\end{aligned}
$$

Then $X_{1} X_{3}=X_{2}{ }^{2}$.
Proposition 2. The quotient of $(P, 0)$ by (X-axis $\cup Y$-axis, 0) has minimal model with equation $Y Z=X^{3}$.

Proof. The map

$$
k\left[X_{1}, \ldots, X_{n}, \ldots\right] \rightarrow k+(X Y)
$$

is

$$
\begin{aligned}
& X_{1} \rightarrow X Y \\
& X_{2} \rightarrow X^{2} Y \\
& X_{3} \rightarrow X Y^{2} \\
& X_{4} \rightarrow X^{3} Y, \text { etc. }
\end{aligned}
$$

Then $X_{2} X_{3}=X_{1}{ }^{3}$.
Proposition 3. Let S be the cylinder in 3 -space defined by $X^{2}+Y^{2}=1$ with basepoint ($1,0,0$) and let L be the line $X=1, Y=0$ with basepoint $(1,0,0)$. Then, S / L has a minimal model with equation $Z^{2}+X^{3}(X+2)=0$ (with basepoint ($0,0,0$)).

Proof. The map

$$
k\left[X_{1}, \ldots, X_{n}, \ldots\right] \rightarrow k+(X-1) \subset k(X, Y, Z]
$$

is defined by

$$
\begin{aligned}
& X_{1} \rightarrow X-1 \\
& X_{2} \rightarrow Z(X-1) \\
& X_{3} \rightarrow Y(X-1) \\
& X_{4} \rightarrow Z^{2}(X-1), \text { etc. }
\end{aligned}
$$

Then $X_{3}{ }^{2}+X_{1}{ }^{3}\left(X_{1}+2\right)=0$.
Note that in these examples Y is not integral over the ring of the quotient, and the quotient can not be shown to be an algebraic variety by the method of Serre [7].
3. Algebraic Suspensions. One of the main reasons to study quotients in k / \mathscr{G} is to define suspensions. Let (X, P) be in k / \mathscr{G}, and let S_{1} be the circle in \mathscr{G}, defined by $X^{2}+Y^{2}=1$ with basepoint $(0,1)$. Then:

Definition 1. The algebraic suspension of X, written $S(X)$, is the quotient of $(X, P) \times\left(S_{1},(0,1)\right)$ by $\left(P \times S_{1} \cup X \times(0,1), P \times(0,1)\right)$.

This is the same, categorically, as the definition in the topological case. Thus, one expects:

Proposition 1. The algebraic suspension of two points is the circle.
Proof. The ring of the suspension is the equalizer E of

$$
k\left[S_{1}\right] \otimes_{k}(k \times k) \underset{*^{*}}{\stackrel{f^{*}}{\rightrightarrows}} k\left[S_{1}\right] \times k \times k,
$$

where $f^{*}(g, a, b)=,(a g, g(0,1) a, g(0,1) b)$.
This is seen to be the ring generated by

$$
\{g \otimes(a, b) \mid(a g, g(0,1) a, g(0,1) b)=(f(0,1) a, f(0,1) a, f(0,1) a)\} .
$$

If $a \neq 0$, elements $f(1,1) \otimes(a, a)$ are in E. If $a \neq 0, b \neq 0$, elements of $M_{(0,1)} \otimes_{k} k$ are in E. Thus, as $M_{(0,1)}$ is the maximal ideal in $k\left[S_{1}\right]$ at $(0,1)$, $E=k+M_{(0,1)}=k\left[S_{1}\right]$.

Proposition 2. The algebraic suspension of the line has a minimal model with equation

$$
\begin{aligned}
Z & =Z \\
X^{6}+Y^{4} & =-2 Y^{3} X
\end{aligned}
$$

A graph of this surface can be found in Frost [1, plate IV, fig. 3].
Proof. One defines a map

$$
k\left[X_{1}, \ldots, X_{n}, \ldots\right] \rightarrow k+(X-1)(Y)
$$

$\operatorname{via}\left(X^{\prime}=(X-1)\right)$

$$
\begin{aligned}
& X_{1} \rightarrow X^{\prime} Y, \\
& X_{2} \rightarrow X^{\prime 2} Y, \\
& X_{3} \rightarrow X^{\prime} Y^{2}, \\
& X_{4} \rightarrow Z\left(X^{\prime} Y\right) X, \\
& X_{5} \rightarrow Z^{2}\left(X^{\prime} Y\right), \text { etc. }
\end{aligned}
$$

Then $X_{1} X_{5}=X_{4}{ }^{2}, \quad X_{2} X_{3}=X_{1}{ }^{3}$, and $X_{2}{ }^{2}+X_{3}{ }^{2}=-2 X_{2} X_{1}$, the last relation following from $X^{\prime 2}+Y^{2}=-2 X^{\prime}$. Projecting onto (X_{1}, X_{2}) plane and substituting $X_{3}=X_{1}{ }^{3} / X_{2}$, one obtains $X_{2}{ }^{4}+X_{1}{ }^{6}=-2 X_{2}{ }^{3} X_{1} . X_{4}$ is free.

4. Algebraic suspensions of S^{n}.

Theorem. Let S^{n} be the n-sphere defined over k.
(a) The equations of a minimal model of the algebraic suspension $S\left(S^{n}\right)$ of S^{n} are

$$
\begin{gathered}
X_{3} X_{4}=X_{1}{ }^{3} \\
X_{2}+X_{3}{ }^{2}=-2 X_{3} X_{1} \\
X_{4}{ }^{2}+\ldots+X_{n+4^{2}}=-2 X_{4} X_{1}
\end{gathered}
$$

in $n+4$ space. The basepoint is $(0,0, \ldots, 0)$ and this is clearly a singular point. $S^{1}=S_{1}$.
(b) Let $k=\mathbf{R}$. Then $S\left(S^{n}\right)$ is homeomorphic to S^{n+1}, for the usual topologies.

Proof. (a) Let $k[x, y]$ and $k\left[x_{1}, \ldots, x_{n+1}\right]$ be the affine rings of S^{1} and S^{n}, respectively. The ideal of

$$
(1,0) \times S_{1} \cup S_{1} \times(1,0, \ldots 0)
$$

in

$$
k[x, y] \otimes k\left[x_{1}, \ldots, x_{n+1}\right]=k\left[x, y, x_{1}, \ldots, x_{n+1}\right]
$$

is $\left((x-1)\left(x_{1}-1\right)\right)$. Therefore, the ring of the suspension is

$$
k+\left((x-1)\left(x_{1}-1\right)\right) \subset k\left[x, y, x_{1}, \ldots, x_{n+1}\right] .
$$

Let $\bar{x}=x-1$ and $\bar{x}_{1}=x_{1}-1$.
One defines a map

$$
k\left[X_{1}, \ldots, X_{m}, \ldots\right] \rightarrow k+\left(\bar{x} \bar{x}_{1}\right)
$$

via

$$
\begin{aligned}
X_{1} & \rightarrow \bar{x} \bar{x}_{1} \\
X_{2} & \rightarrow y \bar{x} \bar{x}_{1} \\
X_{3} & \rightarrow \bar{x} \bar{x} \bar{x}_{1} \\
X_{4} & \rightarrow \bar{x}_{1} \bar{x} \bar{x}_{1} \\
X_{5} & \rightarrow x_{2} \bar{x} \bar{x}_{1} \\
& \cdot \\
& \cdot \\
& \cdot \\
X_{n+4} & \rightarrow x_{n+1} \bar{x} \bar{x}_{1}, \text { etc. }
\end{aligned}
$$

One sees that $X_{3} X_{4}=X_{1}{ }^{3}, X_{2}{ }^{2}+X_{3}{ }^{2}=-2 X_{3} X_{1}$, and

$$
X_{4}^{2}+\ldots+X_{n+4}^{2}=-2 X_{4} X_{1}
$$

by inspection. The basepoint of $S^{n} \times S_{1}$ corresponds to $\bar{x}, \bar{x}_{1}=0$. Therefore, the basepoint of these equations is $(0,0, \ldots)$.
(b) We prove the case $n=1$ first, where intuition is clearer. In this situation the equations are

$$
\begin{aligned}
X_{3} X_{4} & =X_{1}{ }^{3}, \\
X_{2}{ }^{2}+X_{3}{ }^{2} & =-2 X_{3} X_{1}, \\
X_{4}{ }^{2}+X_{5}{ }^{2} & =-2 X_{4} X_{1} .
\end{aligned}
$$

For a solution to exist (from the last two equations), X_{3}, X_{1} must have opposite signs and X_{4}, X_{1} must have opposite signs. But then, from the first equation, X_{1} must be positive. Thus, using the last two equations, we obtain the conditions

$$
\begin{gathered}
X_{1} \geqq 0 \\
X_{3}, X_{4} \geqq 0 .
\end{gathered}
$$

Substituting $X_{4}=X_{1}{ }^{3} / X_{3}$ into the last equation we have
(α)

$$
X_{1}^{4}\left(X_{1}^{2}+2 X_{3}\right)=-X_{5}^{2} X_{3}^{2}
$$

The second equation can be written

$$
X_{2}{ }^{2}=-X_{3}\left(X_{3}+2 X_{1}\right)
$$

These two equations yield

$$
\begin{gathered}
X_{1}{ }^{2}+2 X_{3} \leqq 0 \\
X_{3}+2 X_{1} \geqq 0 .
\end{gathered}
$$

Graphing (α), subject to the above conditions, one obtains a graph homeomorphic to a disc with $X_{3}+2 X_{1}=0$ on the boundary. Then the graph of $S\left(S^{1}\right)$ in 4 -space, subject to condition (β), will be two discs joined around their boundary where $X_{3}+2 X_{1}=0$. A 2 -sphere is thus obtained.

For arbitrary n, one obtains
(α)

$$
X_{1}^{4}\left(X_{1}^{2}+2 X_{3}\right)=-\left(X_{3}{ }^{2} X_{5}^{2}+\ldots+X_{3}{ }^{2} X_{n+4}{ }^{2}\right)
$$

and

$$
X_{2}{ }^{2}=-X_{3}\left(X_{3}+2 X_{3}\right)
$$

together with conditions

$$
\begin{aligned}
& X_{1} \geqq 0 \\
& X_{3}, X_{4} \leqq 0 \\
& X_{1}^{2}+2 X_{3} \leqq 0 \\
& X_{3}+2 X_{1} \geqq 0
\end{aligned}
$$

The projection of (α), subject to $X_{3}+2 X_{1}=0$, is the interior of the region bounded by

$$
X_{1}^{3}\left(4-X_{1}\right)=4\left(X_{5}^{2}+\ldots+X_{n+4^{2}}\right)
$$

This is seen to be an $n+1$ disc, topologically. Therefore, using equation (β), one has $S\left(S^{n}\right)$ is homeomorphic to the $n+1$ sphere.

We note that the projection of $S\left(S^{n}\right)$ into the first $n+4$ coordinates is a homeomorphism.
5. Algebraic loop functors. Suppose that the suspension functor S (a functor because of its categorical construction) has a right adjoint Ω in k / \mathscr{G}. Then, suppose that

$$
\operatorname{Hom}(S X, Y) \cong \operatorname{Hom}(X, \Omega(Y))
$$

as bifunctors in X, Y. Let X be an element of k / \mathscr{G} consisting of 2 points. Then, as sets,

$$
\Omega(Y) \cong \operatorname{Hom}\left(X, \Omega(Y) \cong \operatorname{Hom}\left(S^{1}, Y\right)\right.
$$

(suppressing basepoints). The algebraic loop functor should bave the same form as the topological loop functor. For the above to make sense, however, $\operatorname{Hom}\left(S^{1}, Y\right)$ must be given the structure of an element in k / \mathscr{G}.

Let X, Y be elements in k / \mathscr{G} whose geometric k points $X(k), Y(k) \neq \emptyset$. We show that $\operatorname{Hom}(X, Y)$ can be given the structure of an object in k / \mathscr{G}. Each element $f \in \operatorname{Hom}(X, Y)$ defines a morphism

$$
f\left(a_{i}\right)=\left(g^{j}\left(b_{k}^{j}, a_{i}\right)\right),
$$

where the $b_{k}{ }^{j}$ are the coefficients of the polynomial in a_{i} in the j coordinate of $f\left(a_{i}\right)$. Viewing the a_{i} as indeterminants and substituting ($g^{j}\left(b_{k}{ }^{j}, a_{i}\right)$) into the equations of Y, one has

$$
\operatorname{Hom}\left(k^{\mathbf{Z}}, Y\right) \cong\left\{\left(b_{k}{ }^{j}\right) \mid F\left(g^{j}\left(b_{k}{ }^{j}, a_{i}\right)\right)=0, \text { for all } F \text { in the ideal of } Y\right\}
$$

is an element of k / \mathscr{G} with basepoint the map $e: k^{\mathbf{Z}} \rightarrow Y$ which maps $k^{\mathbf{Z}}$ to the basepoint of Y. Let

$$
Z=\left\{\left(b_{k}{ }^{j}\right) \in \operatorname{Hom}\left(k^{\mathbf{Z}}, k^{\mathbf{Z}}\right) \mid\left(g^{j}\left(b_{k}{ }^{j}, a\right)\right)=P \text { for all }\left(a_{i}\right) \in X(k)\right\} .
$$

Z is an element of k / \mathscr{G} with basepoint $e . \operatorname{Hom}\left(X, k^{\mathbf{z}}\right)$ is then the quotient of $\operatorname{Hom}\left(k^{\mathbf{Z}}, k^{\mathbf{Z}}\right)$ by $Z . \operatorname{Hom}(X, Y)$ is the image in k / \mathscr{G} of $\operatorname{Hom}\left(k^{\mathbf{Z}}, Y\right)$ in

$$
\operatorname{Hom}\left(X, k^{\mathbf{z}}\right)
$$

Theorem 1. In $k / \mathscr{G}, S$ is the left adjoint to Ω.
Proof. As k / \mathscr{G} is normal for closed immersions, one has an exact sequence

$$
0 \rightarrow S_{1} \times R \cup Q \times X \rightarrow S_{1} \times X \rightarrow S(X) \rightarrow 0
$$

Define a map

$$
\alpha: \operatorname{Hom}(S(X), Y) \rightarrow \operatorname{Hom}\left(X, \operatorname{Hom}\left(S_{1}, Y\right)\right)
$$

via

$$
\alpha(f)(x)(s)=f(s, x)
$$

where $f \in \operatorname{Hom}(S(X), Y)$ and (s, x) is a representative for an element of $S(X)$. Then,

$$
\begin{aligned}
\alpha(f)(X)(Q) & =f(Q, X)=P \\
\alpha(f)(R)\left(S_{1}\right) & =f\left(S_{1}, R\right)=P
\end{aligned}
$$

and as e (as defined above) is the basepoint of $\operatorname{Hom}\left(S_{1}, Y\right), \alpha$ behaves properly with respect to basepoints. Define a map

$$
\beta^{\prime}: \operatorname{Hom}\left(X, \operatorname{Hom}\left(S_{1}, Y\right)\right) \rightarrow \operatorname{Hom}\left(S_{1} \times X, Y\right)
$$

via

$$
\beta^{\prime}(f)(s, x)=f(x)(s) .
$$

As

$$
\begin{aligned}
& \beta^{\prime}(f)\left(S_{1}, R\right)=f(R)\left(S_{1}\right)=P, \\
& \beta^{\prime}(f)(Q, X)=f(X)(Q)=P,
\end{aligned}
$$

β^{\prime} induces a map
$\beta: \operatorname{Hom}\left(X, \operatorname{Hom}\left(S_{1}, Y\right)\right) \rightarrow \operatorname{Hom}(S(X), Y)$.
The theorem is then complete, as it is clear that α and β are inverse natural transformations and that $\Omega(Y)=\operatorname{Hom}\left(S_{1}, Y\right)$.

References

1. P. Frost, Curve tracing (Chelsea, New York, 1960).
2. A. Grothendieck, Elements de geometrie algebrique. I (Springer-Verlag, Berlin, 1970).
3. S. Lang, Hilbert's Nullstellensatz in infinite dimensional space, Proc. Amer. Math. Soc. 3 (1952), 407-410.
4. B. Mitchell, Theorey of Categories (Academic Press, New York, 1965).
5. H. Popp, Fundamentalgruppen algebraischen Mannigfaltigkeiten (Springer-Verlag, Berlin, 1970).
6. A. Seidenberg, Elements of the theory of algebraic curves (Addison-Wesley, Reading, Massachusetts, 1968).
7. J. P. Serre, Groupes algebrique et corps de classes (Hermann, Paris, 1958).
8. R. Walker, Algebraic curves (Dover, New York, 1950).

Indiana University, Bloomington, Indiana

