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MORE PROPERTIES OF THE PRODUCT OF TWO DERIVATIONS
OF A C*-ALGEBRA

MARTIN MATHIEU

It is proved that the product of two non-zero derivations of a prime C*-algebra is
bounded only if both of them are bounded.

Posner’s paper [7] from 1957 initiated the investigation of properties of the product
of two derivations, defined on a ring (with additional properties) and, more recently,
also in the context of Banach algebras [1], [4], [8]. The so-called first Posner’s theorem
stating that the product of two non-zero derivations of a prime ring of characteristic
different from 2 can never be a derivation has various applications in ring theory, and
a number of authors studied possible extensions of this result. We refer to Lanski’s
paper [2] for a detailed up-to-date discussion of the history and a more comprehensive
bibliography.

In [4] we extended Posner’s theorem to the case of C*-algebra s. This was refined
subsequently by Bresar [1] by estimating the distance of the product of two derivations
to the set of all derivations, and in [6] an extension to unbounded derivations is given.
We also studied compactness properties of §;8,, where §;,6; are non-zero derivations
defined on a C*-algebra A. For example, §;6; is weakly compact only if either §;
or §, is weakly compact, and is compact only if both of them are weakly compact,
provided A is prime [4, Lemmas 4 and 7). During a lecture on that paper, J. Cuntz
asked whether it is possible to characterise when the product of two densely defined
derivations of a C*-algebra is a bounded operator. It is the purpose of this note to
answer his question. In particular, we prove that the square of a derivation § of any
C*-algebra is bounded only if § is bounded (Theorem 1) and that the product of two
derivations of a prime C*-algebra, both non-zero on a dense common core, is bounded
only if both of them are bounded (Theorem 2). The case of an arbitrary C*-algebra
can then be deduced easily from Theorem 2.

Let us fix our notation. Throughout, A will denote a C*-algebra and § a derivation
of A defined on D(§), a subalgebra of A. By L,, Ry, where a,b € A, we understand
the left (respectively right) multiplication by a (respectively b), and M, denotes the
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product L, R;. Note that ||M, || = ||e|l||8]] if and only if A is a prime C*-algebra (3,
Proposition 2.3].

We first study the square of a densely defined derivation since the arguments in-
volved are more direct than (although related to) those of Theorem 2. In all algebraic
manipulations with unbounded operators that follow we tacitly assume that their do-
mains fit together appropriately.

THEOREM 1. Let § be a densely defined derivation of a C*-algebra A. If §° is
bounded, then § itself is bounded.

PROOF: For all z,y € D(§) we have
26(z)yb(z) = 6 (zyz) — 6*(zy)z — z6%(yz) + z6*(y)z.
Hence, 2[|6(z)yé(z)l| < 4|16*| llz[I* llyll whence

18(2)1? = [ Ms(z), 62l = sup{l|6(z)yé()|l | llyll = 1}
< 2(18%| fl=l1?

Therefore, sup{||6(z)|| | ||z|l = 1,2z € D(6)} < +/2]||6?|| and §é is a bounded operator
on D(&) which, by the density, can be extended to A. 0

REMARK. The resulting norm estimate ||6]|2/2 < ||62|| < ||6]|* cannot be improved in
general, as can be seen by an example in [1].

We prepare the proof of Theorem 2 by two auxiliary results, the first of which
having an obvious extension to n-linear mappings.

LEMMA 1. Let A be a prime C*.algebra . For a,b,c € A let My},:
Ax A — A denote the bilinear mapping (z,w) — azbwc. Then ||M, .| = |la]l [|b]| |ic]| -

PROOF: By definition,

[[Mgpell = sup sup |lazbwe|| = sup ||Mazs,c|
llzll=1 [lwli=1 llzli=1
= sup [lazb|| |icll = | Maplt licll = llall 18]l ll<]l,
llzli=1
where we used [3, Proposition 2.3} twice. 0

In [4], we conjectured that the norm of M, + M, is not less than [la|| |3,
provided that A is a prime C*-algebra . We do not know at present whether the
slightly smaller estimate given in the next lemma is sharp.

LEMMA 2. Let A be a prime C*-algebra and a,a',b,b',b",c € A. Then

2afl l1Bll flell < [1Ma,5 + M, ar]| el
+ | Mo, + Mar, || lall + [|Ma, o + Mt | [|a"]
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In particular, | Mo + My ol > 2]|a]| ||3]]/3-
ProOF: The identity

2 azbwe = (azb + b'za'Ywe + az(bwe + a'wd") — a(za'w)b" — b'(za'w)e,
holding for all z,w € A, yields

2|lazbwel|| < |Map + My, o[l [|2]| [[w]] [le]
+ | M, e + My gl ||zl l1w]| llall + | Ma, o0 + My |l ll2] [[]) fla"]l

Hence, Lemma 1 entails the first assertion, and specialising to a =a' = c and b=b'=
b" gives the second. 1]

Next is the main result of the paper.

THEOREM 2. Let §,,6, be two derivations of a prime C*-algebra A that are
non-zero on D(6,) N D(6;) which is dense. Then 6,8, is bounded if and only if both
(61) and (82) are bounded.

PRrOOF: Applying Lemma 2 with z,y,u € D = D(6;) N D(82) we have

(1) 2(16.(2) [ 11621 1161 ()l < 1 M5, (2), 8505) + Moy (2), 6001l 1162 ()
+ | Mey(4),81(u) + My (3), 62 ()l [161 ()]
+ 1 M5, (<), 62(u) + My, 8, )l 162 (¥)]]-

Suppose that §;682 is bounded. A straightforward calculation yields
(2) Mg (a), 6,00 + Msy(2),60(3) = 6162 M2y — Ry616:L2 — L2616, Ry + M, 6162

(compare also [1, Observation 1]). Combining (1) and (2) we thus obtain

(3) 2(|8:(2) 162wl 16 (Il < 411826211 (Nl llyll 1162 )l
+ Nyl thell 162 ) + Nzl aelf 1162 ()11 -

Now fix z and u such that ||z|] = ||u|| = 1 and &;(z) # 0, 6;(u) # 0. Then, for each
y € D with |y =1,

(4) N82(¥)Il < 71 +v2 1862 ()|
where 71 = (262821 (182 (2)I| + NS ()ID)/ (822 1182 ()]
and v2 = (2[161621))/ (1162 ()1l 1162 ()II)
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are greater than zero by (3). If there is a sequence (yn),en in D such that [jy,]| =1
and ||82(yn)|| = n for all n € N, then ||6;(y,)|| increases too, by (4). However, by
Lemma 2 and (2),

21186 ()11 182091l < M5, (3, 65(3) + M50, 61|l < 41161821

for every y € D with ||y|| = 1, which shows that é; has to be bounded on D and can
thus be extended to A.

Interchanging §; with §; in (1) yields

(39 162(2) 11 1162l 162 ()l < 2162820 (Nl llyl} 182 (w)]
+ [yl Ml 182020 + =1 (i 11621
whence sup{[|81()Il | ¥ € D, llsll = 1} [|6]|* < 6116282 [|62]1-

Since 6, is non-zero it follows that §, is bounded (by (6 ||6182]|)/||62]), and the proof

is complete.

REMARKS: 1. Observe that both Theorems 1 and 2 remain valid under the as-
sumption that 4 is a Banach algebra which is uliraprime, that is inf{||M, | | a,b €
A, |la]l = ||8]] = 1} > 0, in particular, if A is the algebra of all bounded operators on a
Banach space.

2. Let A be a prime C*-algebra , and let §;, 8, be derivations of A such that 6,6,
is again a derivation and D = D(6;) N D(62) N D(6,82) is a dense common core. Then a
well known calculation (see (7, p. 1094]) shows that My, (z), s,(y) + Méy(z),6,(y) = 0 for
all z,y € D. By (1), it follows that ||8,(z)|% ||62(y)|| = O for all =,y € D, thus either
6, = 0 or 8§, = 0. We thus obtain Posner’s theorem for unbounded derivations more
directly than in [6].

Now suppose that § is an unbounded derivation of a C*-algebra B. Putting
A=B®B,§ =600 and 6, = 0 @5 we obtain two unbounded derivations with
bounded product on a non-prime C*-algebra . Applying Theorem 2 in irreducible
representations of an arbitrary C*-algebra , we proceed to show that this example is
the only exceptional case which can occur.

COROLLARY 1. Let 6,8, be two derivations of a C*-algebra A such that D =
D(6:1) N D(62) is dense and 6,6, is bounded. For every irreducible representation =, if
w6; is non-zero on D, then #8; is bounded where 1 €1,7 < 2,1 #j.

PROOF: Let (w,H) be an irreducible representation of A. Since, by Kaplansky’s
density theorem, the canonical extension # of 7 to the enveloping von Neumann algebra
A** maps the unit ball of A** onto the unit ball of wv(4)" = B(H) [8, I11.2.2], for
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every a,b,c,d € A, we have ||My(a), x(6) + Mx(c), x(a)ll < ||Map+ M, 4. An application
of 7 to (1) together with (2) gives

b1 (@)1 12 ()1l 12 ()l < 2182621 (=l Hlyll ]2 ()
+ [yl llll 1782 (2)1l + ll=]) lluell 162 ()11)

whenever z,y,u € D. If w6, is non-zero on D, we can continue as in the proof of
Theorem 2 and conclude that 74, has to be bounded. Working with the analogue of
(3') rather than (3), we deduce the boundedness of 7§; from 6, being non-zero. [

Observe also that both w6; and 7§, non-zero implies that 78,6, is non-zero. This
is derived either from the above arguments or from [3, Theorem 4.1] applied to the
identity

M5, (2), %63(4) T Muty(2),761(y) =0 forallz,y €D

which holds if 76,8, = 0.

The information obtained in Theorem 2 can also be assembled to a global picture,
if we allow scaling by central elements in A**. Take a faithful family I' of disjoint
irreducible representations of A, put I'o = {r € ' | #§; and wé, are non-zero on D}
and let 1 — es be the central cover of Ty in A** (see [5, 3.8]). For each v € Ty,
[lwés]| |wb2]| < 6]|6182||. Put Ty = {w € Ty | ||wb1]| < 1}, T2 = Ty \T'1, and let ey, e
be the central covers of T'y,T';, respectively. Then, e;§; is bounded (by 1) and ¢4,
is bounded (by 6|6,52]|), where ¢; = c;e; = Y. ®||w6;]|c(7), () is the central

nel’y
cover of 7, and ¢§ = L.§ for each central element ¢ in A**. In the same vein, e;6;

is bounded (by 6 ||6;82], since inf{||76,|| | c(=) < e2} > 1) and c,8; is bounded (by
6]|6182]|), where c; = cae; = Y, @ ||wh2| (7). (Observe that ¢(7)6 = =6.)
x€ly

Summarising this we have deduced our final result.

COROLLARY 2. Let 6;,62 be two derivations of a C*-algebra A such that
D(8:) N D(62) is dense. If 6,62 is bounded then there exist orthogonal central projec-
tions e; € A**,j =1,2,3, with e; + e+ es = 1 and central elements ¢; € A**,i = 1,2,
such that e;6; and c;8; are bounded for 1 1,5 <2,i# j, and e3é; have orthogonal
ranges.
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